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Stateflow Chart Concepts

• “Finite State Machine Concepts” on page 1-2
• “The Stateflow Chart” on page 1-4
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Finite State Machine Concepts
Stateflow charts can contain sequential decision logic based on state machines. A finite state machine
is a representation of an event-driven (reactive) system. In an event-driven system, the system makes
a transition from one state (mode) to another, if the condition defining the change is true.

For example, you can use a state machine to represent the automatic transmission of a car. The
transmission has these operating states: park, reverse, neutral, drive, and low. As the driver shifts
from one position to another, the system makes a transition from one state to another, for example,
from park to reverse.

Finite State Machine Representations
Traditionally, designers used truth tables to represent relationships among the inputs, outputs, and
states of a finite state machine. The resulting table describes the logic necessary to control the
behavior of the system under study. Another approach to designing event-driven systems is to model
the behavior of the system by describing it in terms of transitions among states. The occurrence of
events under certain conditions determine the state that is active. State-transition charts and bubble
charts are graphical representations based on this approach.

Stateflow Chart Representations
A Stateflow chart can contain sequential and combinatorial logic in the form of state transition
diagrams, flow charts, state transition tables, and truth tables. A state transition diagram is a
graphical representation of a finite state machine. States and transitions form the basic building
blocks of a sequential logic system. Another way to represent sequential logic is a state transition
table, which allows you to enter the state logic in tabular form. You can also represent combinatorial
logic in a chart with flow charts and truth tables.

You can include Stateflow charts as blocks in a Simulink® model. The collection of these blocks in a
Simulink model is the Stateflow machine.

A Stateflow chart enables the representation of hierarchy, parallelism, and history. You can organize
complex systems by defining a parent and offspring object structure. For example, you can organize
states within other higher-level states. A system with parallelism can have two or more orthogonal
states active at the same time. You can also specify the destination state of a transition based on
historical information.

Notation
Notation defines a set of objects and the rules that govern the relationships between those objects.
Stateflow chart notation provides a way to communicate the design information in a Stateflow chart.

Stateflow chart notation consists of these elements:

• A set of graphical objects
• A set of nongraphical text-based objects
• Defined relationships between those objects

1 Stateflow Chart Concepts
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Semantics
Semantics describe how to interpret chart notation. A typical Stateflow chart contains actions
associated with transitions and states. The semantics describe the sequence of these actions during
chart execution.

Bibliography
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More About
• “Overview of Stateflow Objects” on page 2-2
• “Model Reactive Systems in Stateflow” on page 4-2
• “How Stateflow Objects Interact During Execution” on page 3-7
• “Specify Properties for Stateflow Charts” on page 28-2
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The Stateflow Chart
To get hands-on experience using Stateflow software, you will build a Stateflow chart in incremental
steps that follow the basic workflow described in “Model Reactive Systems in Stateflow” on page 4-
2.

You will build a Stateflow chart that maintains air temperature at 120 degrees in a physical plant. The
Stateflow controller operates two fans. The first fan turns on if the air temperature rises above 120
degrees and the second fan provides additional cooling if the air temperature rises above 150
degrees. When completed, your Stateflow chart should look something like this:

As you can see from the title bar, the chart is called Air Controller and is part of a Simulink model
called sf_aircontrol. When you build this chart, you will learn how to work with the following
elements of state-transition charts:

Exclusive (OR) states.   States that represent mutually exclusive modes of operation. No two
exclusive (OR) states can ever be active or execute at the same time. Exclusive (OR) states are
represented graphically by a solid rectangle:

The Air Controller chart contains six exclusive (OR) states:
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• PowerOn
• PowerOff
• FAN1.On
• FAN1.Off
• FAN2.On
• FAN2.Off

Parallel (AND) states.   States that represent independent modes of operation. Two or more
parallel (AND) states at the same hierarchical level can be active concurrently, although they execute
in a serial fashion. Parallel (AND) states are represented graphically by a dashed rectangle with a
number indicating execution order:

The Air Controller chart contains three parallel (AND) states:

• FAN1
• FAN2
• SpeedValue

Transitions.   Graphical objects that link one state to another and specify a direction of flow.
Transitions are represented by unidirectional arrows:

The Air Controller chart contains six transitions, from

• PowerOn to PowerOff
• PowerOff to PowerOn
• FAN1.On to FAN1.Off
• FAN1.Off to FAN1.On
• FAN2.On to FAN2.Off
• FAN2.Off to FAN2.On

Default transitions.   Graphical objects that specify which exclusive (OR) state is to be active
when there is ambiguity between two or more exclusive (OR) states at the same level in the hierarchy.
Default transitions are represented by arrows with a closed tail:

The Air Controller chart contains default transitions:

• At the chart level, the default transition indicates that the state PowerOff is activated (wakes up)
first when the chart is activated.
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• In the FAN1 and FAN2 states, the default transitions specify that the fans be powered off when the
states are activated.

State actions.   Actions executed based on the status of a state.

The Air Controller chart contains two types of state actions:

• entry (en) action in the PowerOff state. Entry actions are executed when the state is entered
(becomes active).

• during (du) action in the SpeedValue state. During actions are executed for a state while it is
active and no valid transition to another state is available.

Other types of state actions

There are other types of state actions besides entry and during, but they involve concepts that go
beyond the scope of this guide. For more information, see “Syntax for States and Transitions”.

Conditions.   Boolean expressions that allow a transition to occur when the expression is true.
Conditions appear as labels for the transition, enclosed in square brackets ([ ]).

The Air Controller chart provides conditions on the transitions between FAN1.On and FAN1.Off, and
between FAN2.On and FAN2.Off, based on the air temperature of the physical plant at each time
step.

Events.   Objects that can trigger a variety of activities, including:

• Waking up a Stateflow chart
• Causing transitions to occur from one state to another (optionally in conjunction with a condition)
• Executing actions

The Air Controller chart contains two edge-triggered events:

• CLOCK wakes up the Stateflow chart at each rising or falling edge of a square wave signal.
• SWITCH allows transitions to occur between PowerOff and PowerOn at each rising or falling edge

of a pulse signal.
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Stateflow Chart Notation

• “Overview of Stateflow Objects” on page 2-2
• “Guidelines for Naming Stateflow Objects” on page 2-5
• “States” on page 2-8
• “State Hierarchy” on page 2-17
• “State Decomposition” on page 2-19
• “Transitions” on page 2-21
• “Self-Loop Transitions” on page 2-28
• “Inner Transitions” on page 2-29
• “Default Transitions” on page 2-32
• “Move Between Levels of Hierarchy by Using Supertransitions” on page 2-35
• “Combine Transitions and Junctions to Create Branching Paths” on page 2-41
• “History Junctions” on page 2-45
• “Record State Activity by Using History Junctions” on page 2-46
• “Create Entry and Exit Connections Across State Boundaries” on page 2-48
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Overview of Stateflow Objects
Hierarchy of Stateflow Objects
Stateflow objects are arranged in a hierarchy based on containment. That is, one Stateflow object can
contain other Stateflow objects.

The highest object in Stateflow hierarchy is the Stateflow machine. The Stateflow machine contains
all of the Stateflow charts in a Simulink model.

Stateflow charts can contain states, functions, boxes, data, events, messages, transitions, junctions,
entry and exit ports, and annotations. States, functions, and boxes can contain other states, functions,
boxes, data, events, messages, transitions, junctions, entry and exit ports, and annotations. Levels of
nesting can continue indefinitely.

Graphical Objects
To manage graphical objects, use the Stateflow Editor. This table lists each type of graphical object
and the palette icon to use for adding the object. For more information, see “Stateflow Editor
Operations” on page 4-20.
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Type of Graphical Object Palette Icon Reference
State “Represent Operating Modes by

Using States” on page 4-5
Transition “Transition Between Operating

Modes” on page 4-14
Connective junction “Combine Transitions and

Junctions to Create Branching
Paths” on page 2-41

Box “Group Chart Objects by Using
Boxes” on page 8-2

Simulink based state “Create and Edit Simulink
Based States” on page 6-11

Simulink function “Reuse Simulink Functions in
Stateflow Charts” on page 11-
2

Graphical function “Reuse Logic Patterns by
Defining Graphical Functions”
on page 8-10

MATLAB® function “Reuse MATLAB Code by
Defining MATLAB Functions” on
page 9-2

Truth table function “Use Truth Tables to Model
Combinatorial Logic” on page
10-2

History junction “Record State Activity by Using
History Junctions” on page 2-
46

Exit Junction “Create Entry and Exit
Connections Across State
Boundaries” on page 2-48

Entry Junction “Create Entry and Exit
Connections Across State
Boundaries” on page 2-48

Annotation “Add Descriptive Comments in a
Chart” on page 8-23

Image “Add Descriptive Comments in a
Chart” on page 8-23

Nongraphical Objects
You can define data, event, and message objects that do not appear graphically in the Stateflow
Editor. To manage nongraphical objects, use the Symbols pane or Model Explorer. For more
information, see:

• “Manage Symbols in the Stateflow Editor” on page 34-2
• “Use the Model Explorer with Stateflow Objects” on page 34-10
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Data Objects

A Stateflow chart stores and retrieves data that it uses to control its execution. Stateflow data resides
in its own workspace, but you can also access data that resides externally in the Simulink model or
application that embeds the Stateflow machine. You must define any internal or external data that
you use in a Stateflow chart.

Event Objects

An event is a Stateflow object that can trigger a whole Stateflow chart or individual actions in a chart.
Because Stateflow charts execute by reacting to events, you specify and program events into your
charts to control their execution. You can broadcast events to every object in the scope of the object
sending the event, or you can send an event to a specific object. You can define explicit events that
you specify directly, or you can define implicit events to take place when certain actions are
performed, such as entering a state. For more information, see “Synchronize Model Components by
Broadcasting Events” on page 14-2.

Message Objects

Stateflow message objects are queued objects that can carry data. You can send a message from one
Stateflow chart to another to communicate between charts. You can also send local messages within a
chart. You define the type of message data. You can view the lifeline of a message in the Sequence
Viewer block. For more information, see “Communicate with Stateflow Charts by Sending Messages”
on page 15-2.
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Guidelines for Naming Stateflow Objects
You can name Stateflow objects with a combination of alphanumeric and underscore characters.

• Names cannot begin with a numeric character or contain embedded spaces.
• Name length should comply with the maximum identifier length enforced by Simulink Coder™

software. You can set the Maximum identifier length parameter. The default is 31 characters
and the maximum length you can specify is 256 characters.

• Avoid using reserved keywords to name Stateflow objects. These keywords are part of the action
language syntax.

Note Do not use the file names sf.slx for Simulink models or sf.sfx for standalone Stateflow
charts in MATLAB. Using these file names can shadow Stateflow program files and result in
unpredictable behavior.

Reserved Keywords
Usage in Action Language
Syntax

Keywords Syntax References

Boolean symbols • true
• false

“Boolean Symbols, true and false”
on page 16-11

Change detection • hasChanged
• hasChangedFrom
• hasChangedTo

“Detect Changes in Data and
Expression Values” on page 16-62

Complex data • complex
• imag
• real

“Supported Operations for Complex
Data” on page 27-4

Data types • boolean
• double
• int64
• int32
• int16
• int8
• single
• uint64
• uint32
• uint16
• uint8

“Specify Type of Stateflow Data” on
page 12-27
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Usage in Action Language
Syntax

Keywords Syntax References

Data type operations • cast
• type

“Type Cast Operations” on page 16-
7

“Specify Type of Stateflow Data” on
page 12-27

Explicit events • send “Broadcast Local Events to
Synchronize Parallel States” on
page 14-23

Implicit events • change
• chg
• enter
• en
• exit
• ex
• tick

“Control Chart Behavior by Using
Implicit Events” on page 14-26

Literal symbols • inf
• t

“Supported Symbols in Actions” on
page 16-11

MATLAB functions and data • matlab
• ml

“Access MATLAB Functions and
Workspace Data in C Charts” on
page 16-19

• this “App Design”
Messages • discard

• forward
• isvalid
• length
• receive
• send

“Control Message Activity in
Stateflow Charts” on page 15-9

State actions • bind
• du
• during
• en
• entry
• ex
• exit
• on

“States” on page 2-8

State activity • in “Check State Activity by Using the
in Operator” on page 13-18

2 Stateflow Chart Notation

2-6



Usage in Action Language
Syntax

Keywords Syntax References

String manipulation • ascii2str
• str2ascii
• str2double
• strcat
• strcmp
• strcpy
• strlen
• substr
• tostring

“Manage Textual Information by
Using Strings” on page 24-2

Temporal logic • after
• at
• before
• count
• duration
• elapsed
• et
• every
• msec
• sec
• temporalCount
• usec

“Control Chart Execution by Using
Temporal Logic” on page 16-34

See Also

More About
• “Supported Symbols in Actions” on page 16-11
• “Supported Operations for Chart Data” on page 16-4
• “Supported Operations for Vectors and Matrices” on page 21-4
• “Supported Operations for Fixed-Point Data” on page 26-12
• “Supported Operations for Complex Data” on page 27-4
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States
A state describes an operating mode of a reactive system. In a Stateflow chart, states are used for
sequential design to create state transition diagrams.

States can be active or inactive. The activity or inactivity of a state can change depending on events
and conditions. The occurrence of an event drives the execution of the state transition diagram by
making states become active or inactive. At any point during execution, active and inactive states
exist.

State Hierarchy
To manage multilevel state complexity, use hierarchy in your Stateflow chart. With hierarchy, you can
represent multiple levels of subcomponents in a system.

State Hierarchy Example

In the following example, three levels of hierarchy appear in the chart. Drawing one state within the
boundaries of another state indicates that the inner state is a substate (or child) of the outer state (or
superstate). The outer state is the parent of the inner state.

In this example, the chart is the parent of the state Car_done. The state Car_done is the parent
state of the Car_made and Car_shipped states. The state Car_made is also the parent of the
Parts_assembled and Painted states. You can also say that the states Parts_assembled and
Painted are children of the Car_made state.

To represent the Stateflow hierarchy textually, use a slash character (/) to represent the chart and
use a period (.) to separate each level in the hierarchy of states. The following list is a textual
representation of the hierarchy of objects in the preceding example:

• /Car_done
• /Car_done.Car_made
• /Car_done.Car_shipped
• /Car_done.Car_made.Parts_assembled
• /Car_done.Car_made.Painted

2 Stateflow Chart Notation
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Objects That a State Can Contain

States can contain all other Stateflow objects. Stateflow chart notation supports the representation of
graphical object hierarchy in Stateflow charts with containment. A state is a superstate if it contains
other states. A state is a substate if it is contained by another state. A state that is neither a
superstate nor a substate of another state is a state whose parent is the Stateflow chart itself.

States can also contain nongraphical data, event, and message objects. The hierarchy of this
containment appears in the Model Explorer. You define data, event, and message containment by
specifying the parent object.

State Decomposition
Every state (or chart) has a decomposition that dictates what type of substates the state (or chart)
can contain. All substates of a superstate must be of the same type as the superstate decomposition.
State decomposition can be exclusive (OR) or parallel (AND).

Exclusive (OR) State Decomposition

Substates with solid borders indicate exclusive (OR) state decomposition. Use this decomposition to
describe operating modes that are mutually exclusive. When a state has exclusive (OR)
decomposition, only one substate can be active at a time.

In the following example, either state A or state B can be active. If state A is active, either state A1 or
state A2 can be active at a given time.

Parallel (AND) State Decomposition

Substates with dashed borders indicate parallel (AND) decomposition. Use this decomposition to
describe concurrent operating modes. When a state has parallel (AND) decomposition, all substates
are active at the same time.

In the following example, when state A is active, A1 and A2 are both active at the same time.

 States
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The activity within parallel states is essentially independent, as demonstrated in the following
example.

In the following example, when state A becomes active, both states B and C become active at the
same time. When state C becomes active, either state C1 or state C2 can be active.

State Labels
The label for a state appears on the top left corner of the state rectangle with the following general
format:

name/
entry:entry actions
during:during actions
exit:exit actions
on event_name:on event_name actions
on message_name:on message_name actions
bind:events

The following example demonstrates the components of a state label.
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Each action in the state label appears in the subtopics that follow. For more information on state
actions, see “Execution of a Stateflow Chart” on page 3-25.

State Name
A state label starts with the name of the state followed by an optional / character. In the preceding
example, the state names are On and Off. Valid state names consist of alphanumeric characters and
can include the underscore (_) character. For more information, see “Guidelines for Naming Stateflow
Objects” on page 2-5.

Hierarchy provides some flexibility in naming states. The name that you enter on the state label must
be unique when preceded by ancestor states. The name in the Stateflow hierarchy is the text you
enter as the label on the state, preceded by the names of parent states separated by periods. Each
state can have the same name appear in the label, as long as their full names within the hierarchy are
unique.

The following example shows how unique naming of states works.

 States
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Each of these states has a unique name because of its location in the chart. The full names for the
states in FAN1 and FAN2 are:

• PowerOn.FAN1.On
• PowerOn.FAN1.Off
• PowerOn.FAN2.On
• PowerOn.FAN2.Off

State Actions
After the name, you enter optional action statements for the state with a keyword label that identifies
the type of action. You can specify none, some, or all of them. The colon after each keyword is
required. The slash following the state name is optional as long as it is followed by a carriage return.

For each type of action, you can enter more than one action by separating each action with a carriage
return, semicolon, or a comma. You can specify actions for more than one event or message by adding
additional on event_name or on message_name lines.

If you enter the name and slash followed directly by actions, the actions are interpreted as entry
action(s). This shorthand is useful if you are specifying only entry actions.

This table summarizes the different state action types.

State Action Abbreviation Description
entry en Executes when the state becomes active.
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State Action Abbreviation Description
exit ex Executes when the state is active and a

transition out of the state occurs.
during du Executes when the state is active and a

specific event occurs.
bind none Binds an event or data object so that only

that state and its children can broadcast
the event or change the data value.

on event_name none Executes when the state is active and it
receives a broadcast of event_name.

on message_name none Executes when a message message_name
is available.

on after(n,event_name)

on after(n,sec)

on after(n,msec)

on after(n,usec)

none Executes when:

• the event event_name has occurred at
least n times since the associated state
became active.

• at least n units of time have elapsed
since the associated state became
active.

For more information, see after.
on at(n,event_name)

on at(n,sec)

none Executes when:

• the event event_name has occurred
exactly n times since the associated
state became active.

• exactly n seconds have elapsed since
the associated state became active.

For more information, see at.
on before(n,event_name)

on before(n,sec)

on before(n,msec)

on before(n,usec)

none Executes when:

• the event event_name has occurred
fewer than n times since the associated
state became active.

• fewer than n units of time have elapsed
since the associated state became
active.

For more information, see before.
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State Action Abbreviation Description
on every(n,event_name)

on every(n,sec)

none Executes:

• every nth occurrence of the event
event_name since the associated state
became active.

• every n seconds since the associated
state became active.

For more information, see every.

entry Actions

Entry actions are executed when a state becomes active. Entry actions consist of the prefix entry (or
the abbreviation en) followed by a colon (:) and one or more actions. To separate multiple entry
actions, use semicolons or commas. You can also enter the actions on separate lines.

In the preceding example, the entry action id = x+y executes when the chart takes the default
transition and state A becomes active. See “Enter a Chart or State” on page 3-30.

exit Actions

Exit actions are executed when a state is active and a transition out of the state occurs. Exit actions
consist of the prefix exit (or the abbreviation ex) followed by a colon (:) and one or more actions. To
separate multiple exit actions, use semicolons or commas. You can also enter the actions on separate
lines.

In the preceding example, the exit action time_out executes when the chart takes one of the
transitions from state A to state B or C. See “Exit a State” on page 3-36.

during Actions

During actions are executed when a state is active, an event occurs, and no valid transition to another
state or the current state is available. During actions consist of the prefix during (or the
abbreviation du) followed by a colon (:) and one or more actions. To separate multiple during actions,
use semicolons or commas. You can also enter the actions on separate lines.

In the preceding example, the during action switch_on() executes whenever the state C is active
because there are no valid transitions to another state. See “Execution of a Stateflow Chart” on page
3-25.

bind Actions

You can bind the data and events to a state by using a bind action. A bind action consists of the
prefix bind followed by a colon (:) and one or more events or data. To separate multiple events and
data, use semicolons or commas. You can also enter the events and data on separate lines.

Only a state and its children can change data or broadcast events bound to that state. Other states
can read the bound data or listen for the bound event, but they cannot change the bound data or send
the bound events.

Bind actions apply to a chart whether the binding state is active or not. In the preceding example, the
bind action bind: id, time_out for state A binds the data id and the event time_out to state A.
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This binding prevents any other state (or its children) in the chart from changing id or broadcasting
event time_out.

If a state includes actions that change data or broadcast events that bind to another state, a compile-
time error occurs. For example, this chart contains two state actions that produce errors.

State Action Reason for Error
bind: id in state B Only one state can change the data id, which is

bound to state A
entry: time_out in state C Only one state can broadcast the event

time_out, which is bound to state A

Binding a function-call event to a state also binds the function-call subsystem that it calls. The
function-call subsystem is enabled when the binding state is entered and disabled when the binding
state is exited. For more information about this behavior, see “Control Function-Call Subsystems by
Using bind Actions” on page 16-28.

Bind actions are not supported in standalone Stateflow charts in MATLAB.

on Actions

On actions are executed when the state is active and it receives an event or message. On actions
consist of the prefix on followed by a unique event event_name or message message_name, a colon
(:), and one or more actions. To separate multiple on actions, use semicolons or commas. You can
also enter the actions on separate lines.

You can specify actions for more than one event or message. For example, if you want different events
to trigger different actions, enter multiple on action statements in the state action label:

on ev1: action1();
on ev2: action2();

If multiple events occur at the same time, the corresponding on actions execute in the order that they
appear in the state action label. For instance, in the previous example, if events ev1 and ev2 occur at
the same time, then action1() executes first and action2() executes second. See “Execution of a
Stateflow Chart” on page 3-25.
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See Also

Related Examples
• “Execution of a Stateflow Chart” on page 3-25
• “Enter a Chart or State” on page 3-30
• “Exit a State” on page 3-36
• “Eliminate Redundant Code by Combining State Actions” on page 16-2
• “Control Function-Call Subsystems by Using bind Actions” on page 16-28
• “Control Chart Execution by Using Temporal Logic” on page 16-34
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State Hierarchy
To manage multilevel state complexity, use hierarchy in your Stateflow chart. With hierarchy, you can
represent multiple levels of subcomponents in a system.

State Hierarchy Example
In the following example, three levels of hierarchy appear in the chart. Drawing one state within the
boundaries of another state indicates that the inner state is a substate (or child) of the outer state (or
superstate). The outer state is the parent of the inner state.

In this example, the chart is the parent of the state Car_done. The state Car_done is the parent
state of the Car_made and Car_shipped states. The state Car_made is also the parent of the
Parts_assembled and Painted states. You can also say that the states Parts_assembled and
Painted are children of the Car_made state.

To represent the Stateflow hierarchy textually, use a slash character (/) to represent the chart and
use a period (.) to separate each level in the hierarchy of states. The following list is a textual
representation of the hierarchy of objects in the preceding example:

• /Car_done
• /Car_done.Car_made
• /Car_done.Car_shipped
• /Car_done.Car_made.Parts_assembled
• /Car_done.Car_made.Painted

Objects That a State Can Contain
States can contain all other Stateflow objects. Stateflow chart notation supports the representation of
graphical object hierarchy in Stateflow charts with containment. A state is a superstate if it contains
other states. A state is a substate if it is contained by another state. A state that is neither a
superstate nor a substate of another state is a state whose parent is the Stateflow chart itself.
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States can also contain nongraphical data, event, and message objects. The hierarchy of this
containment appears in the Model Explorer. You define data, event, and message containment by
specifying the parent object.

2 Stateflow Chart Notation

2-18



State Decomposition
Every state (or chart) has a decomposition that dictates what type of substates the state (or chart)
can contain. All substates of a superstate must be of the same type as the superstate decomposition.
State decomposition can be exclusive (OR) or parallel (AND).

Exclusive (OR) State Decomposition
Substates with solid borders indicate exclusive (OR) state decomposition. Use this decomposition to
describe operating modes that are mutually exclusive. When a state has exclusive (OR)
decomposition, only one substate can be active at a time.

In the following example, either state A or state B can be active. If state A is active, either state A1 or
state A2 can be active at a given time.

Parallel (AND) State Decomposition
Substates with dashed borders indicate parallel (AND) decomposition. Use this decomposition to
describe concurrent operating modes. When a state has parallel (AND) decomposition, all substates
are active at the same time.

In the following example, when state A is active, A1 and A2 are both active at the same time.

The activity within parallel states is essentially independent, as demonstrated in the following
example.

In the following example, when state A becomes active, both states B and C become active at the
same time. When state C becomes active, either state C1 or state C2 can be active.
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Transitions
A transition is a line with an arrowhead that links one graphical object to another. In most cases, a
transition represents the passage of the system from one mode (state) to another. A transition
typically connects a source and a destination object. The source object is where the transition begins
and the destination object is where the transition ends. The following chart shows a transition from a
source state, B, to a destination state, A.

Junctions divide a transition into transition segments. In this case, a full transition consists of the
segments taken from the origin to the destination state. Each segment is evaluated in the process of
determining the validity of a full transition.

The following example has two segmented transitions: one from state On to state Off, and the other
from state On to itself:

A default transition is a special type of transition that has no source object. See “Default Transitions”
on page 2-32 for details.

Transition Hierarchy
Transitions cannot contain other objects the way that states can. However, transitions are contained
by states. The hierarchy for a transition is described in terms of its parent, source, and destination
states. The parent is the lowest level that contains the source and destination of the transition.
Consider the parents for the transitions in the following example:
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The following table resolves the parentage of each transition in the preceding example. The /
character represents the chart. Each level in the hierarchy of states is separated by the period (.)
character.

Transition Label Transition Parent Transition Source Transition Destination
switch_off / /Power_on.Low.Heat /Power_off
switch_high /Power_on /Power_on.Low.Heat /Power_on.High
switch_cold /Power_on.Low /Power_on.Low.Heat /Power_on.Low.Cold

Transition Labels
A transition label can consist of an event or message, a condition, a condition action, and a transition
action. Each part of the label is optional. The ? character is the default transition label. Transition
labels have this overall format:

event_or_message_trigger[condition]{condition_action}/{transition_action}

This example illustrates the parts of a transition label.
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Transition Event Trigger Condition Condition Action Transition Action
State A to state C event1 temp > 50 func1() None
State A to state B event2 None None data1 = 5

Event or Message Triggers

In transition label syntax, event or message triggers appear first as the name of an event or message.
They have no distinguishing special character to separate them from other actions in a transition
label. In the example in “Transitions” on page 2-21, both transitions from state A have event triggers.
The transition from state A to state B has the event trigger event2 and the transition from state A to
state C has the event trigger event1.

Event triggers specify an event that causes the transition to be taken, provided the condition, if
specified, is true. Specifying an event is optional. Message triggers specify the transition to be taken
if the message is present in the message queue. The absence of an event or message indicates that
the transition is taken upon the occurrence of any event. Multiple events or messages are specified
using the OR logical operator (|).

Conditions

In transition label syntax, conditions are Boolean expressions enclosed in square brackets ([]). In the
example in “Transitions” on page 2-21, the transition from state A to state C has the condition temp
> 50.

A condition is a Boolean expression to specify that a transition occurs given that the specified
expression is true. Follow these guidelines for defining and using conditions:

• The condition expression must be a Boolean expression that evaluates to true (1) or false (0).
• The condition expression can consist of any of the following:

• Boolean operators that make comparisons between data and numeric values
• A function that returns a Boolean value
• An in(state_name) condition that evaluates to true when the state specified as the argument

is active. For more information, see “Check State Activity by Using the in Operator” on page
13-18.

• Temporal logic conditions (see “Control Chart Execution by Using Temporal Logic” on page 16-
34)

• The condition expression can call a graphical function, truth table function, or MATLAB function
that returns a numeric value.

For example, [test_function(x, y) < 0] is a valid condition expression.
• The condition expression should not call a function that causes the chart to change state or modify

any variables.
• Boolean expressions can be grouped using & for expressions with AND relationships and | for

expressions with OR relationships.
• Assignment statements are not valid condition expressions.
• Unary increment and decrement actions are not valid condition expressions.
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Condition Actions

In transition label syntax, condition actions follow the transition condition and are enclosed in curly
braces ({}). In the example in “Transitions” on page 2-21, the transition from state A to state C has
the condition action func1(), a function call.

Condition actions are executed as soon as the condition is evaluated as true, but before the transition
destination has been determined to be valid. If no condition is specified, an implied condition
evaluates to true and the condition action is executed.

Transition Actions

In transition label syntax, transition actions are preceded with a forward slash (/) and are enclosed in
curly braces ({}). In the example in “Transitions” on page 2-21, the transition from state A to state B
has the transition action data1 = 5. In C charts, transition actions are not required to be enclosed
in curly braces. In charts that use MATLAB as the action language, the syntax is auto corrected if the
curly braces are missing from the transition action. See “Auto Correction When Using MATLAB as the
Action Language” on page 17-2.

Transition actions execute only after the complete transition path is taken. They execute after the
transition destination has been determined to be valid, and the condition, if specified, is true. If the
transition consists of multiple segments, the transition action executes only after the entire transition
path to the final destination is determined to be valid.

Transition actions are not supported in standalone Stateflow charts in MATLAB.

Valid Transitions
Usually, a transition is valid when the source state of the transition is active and the transition label is
valid. Default transitions are different because there is no source state. Validity of a default transition
to a substate is evaluated when there is a transition to its superstate, assuming the superstate is
active. This labeling criterion applies to both default transitions and general case transitions. The
following table lists possible combinations of valid transition labels.

Transition Label Is Valid If...
Event only That event occurs
Event and condition That event occurs and the condition is true
Message only That message occurs
Message and condition That message occurs and the condition is true
Condition only Any event occurs and the condition is true
Action only Any event occurs
Not specified Any event occurs

Transition Connections
Transitions to and from Exclusive (OR) States

This example shows simple transitions to and from exclusive (OR) states.
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The following transition... Is valid when...
B to A State B is active and the event E1 occurs.
A1 to A2 State A1 is active and event E2 occurs.

See “Transition Between Exclusive States” on page A-4 for more information on the semantics of
this notation.

Transitions to and from Junctions

The following chart shows transitions to and from connective junctions.

The chart uses temporal logic to determine when the input u equals 1.

If the input equals 1... A transition occurs from...
Before t = 2 Start to Fast
Between t = 2 and t = 5 Start to Medium
After t = 5 Start to Slow

For more information about temporal logic, see “Control Chart Execution by Using Temporal Logic”
on page 16-34. For more information on the semantics of this notation, see “Transition from a
Common Source to Multiple Destinations” on page A-28.

Transitions to and from Exclusive (OR) Superstates

This example shows transitions to and from an exclusive (OR) superstate and the use of a default
transition.
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The chart has two states at the highest level in the hierarchy, Power_off and Power_on. By default,
Power_off is active. The event Switch toggles the system between the Power_off and Power_on
states. Power_on has three substates: First, Second, and Third. By default, when Power_on
becomes active, First also becomes active. When Shift equals 1, the system transitions from
First to Second, Second to Third, Third to First, for each occurrence of the event Switch, and
then the pattern repeats.

For more information on the semantics of this notation, see “Control Chart Execution by Using
Default Transitions” on page A-14.

Transitions to and from Substates

The following example shows transitions to and from exclusive (OR) substates.
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For details on how this chart works, see “Debounce Signals with Fault Detection” on page 30-14. For
information on the semantics of this notation, see “Transition from a Substate to a Substate with
Events” on page A-7.

See Also

More About
• “Default Transitions” on page 2-32
• “Control Chart Execution by Using Condition Actions” on page A-9
• “Synchronize Model Components by Broadcasting Events” on page 14-2
• “Communicate with Stateflow Charts by Sending Messages” on page 15-2
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Self-Loop Transitions
A self-loop transition is a transition that originates from and terminates on the same state. The
following chart contains four self-loop transitions:

See these sections for more information about the semantics of this notation:

• “Self-Loop Transition” on page A-24
• “For-Loop Construct” on page A-25
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Inner Transitions
An inner transition is a transition that does not exit the source state. Inner transitions are powerful
when defined for superstates with exclusive (OR) decomposition. Use of inner transitions can greatly
simplify a Stateflow chart, as shown by the following examples:

• “Before Using an Inner Transition” on page 2-29
• “After Using an Inner Transition to a Connective Junction” on page 2-29
• “Using an Inner Transition to a History Junction” on page 2-30

Before Using an Inner Transition
This chart is an example of how you can simplify logic using an inner transition.

Any event occurs and awakens the Stateflow chart. The default transition to the connective junction
is valid. The destination of the transition is determined by [c1 > 0] and [c2 > 0]. If [c1 > 0] is
true, the transition to A1 is true. If [c2 > 0] is true, the transition to A2 is valid. If neither [c1 >
0] nor [c2 > 0] is true, the transition to A3 is valid. The transitions among A1, A2, and A3 are
determined by E, [c1 > 0], and [c2 > 0].

After Using an Inner Transition to a Connective Junction
This example simplifies the preceding example using an inner transition to a connective junction.
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An event occurs and awakens the chart. The default transition to the connective junction is valid. The
destination of the transitions is determined by [c1 > 0] and [c2 > 0].

You can simplify the chart by using an inner transition in place of the transitions among all the states
in the original example. If state A is already active, the inner transition is used to reevaluate which of
the substates of state A is to be active. When event E occurs, the inner transition is potentially valid.
If [c1 > 0] is true, the transition to A1 is valid. If [c2 > 0] is true, the transition to A2 is valid. If
neither [c1 > 0] nor [c2 > 0] is true, the transition to A3 is valid. This chart design is simpler
than the previous one.

Note When you use an inner transition to a connective junction, an active substate can exit and
reenter when the transition condition for that substate is valid. For example, if substate A1 is active
and [c1 > 0] is true, the transition to A1 is valid. In this case:

1 Exit actions for A1 execute and complete.
2 A1 becomes inactive.
3 A1 becomes active.
4 Entry actions for A1 execute and complete.

See “Process the First Event with an Inner Transition to a Connective Junction” on page A-20 for
more information on the semantics of this notation.

Using an Inner Transition to a History Junction
This example shows an inner transition to a history junction.
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State Power_on.High is initially active. When event Reset occurs, the inner transition to the history
junction is valid. Because the inner transition is valid, the currently active state, Power_on.High, is
exited. When the inner transition to the history junction is processed, the last active state,
Power_on.High, becomes active (is reentered). If Power_on.Low was active under the same
circumstances, Power_on.Low would be exited and reentered as a result. The inner transition in this
example is equivalent to drawing an outer self-loop transition on both Power_on.Low and
Power_on.High.

See “Example of History Junctions” on page 2-45 for another example using a history junction.

See “Inner Transition to a History Junction” on page A-21 for more information on the semantics of
this notation.
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Default Transitions
A default transition specifies which exclusive (OR) state to enter when there is ambiguity among two
or more neighboring exclusive (OR) states. A default transition has a destination but no source object.
For example, a default transition specifies which substate of a superstate with exclusive (OR)
decomposition the system enters by default, in the absence of any other information, such as a history
junction. A default transition can also specify that a junction should be entered by default.

Drawing Default Transitions
Click the Default transition button in the toolbar, and click a location in the drawing area close to
the state or junction you want to be the destination for the default transition. Drag the mouse to the
destination object to attach the default transition. In some cases, it is useful to label default
transitions.

A common programming mistake is to create multiple exclusive (OR) states without a default
transition. In the absence of the default transition, there is no indication of which state becomes
active by default. Note that this error is flagged when you simulate the model with the State
Inconsistencies option enabled.

Label Default Transitions
You can label default transitions as you would other transitions. For example, you might want to
specify that one state or another should become active depending upon the event that has occurred.
In another situation, you might want to have specific actions take place that are dependent upon the
destination of the transition.

Tip When labeling default transitions, ensure that there is at least one valid default transition.
Otherwise, a chart can transition into an inconsistent state.

Default Transition Examples
The following examples show the use of default transitions in Stateflow charts:

• “Default Transition to a State Example” on page 2-32
• “Default Transition to a Junction Example” on page 2-33
• “Default Transition with a Label Example” on page 2-34

Default Transition to a State Example

This example shows a default transition to a state.
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Without the default transition to state PowerOff, when the Stateflow chart wakes up, none of the
states becomes active. A state inconsistency error is reported at run time.

See “Control Chart Execution by Using Default Transitions” on page A-14 for information on the
semantics of this notation.

Default Transition to a Junction Example

This example shows a default transition to a connective junction.

The default transition to the connective junction defines that upon entering the chart, the destination
depends on the condition of each transition segment.

See “Default Transition to a Junction” on page A-14 for information on the semantics of this
notation.
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Default Transition with a Label Example

This example shows a default transition with a label.

When the chart wakes up, the data p and v initialize to 10 and 15, respectively.

See “Labeled Default Transitions” on page A-16 for more information on the semantics of this
notation.
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Move Between Levels of Hierarchy by Using Supertransitions
A supertransition is a transition between different levels in a chart. A supertransition can go between
a state in a top-level chart and a substate in one of its sibling states, or between substates in different
states of the chart. For example, this chart contains a supertransition between the substates of two
sibling states.

You can create supertransitions that span any number of levels in your chart. When a supertransition
crosses into or out of a subchart, it consists of multiple transition segments, each one at a different
containment level. For example, this chart model shows a supertransition leaving the On subchart.

The same supertransition appears inside the subchart.
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You can label any transition segment by using the procedure described in “Label Transitions” on page
4-14. The resulting label appears on each segment of the supertransition. For instance, in the
previous example, both segments of the supertransition have the same label, [warm()]. If you
change the label on any segment, the change also appears on the other segments.

The points where each segment enters or exits the subchart affect one another. For example, moving
the point where the supertransition exits the boundary of the subchart On also moves the point where
the supertransition emerges in the top-level chart.

Tip Entry and exit ports provide an alternative method to transition across boundaries in the
Stateflow hierarchy. For more information, see “Decide Between Supertransitions and Entry and Exit
Ports” on page 2-39.

Create a Supertransition That Enters a Subchart
1 Point to the border of the source state. The pointer changes to a crosshair.

2 Click and drag inside the border of the subchart. A supertransition connects the source state to
the subchart. To change where the transition enters the subchart, you can drag the endpoint of
the transition segment around the inside boundary of the subchart.
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3 Open the subchart by double-clicking it. The arrowhead of the supertransition appears
highlighted in red.

4 Click the arrowhead and drag the pointer to the desired destination in the subchart.

5 Release the cursor.
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Note When you draw a supertransition across subchart boundaries, the Undo and Redo buttons are
disabled. You cannot undo or redo any prior operations.

Create a Supertransition That Exits a Subchart
1 Draw a transition to a location outside the border of the subchart.

2 Navigate to the parent of the subchart. The arrowhead of the supertransition appears highlighted
in red.

3 Click the arrowhead and drag the pointer to the desired destination in the chart.
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4 Release the pointer.

Note When you draw a supertransition across subchart boundaries, the Undo and Redo buttons are
disabled. You cannot undo or redo any prior operations.

Decide Between Supertransitions and Entry and Exit Ports
Both supertransitions and entry and exit ports enable you to move across different levels in the chart
hierarchy. Which approach you select depends on your design requirements.

Scenario Recommendation
Transition between the substates of two sibling
states, neither of which is a subchart

Use a supertransition. You can create a
supertransition that does not cross any subchart
boundaries by simply clicking the boundary of the
source state and dragging your pointer to the
destination state.
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Scenario Recommendation
Transition to or from a substate of a normal
subchart

Use either a supertransition or an entry or exit
port.

• If you use a supertransition, the points where
each segment of the supertransition enters or
exits different levels of the hierarchy affect
one another. For example, moving the point
where the supertransition enters the boundary
of the subchart also moves the point where
the supertransition exits the boundary of the
subchart.

• If you use an entry or exit port, the positions
of the port and the matching junction are
graphically independent of one another. For
example, you can move the port without
moving the junction.

Transition to or from a substate of an atomic
subchart

Use an entry or exit port. Supertransitions cannot
cross the boundary of atomic subcharts.

See Also

Related Examples
• “Create Entry and Exit Connections Across State Boundaries” on page 2-48
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Combine Transitions and Junctions to Create Branching Paths
A connective junction represents a decision point in a transition path. You can combine transitions
and connective junctions to create paths from a common source to multiple destinations or from
multiple sources to a common destination. For more information on the semantics of branching paths,
see “Represent Multiple Paths by Using Connective Junctions” on page A-23.

Add a Connective Junction
When you add a transition to a chart, the Stateflow Editor provides graphical cues that allow you to
add a junction or a state. To place a junction at the end of the transition, click the circular junction
cue.

Alternatively, to add an isolated junction to a chart:

1
In the object palette, click the Junction icon .

2 On the chart canvas, click the location for the new connective junction.

Modify Connective Junction Properties
To change the size of one or more connective junctions:

1 Select the connective junctions.
2 Right-click one of the selected junctions and select Junction Size.
3 From the drop-down list, select a junction size.

To change other properties of a connective junction, right-click a connective junction and select
Properties. The Connective Junction dialog box displays these properties:

• Parent — Parent state of the connective junction. To bring the parent to the foreground, click the
hypertext link. This property is read-only.

• Description — Textual description of the junction. You can enter a brief description and
comments.

• Document link — Link to online documentation for the junction. You can enter a web URL
address or a MATLAB command that displays documentation in a suitable online format, such as
an HTML file or text in the MATLAB Command Window. When you click the Document link
hyperlink, Stateflow evaluates the link and displays the documentation.

Examples of Transition Paths with Connective Junctions
By combining transitions and connective junctions, you can construct common transition patterns
such as:
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• if-then-else decision patterns
• for loop patterns
• while loop patterns

To reduce the creation time of these patterns, use the Pattern Wizard. For more information, see
“Create Flow Charts by Using Pattern Wizard” on page 5-5.

If-then-else Pattern with All Conditions Specified

In this example, the state Checked_in has a default transition path with three connective junctions.
Each branch of the path is guarded by a condition.

If the state Front_desk is active, the event check_in triggers the execution of the default
transition in Checked_in. The outcome of the default transition depends on the value of room_type:
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• If room_type is 1, the substate Executive_suite becomes active.
• If room_type is 2, the substate Family_suite becomes active.
• If room_type is 3, the substate Single_room becomes active.
• If none of these conditions is true, the default transition path is not valid and Front_desk

remains active.

For more information about this chart, see “How Stateflow Objects Interact During Execution” on
page 3-7.

If-then-else Pattern with an Unconditional Transition

In this example, the transition from state Start has three connective junctions. The first two
branches of the path are guarded by a condition. The last branch of the path is unconditional.

The chart uses temporal logic to determine when the input u equals 1:

• If u equals 1 before time , the state Fast becomes active.
• If u equals 1 between  and , the state Good becomes active.
• If u equals 1 after , the state Slow becomes active.

For more information about this chart, see “Detect Elapsed Time” on page 16-40.

For Loop Pattern

In this example, a flow chart uses a combination of transitions and connective junctions to construct a
for loop.
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As the value of the counter i increases from 1 to 10, the flow chart defines the elements of an array
output. The loop in this flow chart is equivalent to this snippet of MATLAB code:

for i = 1:10
    output(i) = 2*i;
end

While Loop Pattern

In this example, a flow chart combines transitions and connective junctions to construct a while loop
that computes the greatest common divisor of the inputs.

The loop in this flow chart is equivalent to this snippet of C code:

while(q > 0) {
    r = fmod(p,q);
    p = q;
    q = r;
}

See Also

More About
• “Create Flow Charts by Using Pattern Wizard” on page 5-5
• “Represent Multiple Paths by Using Connective Junctions” on page A-23
• “How Stateflow Objects Interact During Execution” on page 3-7
• “Control Chart Execution by Using Temporal Logic” on page 16-34
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History Junctions
A history junction represents historical decision points in the Stateflow chart. The decision points are
based on historical data relative to state activity. Placing a history junction in a superstate indicates
that historical state activity information is used to determine the next state to become active. The
history junction applies only to the level of the hierarchy in which it appears.

Example of History Junctions
The following example uses a history junction:

Superstate Power_on has a history junction and contains two substates. If state Power_off is active
and event switch_on occurs, the system can enter Power_on.Low or Power_on.High. The first
time superstate Power_on is entered, substate Power_on.Low is entered because it has a default
transition. At some point afterward, if state Power_on.High is active and event switch_off occurs,
superstate Power_on is exited and state Power_off becomes active. Then event switch_on occurs.
Because Power_on.High was the last active substate, it becomes active again. After the first time
Power_on becomes active, the history junction determines whether to enter Power_on.Low or
Power_on.High.

See “Default Transition and a History Junction” on page A-15 for more information on the semantics
of this notation.

History Junctions and Inner Transitions
By specifying an inner transition to a history junction, you can specify that, based on a specified event
or condition, the active state is to be exited and then immediately reentered.

See “Using an Inner Transition to a History Junction” on page 2-30 for an example of this notation.

See “Inner Transition to a History Junction” on page A-21 for more information on the semantics of
this notation.

 History Junctions

2-45



Record State Activity by Using History Junctions
A history junction records the activity of substates inside superstates. Use a history junction in a
superstate to indicate that its last active substate becomes active when the superstate becomes
active. For more information, see “History Junctions” on page 2-45.

Create a History Junction
To create a history junction:

1 In the object palette, click the History icon 
2 On the chart canvas, click the location for the new history junction.

To move a history junction to a new location, click and drag the junction to the new position.

Change History Junction Size
To change the size of junctions:

1 Select the history junctions whose size you want to change.
2 Right-click one of the junctions and select Junction Size.
3 Select a size from the list of junction sizes.

Change History Junction Properties
To edit the properties for a junction:

1 Right-click a junction and select Properties.

The History Junction dialog box appears.
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2 Edit the fields in the properties dialog box.

Field Description
Parent Parent of this history junction; read-only; click the hypertext

link to bring the parent to the foreground.
Description Textual description/comment.
Document Link Enter a URL address or a general MATLAB command.

Examples are www.mathworks.com,
mailto:email_address, and edit/spec/data/
speed.txt.

3 When finished editing, click one of the following buttons:

• Apply to save the changes
• Cancel to cancel any changes
• OK to save the changes and close the dialog box
• Help to display the Stateflow online help in an HTML browser window
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Create Entry and Exit Connections Across State Boundaries
Entry and exit ports represent connections into and out of states and subcharts. Like
supertransitions, entry and exit ports create transition paths across boundaries in the Stateflow
hierarchy. However, because entry and exit ports isolate the transition logic for entering and exiting
states, they can be used in atomic subcharts. Entry and exit ports are not supported in standalone
Stateflow charts in MATLAB.

In the Stateflow Editor, entry and exit ports appear as arrows on the boundary of a state or subchart.
Each port has a matching junction that marks the entry or exit point inside the state or subchart. The
entry junction icon  and the exit junction icon  indicate the junction. A transition path that leads to
an entry port continues along the transition connected to the matching entry junction. Similarly, a
transition path that leads to an exit junction continues along the transition connected to the matching
exit port. For example, in this chart, the exit port labeled turnOff represents the exit connection out
of the subchart On.

In the subchart, the transition path leading to the exit junction defines the logic for exiting the
subchart. In this example, the function warm must evaluate to true on two consecutive time steps
before the chart makes the transition out of the On state.
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For more information about this example, see “Model Bang-Bang Temperature Control System” on
page 16-50. For other examples that use entry and exit ports, see “Isolate the Transition Logic for
Entering and Exiting an Atomic Subchart” on page 19-24 and “Model a Launch Abort System” on
page 30-31.

Add Entry and Exit Ports
To create an entry or exit port, add an entry or exit junction inside a state or subchart.

1 In the object palette, click the Entry icon  or the Exit icon .
2 On the chart canvas, click the location for the new entry or exit junction. A matching entry or exit

port appears on the boundary of the state or subchart that contains the new entry or exit
junction.

3 Enter a label for the junction and matching port. See “Add Labels to Identify Matching Junctions
and Ports” on page 2-49.

Guidelines for Using Entry and Exit Ports
Add Entry and Exit Junctions Only to Exclusive (OR) States and Atomic Subcharts

Entry and exit junctions are supported only in exclusive (OR) states and atomic subcharts. Do not add
entry or exit junctions to top level charts, parallel (AND) states, or boxes.

Add Labels to Identify Matching Junctions and Ports

Labels on entry and exit ports indicate which junction connects to which port. Adding a label is
optional when a state contains only one entry or exit junction. Unique labels are required when a
state contains more than one entry junction or more than one exit junction.

Prevent Backtracking Through Entry and Exit Ports

To ensure that the chart successfully enters or exits a state without backtracking, each entry junction
and exit port must have a path that is not guarded by a condition or triggered by an event. Transition
paths from entry junctions and exit ports must lead to states and must not contain terminal junctions.

Isolate the Transition Logic for Entry and Exit Junctions

Transition paths that start at entry junctions or end at exit junctions must be contained in the parent
state.
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Do Not Enter and Exit States in the Same Time Step

Default and inner transition paths must not connect to an exit junction.

Decide Between Supertransitions and Entry and Exit Ports
Both supertransitions and entry and exit ports enable you to move across different levels in the chart
hierarchy. Which approach you select depends on your design requirements.

Scenario Recommendation
Transition between the substates of two sibling
states, neither of which is a subchart

Use a supertransition. You can create a
supertransition that does not cross any subchart
boundaries by simply clicking the boundary of the
source state and dragging your pointer to the
destination state.

Transition to or from a substate of a normal
subchart

Use either a supertransition or an entry or exit
port.

• If you use a supertransition, the points where
each segment of the supertransition enters or
exits different levels of the hierarchy affect
one another. For example, moving the point
where the supertransition enters the boundary
of the subchart also moves the point where
the supertransition exits the boundary of the
subchart.

• If you use an entry or exit port, the positions
of the port and the matching junction are
graphically independent of one another. For
example, you can move the port without
moving the junction.

Transition to or from a substate of an atomic
subchart

Use an entry or exit port. Supertransitions cannot
cross the boundary of atomic subcharts.

See Also

Related Examples
• “Isolate the Transition Logic for Entering and Exiting an Atomic Subchart” on page 19-24
• “Move Between Levels of Hierarchy by Using Supertransitions” on page 2-35
• “Model Bang-Bang Temperature Control System” on page 16-50
• “Model a Launch Abort System” on page 30-31
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Stateflow Semantics

• “Stateflow Semantics” on page 3-2
• “How Stateflow Objects Interact During Execution” on page 3-7
• “Modeling Guidelines for Stateflow Charts” on page 3-21
• “Types of Chart Execution” on page 3-23
• “Execution of a Stateflow Chart” on page 3-25
• “Enter a Chart or State” on page 3-30
• “Exit a State” on page 3-36
• “Evaluate Transitions” on page 3-39
• “Super Step Semantics” on page 3-48
• “Use Events to Execute Charts” on page 3-54
• “Group and Execute Transitions” on page 3-59
• “Execution Order for Parallel States” on page 3-61
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Stateflow Semantics
In Stateflow, semantics describe the execution behavior of your Stateflow chart. Various factors can
affect how your chart executes, including:

• Explicit or implicit ordering of states
• Transition ordering between states
• Events sent by parallel or superstates

As you build your chart, you expect it to behave in a certain way. By knowing how these factors affect
your chart, you can create a chart that behaves with intentional interaction of the graphical and
nongraphical objects. Graphical and nongraphical objects are the building blocks for all Stateflow
charts.

Stateflow Objects
Stateflow objects are the building blocks of Stateflow charts. These objects can be categorized as
either graphical or nongraphical. Graphical objects consist of objects that appear graphically in a
chart. Nongraphical objects appear textually in a chart and often refer to data, events, and messages.
This chart shows a variety of both graphical and nongraphical objects.

Graphical Objects
To build graphical objects, use the object palette in the Stateflow Editor (see “Stateflow Editor
Operations” on page 4-20).

Graphical Objects Types References
Flow charts Decision logic patterns “Flow Charts in Stateflow” on page 5-

2Loop logic patterns
Functions Graphical functions “Reuse Logic Patterns by Defining

Graphical Functions” on page 8-10
MATLAB functions “Reuse MATLAB Code by Defining

MATLAB Functions” on page 9-2
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Graphical Objects Types References
Truth table functions “Use Truth Tables to Model

Combinatorial Logic” on page 10-2
Simulink functions “Reuse Simulink Functions in Stateflow

Charts” on page 11-2
Junctions Connective junctions “Combine Transitions and Junctions to

Create Branching Paths” on page 2-41
History junctions “History Junctions” on page 2-45

States States with exclusive (OR)
decomposition

“Exclusive (OR) State Decomposition”
on page 2-9

States with parallel (AND)
decomposition

“Parallel (AND) State Decomposition”
on page 2-9

Substates and superstates “Create Substates and Superstates” on
page 4-5

Transitions Default transitions “Default Transitions” on page 2-32
Object-to-object transitions “Transition Connections” on page 2-24
Inner transitions
Self-loop transitions

Nongraphical Objects
You create nongraphical objects textually in your chart. See “Add Stateflow Data” on page 12-2,
“Define Events in a Chart” on page 14-2, and “Define Messages in a Chart” on page 15-2 for
details. Examples of nongraphical objects include:

Nongraphical Object Description Reference
Condition Boolean expression that specifies

that a transition path is valid if the
expression is true; part of a
transition label

“Transition Labels” on page 2-22
and “Conditions” on page 2-23

Condition action Action that executes as soon as the
condition evaluates to true; part of a
transition label

“Transition Labels” on page 2-22
and “Condition Actions” on page 2-
24

State actions Expressions that specify actions to
take when a state is active, such as
initializing or updating data; part of
a state label

“State Labels” on page 2-10 and
“States” on page 2-8

Function calls Expression used to activate a
specific function within a chart.

“Reuse MATLAB Code by Defining
MATLAB Functions” on page 9-2
and “Reuse Simulink Functions in
Stateflow Charts” on page 11-2

Temporal logic statements Operators that are used to control
chart actions.

“Control Chart Execution by Using
Temporal Logic” on page 16-34
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Enter a Chart
The set of default flow paths execute. If this action does not cause a state entry and the chart has
parallel decomposition, then each parallel state becomes active.

If executing the default flow paths does not cause state entry, a state inconsistency error occurs.

Execute an Active Chart
If the chart has no states, each execution is equivalent to initializing a chart. Otherwise, the active
children execute. Parallel states execute in the same order that they become active.

Enter a State
1 If the parent of the state is not active, perform steps 1 through 4 for the parent.
2 If this state is a parallel state, check that all siblings with a higher (that is, earlier) entry order

are active. If not, perform steps 1 through 5 for these states first.

Parallel (AND) states are ordered for entry based on whether you use explicit ordering (default)
or implicit ordering.

3 Mark the state active.
4 Perform any entry actions.
5 Enter children, if needed:

a If the state contains a history junction and there was an active child of this state at some
point after the most recent chart initialization, perform the entry actions for that child.
Otherwise, execute the default flow paths for the state.

b If this state has children that are parallel states (parallel decomposition), perform entry
steps 1 through 5 for each state according to its entry order.

c If this state has only one child substate, the substate becomes active when the parent
becomes active, regardless of whether a default transition is present. Entering the parent
state automatically makes the substate active. The presence of any inner transition has no
effect on determining the active substate.

6 If this state is a parallel state, perform all entry steps for the sibling state next in entry order if
one exists.

7 If the transition path parent is not the same as the parent of the current state, perform entry
steps 6 and 7 for the immediate parent of this state.

Execute an Active State
1 The set of outer flow charts execute. If this action causes a state transition, execution stops. This

step never occurs for parallel states.
2 During actions and valid on-event actions are performed.
3 The set of inner flow charts execute. If this action does not cause a state transition, the active

children execute, starting at step 1. Parallel states execute in the same order that they become
active.
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Exit an Active State
1 If this is a parallel state, make sure that all sibling states that became active after this state have

already become inactive. Otherwise, perform all exiting steps on those sibling states.
2 If there are any active children, perform the exit steps on these states in the reverse order that

they became active.
3 Perform any exit actions.
4 Mark the state as inactive.

Execute a Set of Flow Charts
Flow charts execute by starting at step 1 below with a set of starting transitions. The starting
transitions for inner flow charts are all transition segments that originate on the respective state and
reside entirely within that state. The starting transitions for outer flow charts are all transition
segments that originate on the respective state but reside at least partially outside that state. The
starting transitions for default flow charts are all default transition segments that have starting points
with the same parent:

1 Ordering of a set of transition segments occurs.
2 While there are remaining segments to test, testing a segment for validity occurs. If the segment

is invalid, testing of the next segment occurs. If the segment is valid, execution depends on the
destination:

States

a Testing of transition segments stops and a transition path forms by backing up and including
the transition segment from each preceding junction until the respective starting transition.

b The states that are the immediate children of the parent of the transition path exit.
c The transition action from the final transition path executes.
d The destination state becomes active.

Junctions with no outgoing transition segments

Testing stops without any state exits or entries.

Junctions with outgoing transition segments

Step 1 is repeated with the set of outgoing segments from the junction.
3 After testing all outgoing transition segments at a junction, backtrack the incoming transition

segment that brought you to the junction and continue at step 2, starting with the next transition
segment after the backtrack segment. The set of flow charts finishes execution when testing of
all starting transitions is complete.

Execute an Event Broadcast
Output edge-trigger event execution is equivalent to changing the value of an output data value. All
other events have the following execution:

1 If the receiver of the event is active, then it executes. The event receiver is the parent of the
event unless a direct event broadcast occurs using the send() function.
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If the receiver of the event is not active, nothing happens.
2 After broadcasting the event, the broadcaster performs early return logic based on the type of

action statement that caused the event.

Action Type Early Return Logic
State Entry If the state is no longer active at the end of the event broadcast, any

remaining steps in entering a state do not occur.
State Exit If the state is no longer active at the end of the event broadcast, any

remaining exit actions and steps in state transitioning do not occur.
State During If the state is no longer active at the end of the event broadcast, any

remaining steps in executing an active state do not occur.
Condition If the origin state of the inner or outer flow chart or parent state of

the default flow chart is no longer active at the end of the event
broadcast, the remaining steps in the execution of the set of flow
charts do not occur.

Transition If the parent of the transition path is not active or if that parent has
an active child, the remaining transition actions and state entry do
not occur.

See Also

More About
• “Graphical Objects” on page 2-2
• “Nongraphical Objects” on page 2-3
• “Types of Chart Execution” on page 3-23
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How Stateflow Objects Interact During Execution
During execution, Stateflow objects interact with each other to simulate real-world behavior. In the
following model, different Stateflow objects are shown and their interactions are explained.

Overview of the Example Model
The example model shows how common graphical and nongraphical objects in a chart interact during
execution. These objects include:

• Conditions and condition actions
• Exclusive (OR) states
• Flow charts
• Function calls
• History junctions
• Parallel (AND) states
• State actions
• Transitions guarded by input events

For details of the chart semantics, see “Phases of Chart Execution” on page 3-10.

Model of the Check-In Process for a Hotel
This example uses the hotel check-in process to explain Stateflow chart semantics.

The sf_semantics_hotel_checkin model consists of four Manual Switch blocks, one Mux block,
one Multiport Switch block, a Hotel chart, and a Display block.
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Block Purpose Rationale
Manual Switch Enable toggling between two settings

during simulation without having to pause
or restart.

During simulation, you can interactively
trigger the chart by sending one of these
input events:

• Checking in to a hotel
• Calling room service
• Triggering a fire alarm
• Sending an all-clear signal after a fire

alarm
Mux Combine multiple input signals into a

vector.
A chart can support multiple input events
only if they connect to the trigger port of a
chart as a vector of inputs.

Multiport Switch Enable selection among more than two
inputs.

This block provides a value for the chart
input data room_type, where each room
type corresponds to a number (1, 2, or 3).

A Manual Switch block cannot support
more than two inputs, but a Multiport
Switch block can.

Display Show up-to-date numerical value for input
signal.

During simulation, any change to the chart
output data fee appears in the display.
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The Hotel chart contains graphical objects, such as states and history junctions, and nongraphical
objects, such as conditions and condition actions.

For a mapping of objects to their locations in the chart, see “Stateflow Objects” on page 3-2.

How the Chart Interacts with Simulink Blocks
Chart Initialization

When simulation starts, the chart wakes up and executes its default transitions because the Execute
(enter) Chart At Initialization option is on (see “Execution of a Chart at Initialization” on page 3-
23). Then the chart goes to sleep.

Note If this option is off, the chart does not wake up until you toggle one of the Manual Switch
blocks. You can verify the setting for this option in the Chart properties dialog box. Right-click inside
the top level of the chart and select Properties from the context menu.

 How Stateflow Objects Interact During Execution

3-9



Chart Interaction with Other Blocks

The chart wakes up again only when an edge-triggered input event occurs: check_in,
room_service, fire_alarm, or all_clear. When you toggle a Manual Switch block for an input
event during simulation, the chart detects a rising or falling edge and wakes up. While the chart is
awake:

• The Multiport Switch block provides a value for the chart input data room_type.
• The Display block shows any change in value for the chart output data fee.

Chart Inactivity

After completing all possible phases of execution, the chart goes back to sleep.

Phases of Chart Execution
The following sections explain chart execution for each shaded region of the Hotel chart.

Phase: Chart Initialization

This section describes what happens in the Front_desk state just after the chart wakes up.
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Stage Hotel Scenario Chart Behavior
1 Your first stop is at the front desk of the hotel. At the chart level, the default transition to

Check_in occurs, making that state active.
Then, the default transition to Front_desk
occurs, making that state active.

For reference, see “Enter a Chart or State” on
page 3-30.

2 You leave the front desk after checking in to the
hotel.

The check_in event guards the outgoing
transition from Front_desk. When the chart
receives an event broadcast for check_in, the
transition becomes valid.

For reference, see “How Stateflow Charts
Respond to Events” on page 3-54.

3 Just before you leave the front desk, you pick up
your bags to move to your room.

Just before the transition occurs, the exit
action of Front_desk sets the move_bags
local data to 1. Then, Front_desk becomes
inactive.

For reference, see “Exit a State” on page 3-36.

Modeling Guidelines for Chart Initialization.   The following guidelines apply to chart
initialization.

Modeling Guideline Why This Guideline Applies Reference
Use exclusive (OR) decomposition
when no two states at a level of the
hierarchy can be active at the same
time.

This guideline ensures proper chart
execution. For example, Check_in
and Waiting_area are exclusive
(OR) states, because you cannot be
inside and outside the hotel at the
same time.

• “State Decomposition” on page
2-9

• “Specify Substate
Decomposition” on page 4-7

Use a default transition to mark the
first state to become active among
exclusive (OR) states.

This guideline prevents state
inconsistency errors during chart
execution.

• “Default Transitions” on page 2-
32

• “State Inconsistencies” on page
33-37

Use events, instead of conditions, to
guard transitions that depend on
occurrences without inherent
numerical value.

Since you cannot easily quantify the
numerical value of checking into a
hotel, model such an occurrence as
an event.

• “Activate a Stateflow Chart by
Sending Input Events” on page
14-7
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Modeling Guideline Why This Guideline Applies Reference
Use an exit action to execute a
statement once, just before a state
becomes inactive.

Other types of state actions execute
differently and do not apply:

• Entry actions execute once, just
after a state becomes active.

• During actions execute at every
time step (except the first time
step after a state becomes
active). Execution continues as
long as the chart remains in that
state and no valid outgoing
transitions exist.

• On event_name actions execute
only after receiving an event
broadcast.

• “States” on page 2-8

Phase: Evaluation of Outgoing Transitions from a Single Junction

This section describes what happens after exiting the Front_desk state: the evaluation of a group of
outgoing transitions from a single junction.

Stage Hotel Scenario Chart Behavior
1 You can move to one of three types of rooms. After the check_in event triggers a transition

out of Front_desk, three transition paths are
available based on the type of room you select
with the Multiport Switch block. Transition
testing occurs based on the priority you assign
to each path.

For reference, see “Order of Execution for a Set
of Flow Charts” on page 3-59.
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Stage Hotel Scenario Chart Behavior
2 If you choose an executive suite, the base fee is

1500.
If the room_type input data equals 1, the top
transition is valid. If this condition is true, the
condition action executes by setting the fee
output data to 1500.

Note If the top transition is not valid, control
flow backtracks to the central junction so that
testing of the next transition can occur. This
type of backtracking is intentional.

To learn about unintentional backtracking and
how to avoid it, see “Backtrack in Flow Charts”
on page A-30 and “Best Practices for Creating
Flow Charts” on page 5-2.

3 If you choose a family suite, the base fee is
1000.

If room_type equals 2, the middle transition is
valid. If this condition is true, the condition
action executes by setting fee to 1000.

4 If you choose a single room, the base fee is 500. If room_type equals 3, the bottom transition is
valid. If this condition is true, the condition
action executes by setting fee to 500.

What happens if room_type has a value other than 1, 2, or 3?

Because the Multiport Switch block outputs only 1, 2, or 3, room_type cannot have any other values.
However, if room_type has a value other than 1, 2, or 3, the chart stays in the Front_desk state.
This behavior applies because no transition path out of that state is valid.

Modeling Guidelines for Evaluation of Outgoing Transitions.   The following guidelines apply
to transition syntax.

Modeling Guideline Why This Guideline Applies Reference
Use conditions, instead of events, to
guard transitions that depend on
occurrences with numerical value.

Because you can quantify a type of
hotel room numerically, express the
choice of room type as a condition.

“Flow Charts in Stateflow” on page
5-2

Use condition actions instead of
transition actions whenever
possible.

Condition actions execute as soon
as the condition evaluates to true.
Transition actions do not execute
until after the transition path is
complete, to a terminating junction
or a state.

Unless an execution delay is
necessary, use condition actions
instead of transition actions.

“Transitions” on page 2-21
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Modeling Guideline Why This Guideline Applies Reference
Use explicit ordering to control the
testing order of a group of outgoing
transitions.

You can specify explicit or implicit
ordering of transitions. By default, a
chart uses explicit ordering. If you
switch to implicit ordering, the
transition testing order can change
when graphical objects move.

“Transition Evaluation Order” on
page 3-40

Phase: Execution of State Actions for a Superstate

This section describes what happens after you enter the Checked_in state, regardless of which
substate becomes active.

Stage Hotel Scenario Chart Behavior
1 After reaching your desired room, you finish

moving your bags.
The entry action executes by setting the
move_bags local data to 0.

2 If you order room service, your hotel bill
increases by a constant amount.

If the chart receives an event broadcast for
room_service, these actions occur:

1 The counter for the service local data
increments by 1.

2 A function call to expenses occurs, which
returns the value of the hotel bill stored by
the fee output data.

For reference, see “How Stateflow Charts
Respond to Events” on page 3-54.

Modeling Guidelines for Execution of State Actions.   The following guidelines apply to state
actions.

Modeling Guideline Why This Guideline Applies Reference
Use an entry action to execute a
statement once, right after a state
becomes active.

Other types of state actions execute
differently and do not apply:

• During actions execute at every
time step until there is a valid
transition out of the state.

“States” on page 2-8
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Modeling Guideline Why This Guideline Applies Reference
Use an On event_name or On
message_name action to execute a
statement only after receiving an
event broadcast or a message.

• Exit actions execute once, just
before a state becomes inactive.

Use a superstate to enclose multiple
substates that share the same state
actions.

This guideline enables reuse of
state actions that apply to multiple
substates. You write the state
actions only once, instead of writing
them separately in each substate.

“Create Substates and Superstates”
on page 4-5

Phase: Function Call from a State Action

This part of the chart describes how you can perform function calls while a state is active.

Stage Hotel Scenario Chart Behavior
1 Based on your room type and the total number

of room service requests, you can track your
hotel bill.

expenses is a MATLAB function that takes the
total number of room service requests as an
input and returns the current hotel bill as an
output.

If you double-click the function box, you see this
script in the function editor:

function y = expenses(x)

if (room_type == 1)
   y = 1500 + (x*50);
else
   if (room_type == 2)
      y = 1000 + (x*25);
   else
      y = 500 + (x*5);
   end
end

Modeling Guidelines for Function Calls.   The following guidelines apply to function calls.
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Modeling Guideline Why This Guideline Applies Reference
Use MATLAB functions for
performing numerical computations
in a chart.

MATLAB functions are better at
handling numerical computations
than graphical functions, truth
tables, or Simulink functions.

“Reuse MATLAB Code by Defining
MATLAB Functions” on page 9-2

Use descriptive names in function
signatures.

Descriptive function names enhance
readability of chart objects.

Phase: Execution of State with Exclusive Substates

This part of the chart shows how a state with exclusive (OR) decomposition executes.

Stage Hotel Scenario Chart Behavior
1 When you reach the executive suite, you enter

the bedroom first.

Note The executive suite has separate bedroom
and dining areas. Therefore, you can be in only
one area of the suite at any time.

When the condition room_type == 1 is true,
the condition action fee = 1500 executes.
Completion of that transition path triggers
these state initialization actions:

1 Checked_in becomes active and executes
its entry action.

2 Executive_suite becomes active.
3 The default transition to Bedroom occurs,

making that state active.

For reference, see “Enter a Chart or State” on
page 3-30.

2 When you order room service, you enter the
dining area to eat.

When the room_service event occurs, the
transition from Bedroom to Dining_area
occurs.

3 When you want the food removed from the
dining area, you order room service again and
then return to the bedroom.

When the room_service event occurs, the
transition from Dining_area to Bedroom
occurs.
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Stage Hotel Scenario Chart Behavior
4 If you leave the executive suite because of a fire

alarm, you return to your previous room after
the all-clear signal.

If a transition out of Executive_suite occurs,
the history junction records the last active
substate, Bedroom or Dining_area. For
details on how this transition can occur, see
“Phase: Events Guard Transitions Between
States” on page 3-19.

Modeling Guidelines for Execution of Exclusive (OR) States.   The following guidelines apply
to exclusive (OR) states.

Modeling Guideline Why This Guideline Applies Reference
Use exclusive (OR) decomposition
when no two states at that level of
the hierarchy can be active at the
same time.

This guideline ensures proper chart
execution. For example, Bedroom
and Dining_area are exclusive
(OR) states, because you cannot be
in both places at the same time.

• “State Decomposition” on page
2-9

• “Specify Substate
Decomposition” on page 4-7

If reentry to a state with exclusive
(OR) decomposition depends on the
previously active substate, use a
history junction. This type of
junction records the active substate
when the chart exits the state.

If you do not record the previously
active substate, the default
transition occurs and the wrong
substate can become active upon
state reentry.

For example, if you were eating
when a fire alarm sounded, you
would return to the bedroom
instead of the dining room.

• “History Junctions” on page 2-45

Phase: Execution of State with Parallel Substates

This part of the chart shows how a state with parallel (AND) decomposition executes.
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Stage Hotel Scenario Chart Behavior
1 When your family reaches the suite, family

members can be in both bedrooms (for example,
parents in the master bedroom and children in
the second bedroom). A default room choice
does not apply.

When the condition room_type == 2 is true,
the condition action fee = 1000 executes.
Completion of that transition path triggers
these state initialization actions:

1 Checked_in becomes active and executes
its entry action.

2 Family_suite becomes active.
3 The parallel states wake up in the order

given by the number in the upper right
corner of each state: Master_bedroom,
then Second_bedroom.

How do I specify the order?

To specify the order:

a Verify that the chart uses explicit
ordering.

In the Chart properties dialog box,
select the User-specified state/
transition execution order check
box.

b Right-click in a parallel state and select
a number from the Execution Order
menu.

For reference, see “Enter a Chart or State” on
page 3-30.

2 You can occupy both rooms at the same time. Master_bedroom and Second_bedroom
remain active at the same time.

Modeling Guidelines for Execution of Parallel (AND) States.   The following guidelines apply
to parallel (AND) states.

Modeling Guideline Why This Guideline Applies Reference
Use parallel (AND) decomposition
when all states at that level of the
hierarchy can be active at the same
time.

This guideline ensures proper chart
execution. For example,
Master_bedroom and
Second_bedroom are parallel
states, because you can occupy both
rooms at the same time.

• “State Decomposition” on page
2-9

• “Specify Substate
Decomposition” on page 4-7

Use no history junctions in states
with parallel (AND) decomposition.

This guideline prevents compile-
time errors. Since all parallel states
at a level of hierarchy are active at
the same time, history junctions
have no meaning.

• “History Junctions” on page 2-45
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Modeling Guideline Why This Guideline Applies Reference
Use explicit ordering to control the
execution order of parallel (AND)
states.

You can specify explicit or implicit
ordering of parallel states. By
default, a chart uses explicit
ordering. If you switch to implicit
ordering, the execution order can
change when parallel states move.

• “Execution Order for Parallel
States” on page 3-61

Phase: Events Guard Transitions Between States

This part of the chart describes how events can guard transitions between exclusive (OR) states.

Stage Hotel Scenario Chart Behavior
1 If a fire alarm sounds, you

leave the hotel and move to
a waiting area outside.

When the chart receives an event broadcast for fire_alarm, a
transition occurs from a substate of Check_in to Waiting_area.

How does this transition occur?

Suppose that Check_in, Checked_in, Executive_suite, and
Dining_area are active when the chart receives fire_alarm.

1 States become inactive in ascending order of hierarchy:

a Dining_area
b Executive_suite
c Checked_in
d Check_in

2 Waiting_area becomes active.
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Stage Hotel Scenario Chart Behavior
2 If an all-clear signal occurs,

you can leave the waiting
area and return to your
previous location inside the
hotel.

When the chart receives an event broadcast for all_clear, a transition
from Waiting_area to the previously active substate of Check_in
occurs.

The history junction at each level of hierarchy in Check_in enables the
chart to remember which substate was previously active before the
transition to Waiting_area occurred.

How does this transition occur?

Suppose that Check_in, Checked_in, Executive_suite, and
Dining_area were active when the chart received fire_alarm.

1 Waiting_area becomes inactive.
2 States become active in descending order of hierarchy:

a Check_in
b Checked_in (The default transition does not apply.)
c Executive_suite
d Dining_area (The default transition does not apply.)

Modeling Guidelines for Guarding Transitions.   The following guideline discusses the use of
events versus conditions.

Modeling Guideline Why This Guideline Applies Reference
Use events, instead of conditions, to
guard transitions that depend on
occurrences without numerical
value.

Because you cannot easily quantify
the numerical value of a fire alarm
or an all-clear signal, model such an
occurrence as an event.

“Activate a Stateflow Chart by
Sending Input Events” on page 14-
7
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Modeling Guidelines for Stateflow Charts
Use these guidelines to efficiently model charts with events, states, and transitions.

Use signals of the same data type for input events
When you use multiple input events to trigger a chart, verify that all input signals use the same data
type. Otherwise, simulation stops and an error message appears. For more information, see “Data
Types Allowed for Input Events” on page 14-9.

Use a default transition to mark the first state to become active
among exclusive (OR) states
This guideline prevents state inconsistency errors during chart execution.

Use condition actions instead of transition actions whenever possible
Condition actions execute as soon as the condition evaluates to true. Transition actions do not
execute until after the transition path is complete, to a terminating junction or a state.

Unless an execution delay is necessary, use condition actions instead of transition actions.

Use explicit ordering to control the testing order of a group of
outgoing transitions
You can specify explicit or implicit ordering of transitions. By default, a chart uses explicit ordering. If
you switch to implicit ordering, the transition testing order can change when graphical objects move.

Verify intended backtracking behavior in flow charts
If your chart contains unintended backtracking behavior, a warning message appears with
instructions on how to avoid that problem. For more information, see “Best Practices for Creating
Flow Charts” on page 5-2.

Use a superstate to enclose substates that share the same state
actions
When you have multiple exclusive (OR) states that perform the same state actions, group these states
in a superstate and define state actions at that level.

This guideline enables reuse of state actions that apply to multiple substates. You write the state
actions only once, instead of writing them separately in each substate.

Note You cannot use boxes for this purpose because boxes do not support state actions.
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Use MATLAB functions for performing numerical computations in a
chart
MATLAB functions are better at handling numerical computations than graphical functions, truth
tables, or Simulink functions.

Use descriptive names in function signatures
Descriptive function names enhance readability of chart objects.

Use history junctions to record state history
If reentry to a state with exclusive (OR) decomposition depends on the previously active substate, use
a history junction. This type of junction records the active substate when the chart exits the state. If
you do not record the previously active substate, the default transition occurs and the wrong substate
can become active upon state reentry.

Do not use history junctions in states with parallel (AND)
decomposition
This guideline prevents compile-time errors. Since all parallel states at a level of hierarchy are active
at the same time, history junctions have no meaning.

Use explicit ordering to control the execution order of parallel (AND)
states
You can specify explicit or implicit ordering of parallel states. By default, a chart uses explicit
ordering. If you switch to implicit ordering, the execution order can change when parallel states
move.
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Types of Chart Execution

Life Cycle of a Stateflow Chart
Stateflow charts go through several stages of execution:

Stage Description
Inactive Chart has no active states
Active Chart has active states
Sleeping Chart has active states, but no events to process

When a Simulink model first triggers a Stateflow chart, the chart is inactive and has no active states.
After the chart executes and completely processes its initial trigger event from the Simulink model, it
transfers control back to the model and goes to sleep. At the next Simulink trigger event, the chart
changes from the sleeping to active stage.

See “Use Events to Execute Charts” on page 3-54.

Execution of an Inactive Chart
When a chart is inactive and first triggered by an event from a Simulink model, it first executes its set
of default flow charts (see “Order of Execution for a Set of Flow Charts” on page 3-59). If this action
does not cause an entry into a state and the chart has parallel decomposition, then each parallel state
becomes active (see “Enter a Chart or State” on page 3-30).

If executing the default flow paths does not cause state entry, a state inconsistency error occurs.

Execution of an Active Chart
After a chart has been triggered the first time by the Simulink model, it is an active chart. When the
chart receives another event from the model, it executes again as an active chart. If the chart has no
states, each execution is equivalent to initializing a chart. Otherwise, the active substates execute.
Parallel states execute in the same order that they become active.

Execution of a Chart at Initialization

By default, the first time a chart wakes up, it executes the default transition paths. At this time, the
chart can access inputs, write to outputs, and broadcast events.

If you want your chart to begin executing from a known configuration, you can enable the Execute
(enter) Chart At Initialization chart property. When you turn on this option, the state configuration
of a chart initializes at time 0 instead of the first occurrence of an input event. The default transition
paths of the chart execute during the model initialization phase at time 0, corresponding to the
mdlInitializeConditions() (Simulink) phase for S-functions. For more information, see “Execute (enter)
chart at initialization” on page 28-6.
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Note If an output of this chart connects to a SimEvents® block, do not select this check box. To learn
more about using Stateflow charts and SimEvents blocks together in a model, see the SimEvents
documentation.

Due to the transient nature of the initialization phase, do not perform certain actions in the default
transition paths of the chart — and associated state entry actions — which execute at initialization.
Follow these guidelines:

• Do not access chart input data, because blocks connected to chart input ports might not have
initialized their outputs yet.

• Do not call exported graphical functions from other charts, because those charts might not have
initialized yet.

• Do not broadcast function-call output events, because the triggered subsystems might not have
initialized yet.

You can control the level of diagnostic action for invalid access to chart input data in the Diagnostics
> Stateflow pane of the Configuration Parameters dialog box. For more information, see the
documentation for the “Invalid input data access in chart initialization” (Simulink) diagnostic.

Execute at initialization is ignored in Stateflow charts that do not contain states.

See Also

More About
• “Execution of a Stateflow Chart” on page 3-25
• “Exit a State” on page 3-36
• “Evaluate Transitions” on page 3-39
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Execution of a Stateflow Chart
When a Stateflow chart wakes up, the chart follows a workflow and executes actions. A Stateflow
chart wakes up:

• At each time step according to the Simulink solver.
• When the Stateflow chart receives an event.

When a chart wakes up for the first time, the chart is initialized and becomes active. See “Chart
Entry” on page 3-32. Once the chart is active but with no more actions to take, the chart goes to
sleep until it is triggered by a new time step or an event.

Workflow for Stateflow Chart Execution
This flow chart shows the progression of events that Stateflow takes for executing a chart or state. In
this flow chart, the current state refers to the state in which a decision or a process is taking place.
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During Actions
During actions for a state execute when:

• The state is active, a new time step occurs, and no valid transition to another state is available.
• The state is active, an event occurs, and no valid transition to another state is available.
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During actions are preceded by the prefix during or du, and then followed by a required colon (:),
followed by one or more actions. Separate multiple actions with a carriage return, semicolon (;), or a
comma (,). If you do not specify the state action type explicitly for a statement, the chart treats that
statement as an entry,during action.

A state performs its during actions (if specified) when the chart wakes up. The preceding flow chart
depicts the process of state execution and shows when during actions occur.

If your Stateflow chart does not contain states, each time the chart is executed, Stateflow always
evaluates the default transition path.

Outgoing Transition
Stateflow marks outgoing transitions for evaluation as a part of the execution of a Stateflow chart.
Once an outgoing transition is marked for evaluation, follow the “Workflow for Evaluating
Transitions” on page 3-40. For more information about how Stateflow evaluates outgoing
transitions, see “Evaluate Transitions” on page 3-39.

Inner Transitions
Stateflow marks inner transitions for evaluation as a part of the execution of a Stateflow chart. Once
an inner transition is marked for evaluation, follow the “Workflow for Evaluating Transitions” on page
3-40. For more information about how Stateflow evaluates inner transitions, see “Evaluate
Transitions” on page 3-39.

Chart Execution with a Valid Transition
In this example, the Stateflow chart is initialized and the entry actions are performed for StateA
and StateA1. A new time step occurs and the chart wakes up.

At this time step, x = 5, y = 2, and z = 0.

By following the “Workflow for Stateflow Chart Execution” on page 3-25, the execution steps for chart
execution are in this order:
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1 The chart has an active substate, StateA.
2 StateA has an outgoing transition to StateB. By following the “Workflow for Evaluating

Transitions” on page 3-40, the transition is determined to be valid.
3 StateB is marked for entry and StateA is marked for exit.

To complete the time step, follow the “Workflow for Exiting a State” on page 3-36 for StateA and
the “Workflow for Entering a Chart or State” on page 3-30 for StateB.

Chart Execution Without a Valid Transition
In this example, the Stateflow chart is initialized and the entry actions are performed for StateA
and StateA1. A new time step occurs and the chart wakes up.

At this time step, x = 3, y = 0, and z = 0.

By following the “Workflow for Stateflow Chart Execution” on page 3-25 until the chart goes to sleep,
the execution steps for chart execution are in this order:

1 The chart has an active substate, StateA.
2 StateA has an outgoing transition to StateB. By following the “Workflow for Evaluating

Transitions” on page 3-40, the transition is determined to be invalid.
3 Perform the during actions for StateA. Now y = 1.
4 StateA does not have any inner transitions.
5 The active substate of StateA is StateA1.
6 StateA1 has an outgoing transition to StateA2. By following the “Workflow for Evaluating

Transitions” on page 3-40, the transition is determined to be invalid.
7 Perform the during actions for StateA1. Now x = 4.
8 StateA1 does not have any active substates.
9 The chart goes to sleep.

Steps 1 through 9 take place in the second time step.
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See Also

More About
• “Enter a Chart or State” on page 3-30
• “Exit a State” on page 3-36
• “Evaluate Transitions” on page 3-39
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Enter a Chart or State
Chart and state entry occurs when:

• A chart is activated for the first time. This is called chart initialization.
• A valid transition into a state exists. See “Evaluate Transitions” on page 3-39.

Workflow for Entering a Chart or State
This flow chart shows the progression of events that Stateflow takes for entry into a chart or a state.
In this flow chart, the current state refers to the state in which a decision or a process is taking place.
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Chart Entry
The first time that your Stateflow chart becomes active is called initialization. When initialization of
your chart occurs, the chart is entered and Stateflow executes any default transitions for exclusive
(OR) states. If the states at the top level of your chart are parallel (AND), they become active based
on their order number.

If you want your chart to take any default transitions before time t = 0, in the Chart Properties
dialog box, select the Execute (enter) chart at initialization check box. This option causes the
Stateflow chart to initialize at the same time as Simulink initialization. The default transition paths of
the chart then execute during the model initialization phase.

State Entry
When a state is marked for entry, entry actions for a state execute. Once your chart is active and has
gone through initialization, the top-level state becomes active. A state is marked for entry in one of
these ways:

• An incoming transition crosses state boundaries.
• An incoming transition ends at the state boundary.
• The state is a parallel state child of an active state.

Entry Actions
Entry actions are preceded by the prefix entry or en for short, followed by a required colon (:), and
then followed by one or more actions. You separate multiple actions by using a carriage return, a
semicolon (;), or a comma (,). If you do not specify the state action type explicitly for a statement,
the chart treats that statement as an entry,during action.

Enter a Stateflow Chart
In this example, the first time the chart becomes active, chart initialization occurs.
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By following the “Workflow for Entering a Chart or State” on page 3-30 until the chart goes to sleep,
the steps for chart initialization are in this order:

1 The default transition actions are executed, and x = 0, y = 0, and z = 0.
2 StateA is marked for entry.
3 StateA is not a substate of an inactive parent. Perform the entry actions for StateA. Now x =

1.
4 StateA is the state that was initially marked for entry.
5 StateA does not contain any history junctions.
6 There is a default transition to the substate, StateA1. Go to the Evaluate Transitions flow chart.
7 By following the Evaluate Transitions flow chart, mark StateA1 for entry. Go to the Exit

Actions flow chart.
8 The current state, StateA, is a superstate of the destination state, StateA1. Return to the Entry

Actions flow chart.
9 StateA1 is not a substate of an inactive parent. Perform entry actions for StateA1. Now x =

3.
10 StateA1 is the state that was initially marked for entry.
11 StateA1 does not contain any history junctions.
12 StateA1 does not contain any default transitions.
13 StateA1 does not contain any single substates.
14 The chart goes to sleep.

Steps 1 through 14 take place in the initial time step. This completes the chart initialization process.

Entering a State by Using History Junctions
If you want your Stateflow chart to remember and return to a substate that was previously active,
regardless of a default transition, use a history junction. Placing a history junction within a state
overrides the default transition leading to exclusive (OR) substates. After placing a history junction
within a state, upon entry, your Stateflow chart remembers and enters the previously active substate.
The history junction applies only to the level of the hierarchy in which it appears.

In this example, a light can be on or off. These options are indicated by the states Power_on and
Power_off. The options are controlled by the input events switch_on and switch_off. When the
light is on, it can be dim or bright. These options are indicated by the states Low and High and are
controlled by the input events switch_low and switch_high.

Initially, the chart is asleep. The state Power_off is active. When the state Power_on was last active,
High was the previously active substate. The event switch_on occurs and the state Power_on is
marked for entry. At this time p = 0.
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By following the “Workflow for Entering a Chart or State” on page 3-30 until the chart goes to sleep,
the execution steps for entering the state Power_on are in this order:

1 Power_on is not the child of an inactive parent.
2 There are no entry actions for Power_on.
3 Power_on is the state that was initially marked for entry.
4 There are history junctions in Power_on.
5 High was the previously active substate. Now p = 2.
6 High does not contain any history junctions.
7 High does not contain any default transitions.
8 High does not contain any single substates.
9 The chart goes to sleep.

This completes the entry actions for Power_on and High.

Entering a State by Using Supertransitions
A supertransition is a transition between different levels in a chart. A supertransition can be between
a state in a top-level chart and a state in one of its subcharts, or between states residing in different
subcharts at the same or different levels in a chart. You can create supertransitions that span any
number of levels in your chart.

When a state is entered through a supertransition, before the entry actions for the final destination
are executed, its superstates must be marked active and their entry actions must be executed. In this
example, StateB1 has been marked for entry from StateA2. At this point, x = 5, y = 5, and z =
1.
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By following the “Workflow for Entering a Chart or State” on page 3-30 until the chart goes to sleep,
the execution steps for entering the state StateB1 are in this order:

1 StateB1 is the substate of an inactive parent (StateB).
2 StateB is marked as active.
3 StateB is not the substate of an inactive parent.
4 Perform the entry actions for StateB. Now x = 4.
5 StateB is not the state that was initially marked for entry.
6 Perform the entry actions for StateB1. Now x = 3.
7 StateB1 is the state that was initially marked for entry.
8 StateB1 has no history junctions.
9 StateB1 does not contain any default transitions.
10 StateB1 does not contain any single substates.
11 The chart goes to sleep.

This completes the entry actions for StateB and StateB1.

See Also

More About
• “Execution of a Stateflow Chart” on page 3-25
• “Exit a State” on page 3-36
• “Evaluate Transitions” on page 3-39
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Exit a State
When there is a valid transition out of a state, that state is marked for exit. A state is marked for exit
in one of these ways:

• The outgoing transition originates at the state boundary.
• The outgoing transition crosses the state boundary.
• The destination state is a parallel state child of an activated state.

Workflow for Exiting a State
This flow chart shows the progression of events in Stateflow for exiting a state. In this flow chart, the
current state refers to the state in which a decision or a process is taking place.

Exit Actions
Exit actions for a state execute when the state is active and a valid transition from the state exists. A
state performs its exit actions before becoming inactive.

Exit actions are preceded by the prefix exit or ex, followed by a required colon (:), and then
followed by one or more actions. Separate multiple actions with a carriage return, semicolon (;), or a
comma (,).
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Exit a State Example
In this example, the Stateflow chart is initialized and the entry actions are performed for StateA
and StateA1. For this chart, the during actions for this chart have occurred twice. A new time step
occurs, and then the chart wakes up.

By following the “Workflow for Stateflow Chart Execution” on page 3-25 and the “Workflow for
Evaluating Transitions” on page 3-40, StateB has been marked for entry. StateA is the source of
the transition. At this time step x = 5, y = 2, and z = 0.

By following the flow chart for state exit actions until the chart goes to sleep, the execution steps for
this chart are in this order:

1 StateA is not a superstate of StateB.
2 Perform the exit actions of StateA and mark StateA as inactive. Now z = 1.
3 StateA does not have a parent state.
4 Go to “Entry Actions” on page 3-32.

These steps complete the exit workflow for StateA. However, the chart is not yet asleep.

Perform the “Workflow for Entering a Chart or State” on page 3-30 for StateB to complete the time
step.

Exit a State by Using Supertransitions
A supertransition is a transition between different levels in a chart. A supertransition can be between
a state in a top-level chart and a state in one of its substates, or between states residing in different
substates. You can create supertransitions that span any number of levels in your chart.

When a state is exited through a supertransition, after the exit actions for the source of the transition
are executed, its superstates are marked inactive and exit actions of the superstates are executed. In
this example, StateA2 is marked for exit and StateB1 is marked for entry. At this point, x = 5, y
= 5, and z = 0.
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By following the “Workflow for Entering a Chart or State” on page 3-30 until the chart goes to sleep,
the execution steps for exiting the state StateA2 are in this order:

1 StateA2 is not a superstate of the destination state (StateB1).
2 Perform the exit actions for StateA2 and mark StateA2 as inactive.
3 StateA2 does have a parent state, StateA.
4 StateA is not a superstate of the destination state (StateB1).
5 Perform the exit actions for StateA, and mark StateA as inactive.
6 StateA does not have a parent state.

These actions complete the exit workflow for StateA2 and StateA. However, the chart is not yet
asleep.

Perform the “Workflow for Entering a Chart or State” on page 3-30 for StateB and StateB1 to
complete the time step.

See Also

More About
• “Execution of a Stateflow Chart” on page 3-25
• “Enter a Chart or State” on page 3-30
• “Evaluate Transitions” on page 3-39
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Evaluate Transitions
Stateflow uses transitions in charts to move from one exclusive (OR) state to another exclusive (OR)
state. For the entry and execution workflows of chart execution, Stateflow evaluates transitions to
determine if they are valid. A valid transition is a transition whose condition labels are true and
whose path ends at a state. If a transition is valid, Stateflow exits from the source state and enters
the destination state. To learn about when evaluation occurs during the execution and entry
workflows, see “Execution of a Stateflow Chart” on page 3-25 and “Enter a Chart or State” on page 3-
30.
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Workflow for Evaluating Transitions

Transition Evaluation Order
When multiple transitions originate from a single source, such as a state or junction, Stateflow uses
evaluation order to determine when to test each transition. Depending on which action language your
chart uses, you can create the order of your transitions explicitly or implicitly. Whether explicitly or
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implicitly ordered, transitions show a number near the source of the transition that designates the
transition order.

Note Use explicit ordering to avoid your transitions from changing order while you are editing a
chart.

Explicit Ordering

When you open a new Stateflow chart, all outgoing transitions from a source are automatically
numbered in the order in which you create them. The order starts with 1 and continues to the next
available number for the source.

To change the execution order of a transition, right-click the transition, place your cursor over
Execution Order, and select the order in which you want your transition to execute. When you
change a transition number, the Stateflow chart automatically renumbers the other outgoing
transitions for the source by preserving their relative order.

Implicit Ordering

For C charts in implicit ordering mode, a Stateflow chart evaluates a group of outgoing transitions
from a single source based on:

• Hierarchy.

A chart evaluates a group of outgoing transitions in an order based on the hierarchical level of the
parent of each transition.

• Label.

A chart evaluates a group of outgoing transitions with equal hierarchical priority based on the
labels, in the following order of precedence:

1 Labels with events and conditions
2 Labels with events
3 Labels with conditions
4 No label

For more information about chart behavior when using events, see “Control Chart Behavior by
Using Implicit Events” on page 14-26.

• Angular surface position of transition source.

A chart evaluates a group of outgoing transitions with equal hierarchical and label priority based
on angular position on the surface of the source object. The transition with the smallest clock
position has the highest priority. For example, a transition with a 2 o'clock source position has a
higher priority than a transition with a 4 o'clock source position. A transition with a 12 o'clock
source position has the lowest priority.

Transition to the Inner Edge of a Parent State
Transitions that end on the inside edge of a parent state are a shortcut back to the default transition
path, and the default path is evaluated during the current timestep. In this example, the transition
from state B leads immediately to the default transition to state A.
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If there are default transitions, then Stateflow immediately executes those paths. If not, and there are
no children, then that is the end of the timestep. In both cases, the parent remains active, and exit
and entry actions of the parent are not executed.

Outgoing Transition Example
In this example, the Stateflow chart is initialized and the entry actions are performed for StateA. A
new time step occurs and the chart wakes up. By following the “Workflow for Stateflow Chart
Execution” on page 3-25, Stateflow finds multiple outgoing transitions from StateA. At this time step
x = 1, y = 1, and z = 1.
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Evaluate Outgoing Transitions

By following the “Workflow for Evaluating Transitions” on page 3-40, the steps for evaluating the
transitions of this chart are in this order:

1 Transition 1 from StateA is marked for evaluation.
2 Transition 1 from StateA has a condition.
3 The condition is true.
4 The destination of transition 1 from StateA is not a state.
5 The junction does have outgoing transitions.
6 Transition 1 from the junction is marked for evaluation.
7 Transition 1 from the junction has a condition.
8 The condition is false.
9 Transition 2 from the junction is marked for evaluation.
10 Transition 2 from the junction does not have a condition.
11 The destination of transition 2 from the junction is a state (StateD).
12 StateD is marked for entry, and StateA is marked for exit.

To complete the time step, follow the “Workflow for Exiting a State” on page 3-36 for StateA and the
“Workflow for Entering a Chart or State” on page 3-30 for StateE.

Outgoing Transition Example with Backtracking
When all outgoing transitions from a source are invalid or do not end with a terminating junction, but
there are previously unevaluated transitions, Stateflow returns to the previous state or junction to
evaluate all possible paths.

In this example, the Stateflow chart is initialized and the entry actions are performed for StateA. A
new time step occurs, and the chart wakes up. By following the “Workflow for Stateflow Chart
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Execution” on page 3-25, Stateflow finds multiple outgoing transitions from StateA. At this time step
x = 1, y = 1, and z = 1.

Evaluate Outgoing Transitions with Backtracking

By following the “Workflow for Evaluating Transitions” on page 3-40, the steps for evaluating the
transitions of this chart are in this order:

1 Transition 1 from StateA is marked for evaluation.
2 Transition 1 from StateA has a condition.
3 The condition is true.
4 The destination of transition 1 from StateA is not a state.
5 The junction does have outgoing transitions.
6 Transition 1 from the junction is marked for evaluation.
7 Transition 1 from the junction has a condition.
8 The condition is false.
9 Transition 2 from the junction is marked for evaluation.
10 Transition 2 from the junction has a condition.
11 The condition is false.
12 Transition 2 from StateA is marked for evaluation.
13 Transition 2 from StateA does not have a condition.
14 The destination of transition 2 from StateA is a state (StateE).
15 StateE is marked for entry, and StateA is marked for exit.

To complete the time step, follow the “Workflow for Exiting a State” on page 3-36 for StateA and the
“Workflow for Entering a Chart or State” on page 3-30 for StateE.
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Prevent Backtracking

In this example, a terminating junction prevents backtracking. The Stateflow chart is initialized and
the entry actions are performed for StateA. A new time step occurs and the chart wakes up. By
following the “Workflow for Stateflow Chart Execution” on page 3-25, Stateflow finds multiple
outgoing transitions from StateA. At this time step x = 1, y = 1, and z = 1.

By following the “Workflow for Evaluating Transitions” on page 3-40, the steps for evaluating the
transitions of this chart are in this order:

1 Transition 1 from StateA is marked for evaluation.
2 Transition 1 from StateA has a condition.
3 The condition is true.
4 The destination of transition 1 from StateA is not a state.
5 The junction does have outgoing transitions.
6 Transition 1 from the junction is marked for evaluation.
7 Transition 1 from the junction has a condition.
8 The condition is false.
9 Transition 2 from the junction is marked for evaluation.
10 Transition 2 from the junction has a condition.
11 The condition is false.
12 Transition 3 from the junction is marked for evaluation.
13 Transition 3 from the junction does not have a condition.
14 The destination is not a state and does not have any outgoing transitions.
15 Return to “Workflow for Stateflow Chart Execution” on page 3-25.

To complete the time step, follow the “Workflow for Stateflow Chart Execution” on page 3-25 for
StateA, starting where you left off.
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Condition and Transition Actions
Condition Actions

In transition label syntax, condition actions follow the transition condition and are enclosed in curly
braces ({}). Condition actions are executed when the condition is evaluated as true but before the
transition path has been determined to be valid.

Transition Actions

In transition label syntax, transition actions are preceded with a forward slash (/) and are enclosed in
curly braces ({}). Transition actions execute only after the transition path is determined to be valid.

In this example, both condition actions and transition actions exist. The Stateflow chart is initialized
and the entry actions are performed for StateA. A new time step occurs and the chart wakes up.
There are multiple outgoing transitions from StateA. At this time step x = 1, y = 1, and z = 1.

Evaluate Outgoing Transitions with Condition and Transition Actions

By following the “Workflow for Evaluating Transitions” on page 3-40, the steps for evaluating the
transitions of this chart are in this order:

1 Transition 1 from StateA is marked for evaluation.
2 Transition 1 from StateA has a condition ([y >= 1]).
3 The condition is true.
4 There are no condition actions.
5 The destination of transition 1 from StateA is not a state.
6 The junction does have outgoing transitions.
7 Transition 1 from the junction is marked for evaluation.
8 Transition 1 from the junction has a condition ([x > 2]).
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9 The condition is false.
10 Transition 2 from the junction is marked for evaluation.
11 Transition 2 from the junction has a condition ([x >= 1]).
12 The condition is true.
13 There is a condition action ({y = 0;}). Now y = 0.
14 The junction does have outgoing transitions.
15 The transition from the junction is marked for evaluation.
16 Transition 1 from the junction has a condition ([z >= 5]).
17 The condition is false.
18 Transition 2 from StateA is marked for evaluation.
19 Transition 2 from StateA does not have a condition.
20 The destination of transition 2 from StateA is a state (StateD).
21 StateD is marked for entry, and StateA is marked for exit. Execute the transition action for

this valid path (/{z = 5}). Now z = 5.

To complete the time step, follow the “Workflow for Exiting a State” on page 3-36 for StateA and the
“Workflow for Entering a Chart or State” on page 3-30 for StateE.

See Also

More About
• “Execution of a Stateflow Chart” on page 3-25
• “Enter a Chart or State” on page 3-30
• “Exit a State” on page 3-36
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Super Step Semantics
By default, Stateflow charts execute once for each input event or time step. If you are modeling a
system that must react quickly to inputs, you can enable super step semantics.

When you enable super step semantics, a Stateflow chart executes multiple times for every active
input event or for every time step when the chart has no input events. The chart takes valid
transitions until either of these conditions occurs:

• No more valid transitions exist, so the chart is in a stable active state configuration.
• The number of transitions taken exceeds a user-specified maximum number of iterations.

For simulation targets, you can specify whether the chart goes to the next time step or generates an
error if it reaches the maximum number of iterations prematurely. In generated code for embedded
targets, the chart always goes to the next time step after reaching the maximum number of iterations.

Super step semantics are not supported in standalone Stateflow charts in MATLAB.

Maximum Number of Iterations
In a super step, your chart always takes at least one transition. Therefore, when you set a maximum
number of iterations in each super step, the chart takes that number of transitions plus 1. For
example, if you specify 10 as the maximum number of iterations, your chart takes 11 transitions in
each super step.

Tip When generating code for an embedded target, make sure that the chart can finish the
computation in a single time step. To achieve this behavior, fine-tune your chart by setting the
maximum number of iterations that the chart takes per time step.

Enable Super Step Semantics
To enable super step semantics:

1 Select the Enable super step semantics chart property, as described in “Specify Properties for
Stateflow Charts” on page 28-2.

2 Enter a value for Maximum iterations in each super step.

The chart always takes one transition during a super step, so the value N that you specify
represents the maximum number of additional transitions (for a total of N+1). Try to choose a
number that allows the chart to reach a stable state within the time step, based on the mode
logic of your chart.

3 Select an action for Behavior after too many iterations.

Your selection determines how the chart behaves during simulation after it reaches the maximum
number of iterations in a time step.

Behavior Description
Proceed Chart execution continues to the next time step.
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Behavior Description
Throw Error Simulation stops and an error message appears. This setting is

valid only for simulation. In generated code, chart execution
always proceeds to the next time step rather than generating an
error.

Note Selecting Throw Error can help detect infinite loops in transition cycles. For more
information, see “Detection of Infinite Loops in Transition Cycles” on page 3-52.

Example of Chart with Super Step Semantics
This example shows how super step semantics differs from default semantics. The model contains two
Stateflow charts. One chart uses super step semantics. In the other, super step semantics are
disabled.

Each chart contains an identical sequence of states connected by transitions.

By default, the chart takes only one transition in each simulation step, progressing through states A,
B, and C.
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When you enable super step semantics, the chart takes all valid transitions in one step, stopping at
state C.

How Super Step Semantics Works with Multiple Input Events
When you enable super step semantics for a chart with multiple active input events, the chart takes
all valid transitions for the first active event before it begins processing the next active event. For
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example, in this model, the Sum block produces a 2-by-1 vector signal that goes from [0,0] to [1,1] at
time t = 1.

As a result, when the model wakes up the chart, events E1 and E2 are both active:

If you enable super step semantics, the chart takes all valid transitions for event E1. The chart takes
transitions from state A to B and then from state B to C in a single super step. The scope shows that y
= 3 at the end of the super step:
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In a super step, this chart never transitions to state D because there is no path from state C to state D.

Detection of Infinite Loops in Transition Cycles
If your chart contains transition cycles, taking multiple transitions in a single time step can cause
infinite loops. Consider the following example:

In this example, the transitions between states A and B cycle and produce an infinite loop because the
value of x remains constant at 1. One way to detect infinite loops is to configure your chart to
generate an error if it reaches a maximum number of iterations in a super step. See “Enable Super
Step Semantics” on page 3-48.
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See Also

Related Examples
• “Specify Properties for Stateflow Charts” on page 28-2
• “Execution of a Stateflow Chart” on page 3-25
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Use Events to Execute Charts
An event is a nongraphical object that can wake up and trigger actions in Stateflow chart. For more
information, see “Synchronize Model Components by Broadcasting Events” on page 14-2.

How Stateflow Charts Respond to Events
Stateflow charts respond to events in a cyclical manner.

1 An event wakes up an inactive chart.
2 The chart responds to the event by executing transitions and state actions from the top down

through the chart hierarchy. Starting at the chart level:

a The chart checks for valid transitions between states.
b The chart executes during and on actions for the active state.
c The chart proceeds to the next level down the hierarchy.

3 The chart becomes inactive until it receives the next event.

For more information, see “Execution of a Stateflow Chart” on page 3-25.

Events in Simulink Models
In Simulink models, Stateflow charts receive input events from other blocks in the model.

While processing an event, a state or transition action can generate explicit or implicit events that
trigger additional steps. For example:

• The operator send can broadcast local or output events.
• The operators enter and exit can generate implicit local events when the chart execution enters

or exits a state.
• The operator change can generate an implicit local event when the chart sets the value of a

variable.
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In each case, the chart interrupts its current activity to process the new event. When the activity
caused by the new event finishes executing, the chart returns to the activity that was taking place
before the interruption.

Note In a Simulink model, the execution of output edge-trigger events is equivalent to toggling the
value of an output data value between 0 and 1. This type of event does not interrupt the current
activity of a chart. Instead, the receiving block processes the event the next time that the model
executes the block. For more information, see “Activate a Simulink Block by Sending Output Events”
on page 14-14.

Early Return Logic

The results of processing a local event can conflict with the action that was taking place before the
event was generated. Depending on the type of action, charts resolve these conflicts by using early
return logic.

Action Type Early Return Logic
State entry
action

If the state is no longer active after the local event is processed, the chart stops
the process of entering the state. The chart does not perform the remaining
statements in the entry action.

State during
action

If the state is no longer active after the local event is processed, the chart stops
executing the state. The chart does not perform the remaining statements in the
during action.

State exit action If the state is no longer active after the local event is processed, the chart stops
the process of exiting the state. The chart does not perform the remaining
statements in the exit action nor any transition actions and state entry actions
that result from exiting the state.

Condition action If the source state of the inner or outer transition path, or the parent state of the
default transition path, is no longer active after the local event is processed, the
chart stops the transition process. The chart does not perform the remaining
actions on the transition path or any state exit and entry actions that result
from taking the transition.

Transition action If the parent of the transition path is not active, or if the parent has an active
substate, the chart stops the transition process. The chart does not perform the
remaining actions on the transition path or any state entry actions that result
from taking the transition.

For example, in this chart, the input event E and the local event F trigger the transitions between
states.
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Suppose that state A is active when the chart receives event E. The chart responds to the event with
these steps:

1 The chart determines that the transition from the active state A to state B is valid as a result of
event E.

2 The chart executes the condition action of the valid transition and broadcasts event F.
3 The chart interrupts the transition from state A to state B and begins to process event F.
4 The chart determines that the transition from the active state A to state C is valid as a result of

event F.
5 State A executes its exit action.
6 State A becomes inactive.
7 State C becomes active.
8 State C executes its entry action.

After the chart processes event F, state C is the active state of the chart. Because state A is no longer
active, the chart uses early return logic and stops the transition from state A to state B.

Tip Avoid using undirected local event broadcasts. Undirected local event broadcasts can cause
unwanted recursive behavior in your chart. Instead, send local events by using directed broadcasts.
For more information, see “Broadcast Local Events to Synchronize Parallel States” on page 14-23.

You can set the diagnostic level for detecting undirected local event broadcasts. In the Configuration
Parameters dialog box, open the Diagnostics > Stateflow pane and set the Undirected event
broadcasts parameter to none, warning, or error. The default setting is warning.

Events in Standalone Charts
Standalone Stateflow charts receive an input event when you call the step function or an input event
function in MATLAB.

Standalone charts also receive implicit events from MATLAB timer objects associated with the
absolute-time temporal logic operators after, at, and every. These operators define temporal logic
in terms of wall-clock time. If the state associated with the temporal logic operator becomes inactive
before the chart processes the implicit event, the event does not wake up the chart.

Queuing of Events

If a chart is processing another operation when it receives an event, the chart queues the event for
execution when the current step is completed. You can specify the size of the event queue by setting
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the configuration option -eventQueueSize when you create the chart object. For more information,
see “Chart Object Configuration Options” on page 35-4.

For example, in this chart, the input events E and F trigger the transitions between states. Assume
that SendF is a function in the MATLAB path that calls the input event function F.

Suppose that state A is active when the chart receives event E. The chart responds to the event with
these steps:

1 The chart determines that the transition from the active state A to state B is valid as a result of
event E.

2 The chart executes the condition action of the valid transition and calls the function SendF.
3 SendF calls the input event function F. Because the chart is busy processing a condition action, it

queues event F.
4 The chart completes executing the condition action.
5 State A executes its exit action.
6 State A becomes inactive.
7 State B becomes active.
8 State B executes its entry action.
9 The chart begins to process the queued event F.
10 The chart determines that the transition from the active state B to state D is valid as a result of

event F.
11 State B executes its exit action.
12 State B becomes inactive.
13 State D becomes active.
14 State D executes its entry action.

After the chart processes event F, state D is the active state of the chart.

See Also
after | at | change | enter | every | exit | send | timer

More About
• “Execution of a Stateflow Chart” on page 3-25
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• “Synchronize Model Components by Broadcasting Events” on page 14-2
• “Control Chart Behavior by Using Implicit Events” on page 14-26
• “Control Chart Execution by Using Temporal Logic” on page 16-34
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Group and Execute Transitions

Transition Flow Chart Types
Before executing transitions for an active state or chart, Stateflow software groups transitions by the
following types:

• Default flow charts are all default transition segments that start with the same parent.
• Inner flow charts are all transition segments that originate on a state and reside entirely within

that state.
• Outer flow charts are all transition segments that originate on the respective state but reside at

least partially outside that state.

Each set of flow charts includes other transition segments connected to a qualifying transition
segment through junctions and transitions. Consider the following example:

In this example, state A has both an inner and a default transition that connect to a junction with
outgoing transitions to states A.A1 and A.A2. If state A is active, its set of inner flow charts includes:

• The inner transition
• The outgoing transitions from the junction to state A.A1 and A.A2

In addition, the set of default flow charts for state A includes:

• The default transition to the junction
• The two outgoing transitions from the junction to state A.A1 and A.A2

In this case, the two outgoing transition segments from the junction are members of more than one
flow chart type.

Order of Execution for a Set of Flow Charts
Each flow chart group executes in the order of group priority until a valid transition appears. The
default transition group executes first, followed by the outer transitions group and then the inner
transitions group. Each flow chart group executes as follows:

1 Order the group's transition segments for the active state.
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An active state can have several possible outgoing transitions. The chart orders these transitions
before checking them for validity. See “Transition Evaluation Order” on page 3-40.

2 Select the next transition segment in the set of ordered transitions.
3 Test the transition segment for validity.
4 If the segment is invalid, go to step 2.
5 If the destination of the transition segment is a state, do the following:

a Testing of transition segments stops and a transition path forms by backing up and including
the transition segment from each preceding junction back to the starting transition.

b The states that are the immediate substates of the parent of the transition path exit (see
“Exit a State” on page 3-36).

c The transition action from the final transition segment of the full transition path executes.
d The destination state becomes active (see “Enter a Chart or State” on page 3-30).

6 If the destination is a junction with no outgoing transition segments, do the following:

a Testing stops without any state exits or entries.
7 If the destination is a junction with outgoing transition segments, repeat step 1 for the set of

outgoing segments.
8 After testing all outgoing transition segments at a junction, take the following actions:

a Backtrack the incoming transition segment that brought you to the junction.
b Continue at step 2, starting with the next transition segment after the backup segment.

The set of flow charts completes execution when all starting transitions have been tested.
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Execution Order for Parallel States

Ordering for Parallel States
Although multiple parallel (AND) states in the same chart execute concurrently, the Stateflow chart
must determine when to activate each one during simulation. This ordering determines when each
parallel state performs the actions that take it through all stages of execution.

Unlike exclusive (OR) states, parallel states do not typically use transitions. Instead, order of
execution depends on:

• Explicit ordering

Specify explicitly the execution order of parallel states on a state-by-state basis (see “Explicit
Ordering of Parallel States” on page 3-61).

• Implicit ordering

Override explicit ordering by letting a Stateflow chart use internal rules to order parallel states
(see “Implicit Ordering of Parallel States” on page 3-62).

Parallel states are assigned priority numbers based on order of execution. The lower the number, the
higher the priority. The priority number of each state appears in the upper right corner.

Because execution order is a chart property, all parallel states in the chart inherit the property
setting. You cannot mix explicit and implicit ordering in the same Stateflow chart. However, you can
mix charts with different ordering modes in the same Simulink model.

In code that is generated from Stateflow charts that contain parallel states, each state executes based
on its order.

Explicit Ordering of Parallel States
By default, a Stateflow chart orders parallel states explicitly based on execution priorities you set.

How Explicit Ordering Works

When you open a new Stateflow chart — or one that does not yet contain any parallel states — the
chart automatically assigns priority numbers to parallel states in the order you create them.
Numbering starts with the next available number within the parent container.

When you enable explicit ordering in a chart that contains implicitly ordered parallel states, the
implicit priorities are preserved for the existing parallel states. When you add new parallel states,
execution order is assigned in the same way as for new Stateflow charts — in order of creation.

You can reset execution order assignments at any time on a state-by-state basis, as described in “Set
Execution Order for Parallel States Individually” on page 3-62. When you change execution order for
a parallel state, the Stateflow chart automatically renumbers the other parallel states to preserve
their relative execution order. For details, see “Order Maintenance for Parallel States” on page 3-63.

Order Parallel States Explicitly

To use explicit ordering for parallel states, perform these tasks:
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1 “Enable Explicit Ordering at the Chart Level” on page 3-62
2 “Set Execution Order for Parallel States Individually” on page 3-62

Enable Explicit Ordering at the Chart Level

To enable explicit ordering for parallel states, follow these steps:

1 Right-click inside the top level of the chart and select Properties from the context menu.

The Chart properties dialog box appears.
2 Select the User-specified state/transition execution order check box.
3 Click OK.

If your chart already contains parallel states that have been ordered implicitly, the existing
priorities are preserved until you explicitly change them. When you add new parallel states in
explicit mode, your chart automatically assigns priorities based on order of creation (see “How
Explicit Ordering Works” on page 3-61). However you can now explicitly change execution order
on a state-by-state basis, as described in “Set Execution Order for Parallel States Individually” on
page 3-62.

Set Execution Order for Parallel States Individually

In explicit ordering mode, you can change the execution order of individual parallel states. Right-click
the parallel state of interest and select a new priority from the Execution Order menu.

Implicit Ordering of Parallel States
Rules of Implicit Ordering for Parallel States

In implicit ordering mode, a Stateflow chart orders parallel states implicitly based on location.
Priority goes from top to bottom and then left to right, based on these rules:

• The higher the vertical position of a parallel state in the chart, the higher the execution priority
for that state.

• Among parallel states with the same vertical position, the leftmost state receives highest priority.

The following example shows how these rules apply to top-level parallel states and parallel substates.
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Note Implicit ordering creates a dependency between design layout and execution priority. When
you rearrange parallel states in your chart, you can accidentally change order of execution and affect
simulation results. For more control over your designs, use the default explicit ordering mode to set
execution priorities.

Order Parallel States Implicitly

To use implicit ordering for parallel states, follow these steps:

1 Right-click inside the top level of the chart and select Properties from the context menu.
2 In the Chart properties dialog box, clear the User-specified state/transition execution order

check box.
3 Click OK.

Order Maintenance for Parallel States
Whether you use explicit or implicit ordering, a chart tries to reconcile execution priorities when you
remove, renumber, or add parallel states. In these cases, a chart reprioritizes the parallel states to:

• Fill in gaps in the sequence so that ordering is contiguous
• Ensure that no two states have the same priority
• Preserve the intended relative priority of execution

How a Chart Preserves Relative Priorities in Explicit Mode

For explicit ordering, a chart preserves the user-specified priorities. Consider this example of explicit
ordering:

Because of explicit ordering, the priority of each state and substate matches the order of creation in
the chart. The chart reprioritizes the parallel states and substates when you perform these actions:

1 Change the priority of top-level state b to 3.
2 Add a top-level state g.
3 Remove substate e.
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The chart preserves the priority set explicitly for top-level state b, but renumbers all other parallel
states to preserve their prior relative order.

How a Chart Preserves Relative Priorities in Implicit Mode

For implicit ordering, a chart preserves the intended relative priority based on geometry. Consider
this example of implicit ordering:

If you remove top-level state b and substate e, the chart automatically reprioritizes the remaining
parallel states and substates to preserve implicit geometric order:

Execution Priorities in Restored States
There are situations in which you need to restore a parallel state after you remove it from a Stateflow
chart. In implicit ordering mode, a chart reassigns the execution priority based on where you restore
the state. If you return the state to its original location in the chart, you restore its original priority.

However, in explicit ordering mode, a chart cannot always reinstate the original execution priority to
a restored state. It depends on how you restore the state.
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If you remove a state by... And restore the state by... What is the priority?
Deleting, cutting, dragging
outside the boundaries of the
parent state, or dragging so its
boundaries overlap the parent
state

Using the undo command The original priority is restored.

Dragging outside the
boundaries of the parent state
or so its boundaries overlap the
parent state and releasing the
mouse button

Dragging it back into the parent
state

The original priority is lost. The
Stateflow chart treats the
restored state as the last
created and assigns it the
lowest execution priority.

Dragging outside the
boundaries of the parent state
or so its boundaries overlap the
parent state without releasing
the mouse button

Dragging it back into the parent
state

The original priority is restored.

Dragging so its boundaries
overlap one or more sibling
states

Dragging it to a location with no
overlapping boundaries inside
the same parent state

The original priority is restored.

Cutting Pasting The original priority is lost. The
Stateflow chart treats the
restored state as the last
created and assigns it the
lowest execution priority.

Switching Between Explicit and Implicit Ordering
If you switch to implicit mode after explicitly ordering parallel states, the Stateflow chart resets
execution order to follow implicit rules of geometry. However, if you switch from implicit to explicit
mode, the chart does not restore the original explicit execution order.

Execution Order of Parallel States in Boxes and Subcharts
When you group parallel states inside a box, the states retain their relative execution order. In
addition, the Stateflow chart assigns the box its own priority based on the explicit or implicit ordering
rules that apply. This priority determines when the chart activates the parallel states inside the box.

When you convert a state with parallel decomposition into a subchart, its substates retain their
relative execution order based on the prevailing explicit or implicit rules.
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Create Stateflow Charts

• “Model Reactive Systems in Stateflow” on page 4-2
• “Represent Operating Modes by Using States” on page 4-5
• “Transition Between Operating Modes” on page 4-14
• “Stateflow Editor Operations” on page 4-20
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Model Reactive Systems in Stateflow

Identify System Attributes
Before you build a Stateflow chart in a Simulink model, identify your system attributes by answering
these questions:

1 What are your interfaces?

a What are the event triggers to which your system reacts?
b What are the inputs to your system?
c What are the outputs from your system?

2 Does your system have any operating modes?

a If the answer is yes, what are the operating modes?
b Between which modes can you transition? Are there any operating modes that run in

parallel?

If your system has no operating modes, the system is stateless. If your system has operating
modes, the system is modal.

Select a State Machine Type
After identifying your system attributes, the first step is to create a new chart. For more information,
see sfnew. Select one of the following state machine types:

• Classic — The default machine type. Provides the full set of semantics for MATLAB charts and C
charts.

• Mealy — Machine type in which output is a function of inputs and state.
• Moore — Machine type in which output is a function of state.

For more information, see “How Stateflow Objects Interact During Execution” on page 3-7,
“Differences Between MATLAB and C as Action Language Syntax” on page 17-5, and “Overview of
Mealy and Moore Machines” on page 7-2.

Specify State Actions and Transition Conditions
After you create an empty chart, answer the following questions:

1 For each state, what are the actions you want to perform?
2 What are the rules for transitioning between your states? If your chart has no states, what are

the rules for transitioning between branches of your flow logic?

Using your answers to those questions, specify state actions and transition conditions:

1 Draw states to represent your operating modes, if any. See “Represent Operating Modes by
Using States” on page 4-5.

2 Implement the state actions by adding state labels that use the appropriate syntax. See “States”
on page 2-8.
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3 Draw transitions to represent the direction of flow logic, between states or between branches of
your flow chart. See “Transition Between Operating Modes” on page 4-14.

4 Implement the transition conditions by adding transition labels that use the appropriate syntax.
See “Transitions” on page 2-21.

Define Persistent Data to Store State Variables
After adding state actions and transition conditions to your chart, determine if the chart requires any
local or persistent data to store state variables. If so, follow these steps:

1 Add local data to the appropriate level of the chart hierarchy. See “Add Stateflow Data” on page
12-2.

2 Specify the type, size, complexity, and other data properties. See “Set Data Properties” on page
12-5.

Simplify State Actions and Transition Conditions with Function Calls
State actions and transition conditions can be complex enough that defining them inline on the state
or transition is not feasible. In this case, express the actions or conditions using one of the following
types of Stateflow functions:

• Flow chart — Encapsulate flow charts containing if-then-else, switch-case, for, while, or do-while
patterns.

• MATLAB — Write matrix-oriented algorithms; call MATLAB functions for data analysis and
visualization.

• Simulink — Call Simulink function-call subsystems directly to streamline design and improve
readability.

• Truth table — Represent combinational logic for decision-making applications such as fault
detection and mode switching.

Use the function format that is most natural for the type of calculation in the state action or transition
condition. For more information on the four types of functions, see:

• “Reuse Logic Patterns by Defining Graphical Functions” on page 8-10
• “Reuse MATLAB Code by Defining MATLAB Functions” on page 9-2
• “Reuse Simulink Functions in Stateflow Charts” on page 11-2
• “Use Truth Tables to Model Combinatorial Logic” on page 10-2

If the four types of Stateflow functions do not work, you can write your own C or C++ code for
integration with your chart. For more information about custom code integration, see “Reuse Custom
Code in Stateflow Charts” on page 31-2.

Check That Your System Representation Is Complete
Does your Stateflow chart fully express the logical or event-driven components of your system?

• If the answer is yes, you are done.
• If the answer is no, you can create a separate chart or add hierarchy to your current chart.
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• To create a new chart, repeat all the steps in this basic workflow.
• To add hierarchy, repeat the previous three steps on lower levels of the current chart.
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Represent Operating Modes by Using States
A state describes an operating mode of a reactive system. In a Stateflow chart, states are used for
sequential design to create state transition diagrams.

States can be active or inactive. The activity or inactivity of a state can change depending on events
and conditions. The occurrence of an event drives the execution of the state transition diagram by
making states become active or inactive. For more information, see “States” on page 2-8.

Create a State
You create states by drawing them in the editor for a particular chart (block). Follow these steps:

1 In the object palette, click the State icon .
2 On the chart canvas, click the location for the new state.
3 Enter a label for the state and then click outside of the state. The label for a state specifies its

required name and optional actions. For more information, see “Label States” on page 4-11.

Move and Resize States
To move a state, do the following:

1 Click and drag the state.
2 Release it in a new position.

To resize a state, do the following:

1 Place your pointer over a corner of the state.

When your pointer is over a corner, it appears as a double-ended arrow (PC only; pointer
appearance varies with other platforms).

2 Click and drag the state's corner to resize the state and release the left mouse button.

Create Substates and Superstates
A substate is a state that can be active only when another state, called its parent, is active. States
that have substates are known as superstates. To create a substate, click the State tool and drag a
new state into the state you want to be the superstate. A Stateflow chart creates the substate in the
specified parent state. You can nest states in this way to any depth. To change the parentage of a
substate, drag it from its current parent in the chart and drop it in its new parent.

Note A parent state must be graphically large enough to accommodate all its substates. You might
need to resize a parent state before dragging a new substate into it. You can bypass the need for a
state of large graphical size by declaring a superstate to be a subchart. See “Encapsulate Modal
Logic by Using Subcharts” on page 8-7 for details.
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Group States
When to Group a State

Group a state to move all graphical objects inside a state together. When you group a state, the chart
treats the state and its contents as a single graphical unit. This behavior simplifies editing of a chart.
For example, moving a grouped state moves all substates and functions inside that state.

How to Group a State

You can group a state by right-clicking it and then selecting Group & Subchart > Group in the
context menu. The state appears shaded in gray to indicate that it is now grouped.

When to Ungroup a State

You must ungroup a state before performing these actions:

• Selecting objects inside the state
• Moving other graphical objects into the state

If you try to move objects such as states and graphical functions into a grouped state, you see an
invalid intersection error message. Also, the objects with an invalid intersection have a red border.

How to Ungroup a State

You can ungroup a state by right-clicking it and then clearing Group & Subchart > Group in the
context menu. The background of the state no longer appears gray.
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Specify Substate Decomposition
You specify whether a superstate contains parallel (AND) states or exclusive (OR) states by setting its
decomposition. A state whose substates are all active when it is active has parallel (AND)
decomposition. A state in which only one substate is active when it is active has exclusive (OR)
decomposition. An empty state's decomposition is exclusive.

To alter a state's decomposition, select the state, right-click to display the state's Decomposition
context menu, and select OR (Exclusive) or AND (Parallel) from the menu.

You can also specify the state decomposition of a chart. In this case, the Stateflow chart treats its top-
level states as substates. The chart creates states with exclusive decomposition. To specify a chart's
decomposition, deselect any selected objects, right-click to display the chart's Decomposition
context menu, and select OR (Exclusive) or AND (Parallel) from the menu.

The appearance of the substates indicates the decomposition of their superstate. Exclusive substates
have solid borders, parallel substates, dashed borders. A parallel substate also contains a number in
its upper right corner. The number indicates the activation order of the substate relative to its sibling
substates.

Specify Activation Order for Parallel States
You can specify activation order by using one of two methods: explicit or implicit ordering.

• By default, when you create a new Stateflow chart, explicit ordering applies. In this case, you
specify the activation order on a state-by-state basis.

• You can also override explicit ordering by letting the chart order parallel states based on location.
This mode is known as implicit ordering.

For more information, see “Explicit Ordering of Parallel States” on page 3-61 and “Implicit Ordering
of Parallel States” on page 3-62.

Note The activation order of a parallel state appears in its upper right corner.
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Change State Properties
Use the State dialog box to view and change the properties for a state. To access the State dialog box:

1 Right-click the state and select Properties.

The State properties dialog box appears. For descriptions of properties, see “Properties You Can
Set in the General Pane” on page 4-8 and “Properties You Can Set in the Logging Pane” on
page 4-9.

2 Modify property settings and then click one of these buttons:

• Apply to save the changes and keep the State dialog box open
• Cancel to return to the previous settings
• OK to save the changes and close the dialog box
• Help to display the documentation in an HTML browser window

Properties You Can Set in the General Pane

The General pane of the State properties dialog box appears as shown.

You can set these properties in the General pane.
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Property Description
Name Stateflow chart name; read-only; click this hypertext link to bring the

state to the foreground.
Execution order Set the execution order of a parallel (AND) state. This property does

not appear for exclusive (OR) states. See “Execution Order for Parallel
States” on page 3-61.

Create data for
monitoring

Select this option to create state activity data. See “Monitor State
Activity Through Active State Data” on page 13-2.

Function Inline Option Select one of these options to control the inlining of state functions in
generated code:

• Auto

Inlines state functions based on an internal heuristic.
• Inline

Always inlines state functions in the parent function, as long as the
function is not part of a recursion. See “Inline State Functions in
Generated Code” (Simulink Coder)

• Function

Creates separate static functions for each state.
Label The label for the state, which includes the name of the state and its

associated actions. See “Label States” on page 4-11.

Properties You Can Set in the Logging Pane

The Logging pane of the State properties dialog box appears as shown.
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You can set these properties in the Logging pane.

Property Description
Log self activity Saves the self activity value to the MATLAB workspace during

simulation.
Test point Designates the state as a test point that can be monitored with a

floating scope during model simulation. You can also log test point
values into MATLAB workspace objects. See “Monitor Test Points in
Stateflow Charts” on page 33-43.

Logging name Specifies the name associated with the logged self activity. Simulink
software uses the signal name as its logging name by default. To
specify a custom logging name, select Custom from the list box and
enter the new name in the adjacent edit field.

Limit data points to last Limits the self activity logged to the most recent samples.
Decimation Limits self activity logged by skipping samples. For example, a

decimation factor of 2 saves every other sample.
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Properties You Can Set in the Documentation Pane

The Documentation pane of the State properties dialog box appears as shown.

You can set these properties in the Documentation pane.

Property Description
Description Textual description or comment.
Document link Enter a URL address or a general MATLAB command. Examples are

www.mathworks.com, mailto:email_address, and edit /spec/
data/speed.txt.

Label States
The label for a state specifies its required name for the state and the optional actions executed when
the state is entered, exited, or receives an event while it is active.

State labels have the following general format.

name/
entry:entry actions
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during:during actions
exit:exit actions
bind:data and events
on event_or_message_name:on event_or_message_name actions

The italicized entries in this format have the following meanings:

Keyword Entry Description
Not applicable name A unique reference to the state with optional slash
entry or en entry actions Actions executed when a particular state is entered as the

result of a transition taken to that state
during or du during actions Actions that are executed when a state receives an event

while it is active with no valid transition away from the state
exit or ex exit actions Actions executed when a state is exited as the result of a

transition taken away from the state
bind data or events Binds the specified data or events to this state. Bound data

can be changed only by this state or its children, but can be
read by other states. Bound events can be broadcast only by
this state or its children.

on event_or_message_n
ame

and

on event_name
actions

A specified event or message

and

Actions executed when a state is active and the specified
event occurs or message is present.

For more information, see “Synchronize Model Components
by Broadcasting Events” on page 14-2 and “Communicate
with Stateflow Charts by Sending Messages” on page 15-
2.

Enter the Name

Initially, a state's label is empty. The Stateflow chart indicates this by displaying a ? in the state's label
position (upper left corner). Begin labeling the state by entering a name for the state with the
following steps:

1 Click the state.

The state turns to its highlight color and a question mark character appears in the upper left-
hand corner of the state.

2 Click the ? to edit the label.

An editing cursor appears. You are now free to type a label.

Enter the state's name in the first line of the state's label. Names are case sensitive. To avoid
naming conflicts, do not assign the same name to sibling states. However, you can assign the
same name to states that do not share the same parent.

After labeling the state, click outside it. Otherwise, continue entering actions. To reedit the label,
click the label text near the character position you want to edit.
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Enter Actions

After entering the name of the state in the label, you can enter actions for any of the following action
types:

• Entry Actions — begin on a new line with the keyword entry or en, followed by a colon,
followed by one or more action statements on one or more lines. To separate multiple actions on
the same line, use a comma or a semicolon.

You can begin entry actions on the same line as the state's name. In this case, begin the entry
action with a forward slash (/) instead of the entry keyword.

• Exit Actions — begin on a new line with the keyword exit or ex, followed by a colon, followed
by one or more action statements on one or more lines. To separate multiple actions on the same
line, use a comma or a semicolon.

• During Actions — begin on a new line with the keyword during or du, followed by a colon,
followed by one or more action statements on one or more lines. To separate multiple actions on
the same line, use a comma or a semicolon.

• Bind Actions — begin on a new line with the keyword bind followed by a colon, followed by one
or more data or events on one or more lines. To separate multiple actions on the same line, use a
comma or a semicolon.

• On Actions — begin with the keyword on, followed by a space and the name of an event or
message, followed by a colon, followed by one or more action statements on one or more lines, for
example

on ev1: exit();

To separate multiple actions on the same line, use a comma or a semicolon. If you want different
events to trigger different actions, enter multiple on blocks in the state label. Each block specifies
the action for a specific event or message, for example:

on ev1: action1(); on ev2: action2();

The execution of the actions you enter for a state is dependent only on their action type, and not the
order in which you enter actions in the label. If you do not specify the action type explicitly for a
statement, the chart treats that statement as an entry action.

Tip You can also edit the label in the properties dialog box for the state. See “Change State
Properties” on page 4-8.

See Also
States

More About
• “States” on page 2-8
• “Eliminate Redundant Code by Combining State Actions” on page 16-2
• “Record State Activity by Using History Junctions” on page 2-46
• “Monitor State Activity Through Active State Data” on page 13-2
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Transition Between Operating Modes
A transition is a line with an arrowhead that links one graphical object to another. In most cases, a
transition represents the passage of the system from one mode (state) to another. A transition
typically connects a source and a destination object. The source object is where the transition begins
and the destination object is where the transition ends. For more information, see “Transitions” on
page 2-21.

Create a Transition
Follow these steps to create transitions between states and junctions:

1 Place your pointer on or close to the border of a source state or junction. The pointer changes to
crosshairs.

2 Click and drag a transition to a destination state or junction.
3 Release on the border of the destination state or junction.

Alternatively, in the object palette, click the Transition icon . Then, on the chart canvas, click the
location for the new transition. If necessary, drag the endpoints of the transition to the source and
destination.

Attached transitions obey the following rules:

• Transitions do not attach to the corners of states. Corners are used exclusively for resizing.
• Transitions exit a source and enter a destination at angles perpendicular to the source or

destination surface.
• All transitions have smart behavior.

To delete a transition, click it and press the Delete key.

See the following sections for help with creating self-loop and default transitions:

• “Create Self-Loop Transitions” on page 4-17
• “Create Default Transitions” on page 4-17

Label Transitions
Transition labels contain syntax that accompanies the execution of a transition. The following topics
discuss creating and editing transition labels:

• “Edit Transition Labels” on page 4-14
• “Transition Label Format” on page 4-15

Edit Transition Labels

Label unlabeled transitions as follows:

1 Select (left-click) the transition.

The transition changes to its highlight color and a question mark (?) appears on the transition.
The ? character is the default empty label for transitions.
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2 Left-click the ? to edit the label.

You can now type a label.

To apply and exit the edit, deselect the object. To reedit the label, simply left-click the label text near
the character position you want to edit.

Transition Label Format

Transition labels have the following general format:

event_or_message [condition]{condition_action}/transition_action

Specify, as appropriate, relevant names for event_or_message, condition, condition_action,
and transition_action.

Label Field Description
event_or_message The event or message that causes the transition to be evaluated.
condition Defines what, if anything, has to be true for the condition action and

transition to take place.
condition_action If the condition is true, the action specified executes and completes.
transition_action This action executes after the source state for the transition is exited

but before the destination state is entered. Transition actions are not
supported in standalone Stateflow charts in MATLAB.

Transitions do not need labels. You can specify some, all, or none of the parts of the label. Rules for
writing valid transition labels include:

• Can have any alphanumeric and special character combination, with the exception of embedded
spaces

• Cannot begin with a numeric character
• Can have any length
• Can have carriage returns in most cases
• Must have an ellipsis (...) to continue on the next line

Move Transitions
You can move transition lines with a combination of several individual movements. These movements
are described in the following topics:

• “Bow the Transition Line” on page 4-15
• “Move Transition Attach Points” on page 4-16
• “Move Transition Labels” on page 4-16

In addition, transitions move along with the movements of states and junctions.

Bow the Transition Line

You can move or "bow" transition lines with the following procedure:
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1 Place your pointer on the transition at any point along the transition except the arrow or attach
points.

2 Click and drag your pointer to move the transition point to another location.

Only the transition line moves. The arrow and attachment points do not move.
3 Release the mouse button to specify the transition point location.

The result is a bowed transition line. Repeat the preceding steps to move the transition back into its
original shape or into another shape.

Move Transition Attach Points

You can move the source or end points of a transition to place them in exact locations as follows:

1 Place your pointer over an attach point until it changes to a small circle.
2 Click and drag your pointer to move the attach point to another location.
3 Release the mouse button to specify the new attach point.

The appearance of the transition changes from a solid to a dashed line when you detach and release a
destination attach point. Once you attach the transition to a destination, the dashed line changes to a
solid line.

The appearance of the transition changes to a default transition when you detach and release a
source attach point. Once you attach the transition to a source, the appearance returns to normal.

Move Transition Labels

You can move transition labels to make the Stateflow chart more readable. To move a transition label,
do the following:

1 Click and drag the label to a new location.
2 Release the left mouse button.

If you mistakenly click and then immediately release the left mouse button on the label, you will be in
edit mode for the label. Press the Esc key to deselect the label and try again. You can also click an
empty location in the chart to deselect the label.

Change Transition Arrowhead Size
The arrowhead size is a property of the destination object. Changing one of the incoming arrowheads
of an object causes all incoming arrowheads to that object to be adjusted to the same size. The
arrowhead size of any selected transitions, and any other transitions ending at the same object, is
adjusted.

To adjust arrowhead size:

1 Select the transitions whose arrowhead size you want to change.
2 Place your pointer over a selected transition and right-click to select Arrowhead Size.
3 Select an arrowhead size from the menu.
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Create Self-Loop Transitions
A self-loop transition is a transition whose source and destination are the same state or junction. To
create a self-loop transition:

1 Create the transition by clicking and dragging from the source state or junction.
2 Press the S key or right-click your mouse to enable a curved transition.
3 Continue dragging the transition tip back to a location on the source state or junction.

For the semantics of self-loops, see “Self-Loop Transitions” on page 2-28.

Create Default Transitions
A default transition is a transition with a destination (a state or a junction), but no apparent source
object.

Click the Default Transition button  in the toolbar and click a location in the drawing area close
to the state or junction you want to be the destination for the default transition. Drag your pointer to
the destination object to attach the default transition.

The size of the endpoint of the default transition is proportional to the arrowhead size. See “Change
Transition Arrowhead Size” on page 4-16.

Default transitions can be labeled just like other transitions. See “Label Default Transitions” on page
2-32 for an example.

Change Transition Properties
Use the Transition properties dialog box to view and change the properties for a transition. To access
the dialog box for a particular transition:

1 Right-click the transition and select Properties.

The Transition properties dialog box appears.
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The following transition properties appear in the dialog box:

Field Description
Source Source of the transition; read-only; click the hypertext link

to bring the transition source to the foreground.
Destination Destination of the transition; read-only; click the hypertext

link to bring the transition destination to the foreground.
Parent Parent of this state; read-only; click the hypertext link to

bring the parent to the foreground.
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Field Description
Execution order The order in which the chart executes the transition.
Label The transition's label. See “Transition Labels” on page 2-22

for more information on valid label formats.
Description Textual description or comment.
Document link Enter a Web URL address or a general MATLAB command.

Examples are www.mathworks.com,
mailto:email_address, and edit/spec/data/
speed.txt.

2 After making changes, click one of these buttons:

• Apply to save the changes and keep the Transition dialog box open.
• Cancel to return to the previous settings for the dialog box.
• OK to save the changes and close the dialog box.
• Help to display Stateflow online help in an HTML browser window.

See Also
Transitions

More About
• “Transitions” on page 2-21
• “Default Transitions” on page 2-32
• “Inner Transitions” on page 2-29
• “Self-Loop Transitions” on page 2-28
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Stateflow Editor Operations

Stateflow Editor
The Stateflow Editor allows you to draw, zoom, modify, print, and save a Stateflow chart in your
Simulink model. When you open a new Stateflow chart, the Stateflow Editor displays the chart.

To open a new Stateflow chart in the Stateflow Editor, at the MATLAB command prompt, enter:

1 Command Result
sfnew Creates a chart with the default action

language. For more information, see sfnew.
sfnew -MATLAB Creates an empty chart with MATLAB as the

action language.
sfnew -C Creates an empty C chart.

The Simulink Editor opens, and an empty chart is included on the canvas.
2 To open the Stateflow Editor, double-click the chart object.

The main components of the Stateflow Editor are the chart canvas, the object palette, the Symbols
pane, and the Property Inspector.

• The chart canvas is a drawing area where you create a chart by combining states, transitions, and
other graphical elements.

• On the left side of the canvas, the object palette displays a set of tools for adding graphical
elements to your chart. For more information, see “Graphical Objects” on page 2-2.

To add an object:

• Click the icon for the object and move the cursor to the spot in the drawing area where you
want to place the object.

• Drag the icon for the object into the drawing area.
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• Double-click the icon and then click multiple times in the drawing area to make copies of the
object.

• On the right side of the canvas, in the Symbols pane, you add new data to the chart and resolve
any undefined or unused symbols. Also on the right side of the canvas, above the Symbols pane, is
the Property Inspector. Use the Property Inspector to change the properties for symbols listed in
the Symbols pane. For more information, see “Manage Symbols in the Stateflow Editor” on page
34-2.

Undo and Redo Editor Operations
You can undo and redo operations that you perform in a chart. When you undo an operation, you
reverse the last edit operation that you performed. After you undo operations in the chart, you can
also redo them one at a time.

• To undo an operation in the chart, press Ctrl + Z.
• To redo an operation in the chart, press Ctrl + Y.

Exceptions for Undo

You can undo or redo all editor operations, with the following exceptions:

• You cannot undo the operation of turning subcharting off for a state previously subcharted.

For more information about subcharting, see “Encapsulate Modal Logic by Using Subcharts” on
page 8-7.

• You cannot undo the drawing of a supertransition or the splitting of an existing transition.

Splitting of an existing transition refers to the redirection of the source or destination of a
transition segment that is part of a supertransition. For more information about supertransitions,
see “Create a Supertransition That Enters a Subchart” on page 2-36and “Create a Supertransition
That Exits a Subchart” on page 2-38.

• You cannot undo any changes made to the chart using the Stateflow API.

For more information about the Stateflow API, see “Stateflow Programmatic Interface”.

Specify Colors and Fonts in a Chart
You can change the way Stateflow displays an individual element of a chart or specify the global
display options used throughout the entire chart.

Change Size of a Single Element

To change the display size for a single element in the chart, right-click the element, and then select a
new Format option from the context menu. The options available depend on the element that you
select.

Option States Transitions Junctions Annotation
s

Other
Elements

Font Size Available Available Not
Available

Available Available
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Option States Transitions Junctions Annotation
s

Other
Elements

Arrowhead Size Available Available Available Not
Available

Not
Available

Junction Size Not
Available

Not
Available

Available Not
Available

Not
Available

Font Style Not
Available

Not
Available

Not
Available

Available Not
Available

Shadow Not
Available

Not
Available

Not
Available

Available Not
Available

Text Alignment Not
Available

Not
Available

Not
Available

Available Not
Available

Change Global Display Options

Through the Colors & Fonts dialog box, you can specify a color scheme for the chart or specify
colors and label fonts for different types of objects in a chart. To open the Colors & Fonts dialog box,
in the Format tab, click Style.

In the Colors & Fonts dialog box, the drawing area displays examples of the colors and label fonts
specified by the current color scheme for the chart. You can choose a different color scheme from the
Schemes menu. To modify the display options for a single type of chart element, position your
pointer over the sample object.

• To change the color of the element, click the sample object and select a new color in the dialog
box.
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• To change the font of the element, right-click the sample object and select a new font, style, or
size in the dialog box.
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To apply the scheme to the chart, click Apply. To apply the scheme and close the dialog box, click
OK.

To make the scheme the default scheme for all charts, select Options > Make this the 'Default'
scheme.

To save changes to the default color scheme, select Options > Save defaults to disk. If the modified
scheme is not the default scheme, choosing Save defaults to disk has no effect.

Content Preview for Stateflow Objects
When a chart is closed, you can preview the content of Stateflow charts in Simulink. You can see an
outline of the contents of a chart. During simulation, you can see chart animation. When a chart is
open, you can preview the content of subcharts and Simulink functions.

To turn on content preview for Stateflow charts and subcharts, right-click the chart and select
Format > Content Preview. For Simulink functions, right-click the function and select Content
Preview. For details on content preview in Simulink, see “Preview Content of Model Components”
(Simulink).

For example, the Temporal Logic chart uses content preview. The chart Without Temporal
Logic does not.
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Intelligent Tab Completion for Stateflow Charts
Stateflow tab completion provides context-sensitive editing assistance. Tab completion helps you
avoid typographical errors. It also helps you quickly select syntax-appropriate options for keywords,
data, event, messages, and function names, without having to navigate the Model Explorer. In a
Stateflow chart, to complete entries:

1 Type the first few characters of the word that you want.
2 Press Tab to see the list of possible matches.
3 Use the arrow keys to select a word.
4 Press Tab to make the selection.

Additionally, you can:

• Close the list without selecting anything by pressing the Esc key.
• Type additional characters onto your original term to narrow the list of possible matches.

If you press Tab and no words are listed, then the current word is the only possible match.

Differentiate Elements of Action Language Syntax
You can use color highlighting to differentiate the following syntax elements:

• Keywords
• Comments
• Events
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• Messages
• Functions
• Strings
• Numbers
• Local data
• Constant data
• Input data
• Output data
• Parameter data
• Data Store Memory data

Syntax highlighting is a user preference, not a model preference.

Default Syntax Highlighting

The following chart illustrates the default highlighting for language elements.

If the Stateflow parser cannot resolve a syntax element, the chart displays the element in the default
text color.

Edit Syntax Highlighting

1 In the Stateflow Editor, in the Format tab, click Style > Syntax Highlighting.

The Syntax Highlight Preferences dialog box appears.
2 Click the color that you want to change, choose an alternative from the color palette, and click

Apply.
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3 Click OK to close the Syntax Highlight Preferences dialog box.

Enable and Disable Syntax Highlighting

1 In the Stateflow Editor, in the Format tab, click Style > Syntax Highlighting.

The Syntax Highlight Preferences dialog box appears.
2 Select or clear Enable syntax highlighting and click OK.

Zoom and Navigate with the Miniature Map
To zoom in or out of a Stateflow chart, use the scroll wheel on your mouse. When you zoom Press and
hold Space to see a dialog with the keyboard shortcuts.

You can also press Space to view a miniature map of your chart in the bottom left-hand corner. As you
zoom or navigate within your Stateflow chart, the blue square will move on the miniature map,
indicating your location relative to the entire chart.

You can also click and drag the blue square on the miniature map to navigate within your Stateflow
chart. As you zoom out, the text in your Stateflow chart adjusts its size to maintain readability.
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Format Chart Objects
To enhance readability of objects in a chart, in the Stateflow Editor you can use commands in the
Format tab. These commands include options for:

• Alignment
• Distribution
• Resizing

You can align, distribute, or resize these chart objects:

• States
• Functions
• Boxes
• Junctions

Some of these options appear only after selecting elements within your chart.

Align, Distribute, and Resize Chart Objects

The basic steps to align, distribute, or resize chart objects are similar.

1 If the chart includes parallel states or outgoing transitions from a single source, make sure that
the chart uses explicit ordering.

To set explicit ordering, in the Chart properties dialog box, select User-specified state/
transition execution order.

2 Select the chart objects that you want to align, distribute, or resize.

You can select objects in any order, one-by-one, or by drawing a box around them.
3 Decide which object to use as the anchor for aligning, distributing, or resizing other chart

objects. This object is the reference object.

To set an object as the reference, right-click the object. Brackets appear around the reference
object. In the following example, the Door and Motion states are selected, and the Door state is
the reference. If you select objects one-by-one, the last object that you select acts as the
reference.
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4 Select an option from the Format tab to align, distribute, or resize your chosen objects.

For more information about chart object distribution options, see “Options for Distributing Chart
Objects” on page 4-29

Options for Distributing Chart Objects

Option Description
Distribute Horizontally The center-to-center horizontal distance between any

two objects is the same.

The horizontal space for distribution is the distance
between the left edge of the leftmost object and the
right edge of the rightmost object. If the total width of
the objects you select exceeds the horizontal space
available, objects can overlap after distribution.

Distribute Vertically The center-to-center vertical distance between any two
objects is the same.

The vertical space for distribution is the distance
between the top edge of the highest object and the
bottom edge of the lowest object. If the total height of
the objects you select exceeds the vertical space
available, objects can overlap after distribution.

Even Horizontal Gaps The horizontal white space between any two objects is
the same.

The space restriction for Distribute Horizontally
applies.
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Option Description
Even Vertical Gaps The vertical white space between any two objects is

the same.

The space restriction for Distribute Vertically
applies.

Automatic Chart Formatting

With Arrange Automatically, Stateflow arranges your charts to:

• Expand states and transitions to fit their label strings.
• Resize similar states to be the same size.
• Align states if they were slightly misaligned.
• Straightens transitions.
• Repositions horizontal transition labels to the midpoint.

In the Format tab, click Auto Arrange.

In this example, the chart has:

1 State actions that are outside of the boundary for state A.
2 A transition condition that overlaps state B.
3 A transition that is not horizontal.

After the layout has been automatically arranged:

1 The state actions are contained within state A.
2 The transition condition does not overlap into state B.
3 The lower transition is horizontal.
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More About
• “Add Stateflow Data” on page 12-2
• “Inspect and Modify Data and Messages While Debugging” on page 33-9
• “Execute and Unit Test Stateflow Chart Objects” on page 35-8
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Model Logic Patterns and Iterative
Loops Using Flow Charts

• “Flow Charts in Stateflow” on page 5-2
• “Create Flow Charts by Using Pattern Wizard” on page 5-5
• “Convert MATLAB Code into Stateflow Flow Charts” on page 5-18
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Flow Charts in Stateflow
A Stateflow flow chart is a graphical construct that models logic patterns such as decision trees and
iterative loops. Flow charts represent combinatorial logic in which one result does not depend on
prior results. You build flow charts by combining connective junctions and transitions without using
any states. The junctions provide decision branches between different transition paths. Executing a
flow chart begins at a default transition and ends at a terminating junction (a junction that has no
valid outgoing transitions).

A best practice is to encapsulate flow charts in graphical functions to create modular and reusable
logic that you can call anywhere in a chart. For more information about graphical functions, see
“Reuse Logic Patterns by Defining Graphical Functions” on page 8-10.

An example of a flow chart that models simple If-Else logic:

The flow chart models this code:

if u > 0
   y = 1;
else
   y = 0;
end

Draw a Flow Chart
You can draw and customize flow charts manually by using connective junctions as branch points
between alternate transition paths:

1 Open a chart.
2 From the editor toolbar, drag one or more connective junctions into the chart with the

Connective Junction tool:

3 Add transition paths between junctions.
4 Label the transitions.
5 Add a default transition to the junction where the flow chart execution starts.

Best Practices for Creating Flow Charts
Follow these best practices to create efficient, accurate flow charts:
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Use only one default transition

Flows charts have a single entry point.

Provide only one terminating junction

Multiple terminating junctions reduce readability of a flow chart.

Converge all transition paths to the terminating junction

Execution of a flow chart always reaches the termination point.

Provide an unconditional transition from every junction except the terminating junction

If unintended backtracking occurs during simulation, a warning message appears.

You can control the level of diagnostic action for unintended backtracking in the Diagnostics >
Stateflow pane of the Model Configuration Parameters dialog box. For more information, see the
documentation for the “Unexpected backtracking” (Simulink) diagnostic.

Unintended backtracking can occur at a junction under these conditions:

• The junction does not have an unconditional transition path to a state or terminating junction.
• Multiple transition paths lead to that junction.

Use condition actions to process updates, not transition actions

Flow charts test transitions, but do not execute them (and, therefore, never execute transition
actions).

An example that illustrates these best practices:
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See Also

More About
• “Create Flow Charts by Using Pattern Wizard” on page 5-5
• “Reuse Logic Patterns by Defining Graphical Functions” on page 8-10
• “Convert MATLAB Code into Stateflow Flow Charts” on page 5-18
• “How Stateflow Objects Interact During Execution” on page 3-7
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Create Flow Charts by Using Pattern Wizard
The Pattern Wizard is a utility that generates common flow chart patterns for use in graphical
functions and charts. The Pattern Wizard offers several advantages over manually creating flow
charts. The Pattern Wizard:

• Generates common logic and iterative loop patterns.
• Promotes consistency in geometry and layout across patterns.
• Facilitates storing and reusing patterns from a central location.
• Allows inserting patterns in an existing flow chart.

The Pattern Wizard generates flow charts whose geometry and layout comply with the guidelines
from the MathWorks Advisory Board (MAB). You can customize your flow chart by modifying the
conditions and actions or by inserting additional logic patterns. You can also save your flow chart as a
custom pattern in the Pattern Wizard for later reuse.

For example, suppose that you want to use the Pattern Wizard to create a graphical function for
iterating over the upper triangle of a two-dimensional matrix. The function consists of two nested for
loops in which the row index i is always less than or equal to the column index j. By using the
Pattern Wizard, you can:

1 Create a flow chart for the outer loop that iterates over the row index i. See “Create Reusable
Flow Charts” on page 5-5.

2 Extend the flow chart by inserting an inner loop that iterates over the column index j. See
“Insert Logic Patterns in Existing Flow Charts” on page 5-6.

3 Save the flow chart as a custom pattern in the Pattern Wizard. See “Save Custom Flow Chart
Patterns” on page 5-9.

4 Reuse the custom pattern in a graphical function. See “Reuse Custom Flow Chart Patterns” on
page 5-10.

Create Reusable Flow Charts
To create a flow chart, on the Modeling tab, select a pattern from the Pattern gallery. Pattern
selections include:

• If, If-Else, If-Elseif, and other nested decision patterns.
• For, While, and DoWhile loop patterns.
• Switch patterns with up to four cases.
• Custom patterns that you saved for later reuse.
• Patterns that you define in a MATLAB .m file.

The Pattern dialog box prompts you for conditions and actions specific to the pattern that you select.
For more information on flow chart patterns, see “MAB-Compliant Patterns from the Pattern Wizard”
on page 5-11.

For example, to create the outer for loop in the upper triangle iterator pattern:

1 On the Modeling tab, select Pattern > For Loop.
2 In the Pattern dialog box, specify the initializer, loop test, and counting expressions for iterating

through the first dimension of the matrix:
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3 Click OK. The Pattern Wizard generates this flow chart.

To complete the upper triangle iterator pattern, insert a second for loop along the vertical transition
in this flow chart.

Insert Logic Patterns in Existing Flow Charts
Use the Pattern Wizard to add loop or decision logic extensions to an existing flow chart. Select an
eligible vertical transition and choose a pattern from the Pattern gallery. Options include decision,
loop, and switch patterns. The Pattern dialog box prompts you for conditions and actions specific to
the pattern that you select.
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For example, to add the second loop in the upper triangle iterator pattern:

1 In the Stateflow Editor, from the outer for loop pattern, select the vertical transition labeled
{action1}.

2 On the Modeling tab, select Pattern > For Loop.
3 In the Pattern dialog box, specify the initializer, loop test, and counting expressions for iterating

through the second dimension of the matrix. The initializer expression ensures that i never
exceeds j. Also enter an action that retrieves each element in the upper triangle of the matrix.

4 Click OK. The Pattern Wizard adds the second loop to the flow chart.
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5 Save the model containing the pattern.

Guidelines for Inserting Logic Patterns

When you create logic extensions:

• You can select only one transition to extend at a time. The selected transition must be exactly
vertical and have a destination junction.

• You can extend only flow charts created by the Pattern Wizard.
• The Stateflow chart containing the flow chart can contain only junctions and transitions. The chart

cannot contain other objects, such as states, functions, or truth tables.
• You cannot extend a pattern that has been custom-created or modified.
• You cannot choose a custom pattern as the extension.

If your selection is not eligible for insertion, when you choose a pattern from the Pattern gallery, you
see a message instead of pattern options.

Message Issue
Select a vertical transition You have not selected a vertical transition.
Selected transition must be exactly vertical You selected a transition, but it is not vertical.
Select only one vertical transition You have selected more than one transition.
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Message Issue
Editor must contain only transitions and junctions There are other objects, such as states, functions,

or truth tables, in the chart.

Save Custom Flow Chart Patterns
Use the Pattern Wizard to save flow chart patterns in a central location, and then easily retrieve them
for reuse in graphical functions and charts. Select the flow chart with the pattern that you want to
save and select Pattern > Save As Pattern.

For example, suppose that you want to save the upper triangle iterator pattern for later reuse:

1 Create a folder for storing your custom patterns. See “Guidelines for Creating a Custom Pattern
Folder” on page 5-9.

2 In the Stateflow Editor, select the upper triangle iterator flow chart.
3 On the Modeling tab, select Pattern > Save As Pattern.
4 If you have not designated the custom pattern folder, the Pattern Wizard prompts you to select a

folder. Choose the folder that you created and click Select Folder. You can also set the default
directory that the Pattern Wizard saves to with the sfpref function by using
'PatternWizardCustomDir' as the first argument. For more information, see sfpref.

5 At the prompt, name your pattern UpperTriangleIterator and click Save. The Pattern
Wizard saves your pattern as a model file UpperTriangleIterator.slx in the custom pattern
folder.

Note You can use the Pattern Wizard to reuse only flow charts. To reuse states and subcharts, create
an atomic subchart. For more information, see “Create Reusable Subcomponents by Using Atomic
Subcharts” on page 19-2.

Guidelines for Creating a Custom Pattern Folder

The Pattern Wizard uses a single, flat folder for saving and retrieving flow chart patterns.

• Store all flow charts at the top level of the custom pattern folder. Do not create subfolders.
• Make sure that all flow chart files have an .mdl or .slx extension.

Change Your Custom Pattern Folder

The Pattern Wizard remembers your choice of custom pattern folder for future sessions. To choose a
different folder, rename your existing custom pattern folder and do one of the following:

• Save a new custom pattern to the Pattern Wizard.
• Reuse an existing custom pattern from the Pattern Wizard.

The Pattern Wizard prompts you to choose a new folder.
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Reuse Custom Flow Chart Patterns
The Pattern Wizard stores your flow charts as model files in the custom pattern folder. The patterns
that you save in this folder appear in a drop-down list when you select Pattern > Custom. You can
add a custom pattern directly to a chart or to a subcharted graphical function in your chart.

For example, to add the upper triangle iterator custom pattern to a graphical function:

1 From the object palette, add a graphical function to your chart as described in “Define a
Graphical Function” on page 8-10.

2 Enter this function signature:

function y = ut_iterator(u, numrow, numcol)

The function takes three inputs.

Input Description
u 2-D matrix
numrow Number of rows in the matrix
numcol Number of columns in the matrix

3 Right-click inside the function and select Group & Subchart > Subchart. The function appears
as an opaque box.

4 Double-click the subcharted function to open it.
5 Remove the default flow chart from the graphical function.
6 On the Modeling tab, select Pattern > Custom. A dialog box opens, listing all the patterns that

you have saved in your custom pattern folder.
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7 Select the upper triangle iterator pattern and click OK. The Pattern Wizard adds your custom
pattern to the graphical function.

8 In the graphical function, in place of action1, substitute an appropriate action. This action
repeats once for every row of the matrix.

MAB-Compliant Patterns from the Pattern Wizard
The Pattern Wizard generates flow charts whose geometry and layout comply with the guidelines
from the MathWorks Advisory Board (MAB).

Decision Patterns

If
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If-Else

If-Elseif

If-Elseif-Else
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If-Elseif-Elseif-Else

Nested If
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Loop Patterns

For Loop

While Loop
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DoWhile Loop

Switch Patterns

Two Cases
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Three Cases
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Four Cases

See Also

More About
• “Flow Charts in Stateflow” on page 5-2
• “Reuse Logic Patterns by Defining Graphical Functions” on page 8-10
• “Convert MATLAB Code into Stateflow Flow Charts” on page 5-18
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Convert MATLAB Code into Stateflow Flow Charts
To transform your MATLAB code into Stateflow flow charts and graphical functions, use the Pattern
Wizard. Supported patterns for conversion include:

• if, if-else, and other nested decision statements.
• for and while loops.
• switch statements.

The Pattern Wizard can convert MATLAB functions and scripts.

• MATLAB functions are converted to Stateflow graphical functions.
• MATLAB scripts are converted to Stateflow flow charts.

Converting MATLAB code is supported only in standalone Stateflow charts. For more information, see
“Create Stateflow Charts for Execution as MATLAB Objects” on page 35-2.

Create Flow Charts from MATLAB Scripts
This MATLAB script empirically verifies one instance of the Collatz conjecture. When given the
numeric input u, the script computes the hailstone sequence n0 = u, n1, n2, n3, ⋯ by iterating this
rule:

• If ni is even, then ni+1 = ni/2.
• If ni is odd, then ni+1 = 3ni + 1.

The Collatz conjecture states that every positive integer has a hailstone sequence that eventually
reaches one.

% Hailstone sequence u, c(u), c(c(u)),...
y = [u];
while y(end) ~= 1
    y(end+1) = c(y(end));
end
disp(y);

function n = c(n)
% Compute next number in hailstone sequence.
% If n is even, then c(n) = n/2.
% If n is odd, then c(n) = 3*n+1.
    if rem(n,2) == 0
        n = n/2;
    else
        n = 3*n+1;
    end
end

The script executes a while loop that repeatedly calls the auxiliary function c until it produces an
output value of one. The function c consists of a conditional if-else statement whose output
depends on the parity of the input.

To convert this script into a flow chart and a graphical function:

1 Open a new standalone chart.
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edit hailstone.sfx

2 On the State Chart tab, select Pattern > Select File.
3 In the dialog box, choose the MATLAB script and click Open. The Pattern Wizard adds a flow

chart and a graphical function to your Stateflow chart. Double-click the graphical function to see
its contents.

4
In the Symbols pane, click Resolve Undefined Symbols . The Stateflow Editor resolves u
and y as local data.

5 Save your chart.
6 To execute the chart from the Stateflow Editor, in the Symbols pane, enter a value of u = 9 and

click Run . While the flow chart is executing, the Stateflow Editor highlights the active
transitions through chart animation. When the execution stops, the MATLAB Command Window
displays the hailstone sequence, starting with a value of nine:

     9    28    14     7    22    11    34    17    52    26    13    40    20    10     5    16     8     4     2     1

7
Click Stop .

You can copy generated flow charts and graphical functions and paste them in other charts, including
Stateflow charts in Simulink models. If your MATLAB code uses functionality that is restricted for
code generation in Simulink, you must modify the flow chart actions before simulating the chart. For
more information, see “Call Extrinsic MATLAB Functions in Stateflow Charts” on page 31-30.

Note Suppose that you use nargin in a MATLAB function that you convert to a graphical function in
a chart. Because nargin counts the chart object as one of the input arguments of the graphical
function, the value of nargin in the graphical function is equal to one plus the value of nargin in the
original MATLAB function. For more information, see “Execute a Standalone Chart” on page 35-3.
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See Also

More About
• “Flow Charts in Stateflow” on page 5-2
• “Create Flow Charts by Using Pattern Wizard” on page 5-5
• “Reuse Logic Patterns by Defining Graphical Functions” on page 8-10
• “Create Stateflow Charts for Execution as MATLAB Objects” on page 35-2
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Simulink Subsystems as Stateflow
States

• “Simulink Subsystems as States” on page 6-2
• “Create and Edit Simulink Based States” on page 6-11
• “Access Block State Data” on page 6-17
• “Map Variables for Simulink Based States” on page 6-23
• “Set Simulink Based State Properties” on page 6-25
• “Model a Clutch” on page 6-27
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Simulink Subsystems as States
By using a Simulink subsystem within a Stateflow state, you can model hybrid dynamic systems or
systems that switch between periodic and continuous time dynamics. In your Stateflow chart, you can
use Simulink based states to model a periodic or continuous dynamic system combined with
switching logic that uses transitions. You can access inputs and outputs from your chart within each
Simulink based state. Simulink based states are not supported in standalone Stateflow charts in
MATLAB.

To initialize Simulink blocks when switching between Simulink based states, use Stateflow textual
notation or Simulink State Reader and State Writer blocks.

To create linked Simulink based states, use libraries to save action subsystems. When you copy an
action subsystem from a library model into a Stateflow chart, it appears as a linked Simulink based
state. When you update the library block, the changes are reflected in all Stateflow charts containing
the block.

Using Simulink based states means that you do not have to use complex textual syntax in Stateflow to
model hybrid systems.

When to Use Simulink Based States
Use Simulink based states when:

• You want to model hybrid dynamic systems that include continuous or periodic dynamics.
• The structure of the system dynamics change substantially between the various modes of

operation, for example, modeling PID controllers.

For systems where you call logic intermittently, use Simulink functions.

When the structure of the Simulink algorithm remains substantially unchanged, but certain gains or
parameters switch between various models, use Simulink logic outside of Stateflow. An example of
this type of algorithm is gain scheduling. See “Model Gain-Scheduled Control Systems in Simulink”
(Simulink Control Design).

Model a Pole Vaulter by Using Simulink Based States
This Stateflow chart models a person moving through the stages of pole vaulting by using Simulink
based states. The first stage is the approach run of the vaulter, which is modeled in the Simulink
based state Run_up. In the second stage, the vaulter plants the pole and takes off, which is modeled
by the Simulink based state Take_off. The final stage happens when the vaulter clears the bar and
releases the pole, which is modeled by the Simulink based state Fly.
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The Stateflow chart contains this logic:
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The states Run_up and Fly are easier to model by using Cartesian coordinates. The state Take_off
is easier to model by using polar coordinates. To switch from one coordinate system to another, use
Simulink functions InitTakeOff and InitFly.

Model the Approach of the Pole Vaulter

The Simulink based state Run_up contains this logic:
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The default state in the chart PoleVaulter is Run_up. This state models the pole vaulter traveling
along the ground toward the jump. The pole vaulter starts at -10 on the x-axis and runs toward zero.
As the pole vaulter moves along the ground, the position of the pole vaulter in the xy-plane is
continuously changing, but the state of running remains the same. In this model, the integrator
blocks Position and Velocity are state owner blocks for State Reader blocks in the Simulink
function InitTakeOff. This subsystem outputs the Cartesian coordinates of the pole vaulter.

Convert Cartesian Coordinates to Polar Coordinates

The Simulink function InitTakeOff contains this logic:
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Once the position of the pole vaulter along the x-axis, Run_up.p(1), becomes greater than -4, the
transition from Run_up to Take_off occurs. During the transition InitTakeOff is initialized, the
State Reader block connects to its owner block, and the function is executed. This function converts
the Cartesian coordinates from Position and Velocity to polar coordinates, r, theta, rdot, and
theta_dot. These coordinates are output as State Writer blocks, which are connected to owner
blocks in the state Take_off.

Model the Take Off of the Pole Vaulter

The Simulink based state Take_off contains this logic:
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Once the position of the pole vaulter along the x-axis, Run_up.p(1), becomes greater than -4, the
active state becomes Take_off. This Simulink subsystem models the pole vaulter during the take off
phase of the jump. The subsystem outputs the Cartesian coordinates of the pole vaulter.

Convert Polar Coordinates to Cartesian Coordinates

The Simulink function InitFly contains this logic:
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Once the angle of the pole vaulter, theta, becomes less than pi/2, the transition from Take_off to
Fly occurs. During the transition InitFly is initialized, the State Reader block connects to its owner
block, and the function is executed. This function converts the polar coordinates from r, theta, and
theta_dot to Cartesian coordinates, xy_integ and xydot. These coordinates are output as State
Writer blocks, which are connected to owner blocks in the state Fly.

Model the Free Fall of the Pole Vaulter

The Simulink based state Fly contains this logic:
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Once the angle of the pole vaulter, theta, is less than pi/2, the active state becomes Fly. This state
models the pole vaulter after the jump has cleared and the pole vaulter is falling to the ground. As the
pole vaulter falls, the position of the pole vaulter in the x-y plane is continuously changing, but the
state of falling remains the same. In this model, the integrator blocks xydot and xy_integ are state
owner blocks for State Writer blocks in the Simulink function InitFly. This subsystem outputs the
Cartesian coordinates of the pole vaulter.

The results of this simulation are seen in the Record block.

Limitations
You cannot use Simulink based states with:
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• Moore charts
• Discrete Event charts
• HDL Coder
• PLC Coder
• Simulink Code Inspector
• Super step transitions

Simulink based states do not support debugging.

See Also

More About
• “Create and Edit Simulink Based States” on page 6-11
• “Reuse Charts in Models with Chart Libraries” on page 28-11
• “Create Custom Library” (Simulink)

6 Simulink Subsystems as Stateflow States

6-10



Create and Edit Simulink Based States
To model systems that switch between periodic or continuous time dynamics, use Simulink based
states. Simulink based states are not supported in standalone Stateflow charts in MATLAB. For more
information, see “Simulink Subsystems as States” on page 6-2.

You can create Simulink based state by using the object palette. To reuse systems from separate
Simulink models, copy and paste enabled subsystems. To reuse subsystems in multiple Stateflow
charts, copy and paste action subsystems that are saved in a library.

Create a Simulink Based State
To create a Simulink based state, do one of the following:

• Create an empty Simulink based state by using the Simulink based state palette icon.
• Create a Simulink based state from another model by copying an enabled subsystem or an action

subsystem to your Stateflow chart.
• Create a linked Simulink based state by copying an action subsystem from a library to your
Stateflow chart.

Create an Empty Simulink Based State

1 In the object palette, click the Simulink state icon .
2 On the chart canvas, click the location for the new Simulink based state.
3 Enter a name for the state. In this example, the state models a pole vaulter running along a flat

surface, so the state label is Run_up. Simulink based states are action subsystems, so an Action
Port appears with your new state.

4 Build your Simulink subsystem. This subsystem outputs the Cartesian coordinates of the pole
vaulter. For more information about this model, see “Access Block State Data” on page 6-17.
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Create a Simulink Based State from an Enabled Subsystem

To create a Simulink based state in your Stateflow chart, copy enabled subsystems from separate
Simulink models. You can reuse components from Simulink models in a Stateflow chart without
creating a brand new Simulink based state.

1 Open the sf_clutch_enabled_subsystems model.
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2 From the model, copy the block Slipping to your Stateflow chart.

3 The inports and outports of your Simulink subsystem appear as undefined symbols in your
Stateflow chart. To add corresponding input and output data to your Stateflow chart, click the

Resolve undefined symbols button .
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Create a Linked Simulink Based State

To create a linked Simulink based state in your Stateflow chart, copy an action subsystem from a
library to Stateflow. When the library block is updated, the changes are reflected in all Stateflow
charts containing the block.

1 Open the library model.
2 Copy and paste the library block Run_up to your Stateflow chart.

3 To display a link in the bottom leftmost corner on a linked subsystem, in the Debug tab, select
Information Overlays > Show All Links.

4 The outports of this Simulink subsystem, xy, appears as an undefined symbol in your Stateflow
chart. To add a corresponding output data to your Stateflow chart, click the Resolve undefined

symbols button .

Create Inports and Outports
When using Simulink based states, inports and outports for your Simulink subsystem connect to input
and output data at the Stateflow chart level. This connection allows the top-level Simulink model to
read data from the subsystem contained within your Simulink based state.

When you create an empty Simulink based state, Stateflow creates inputs and outputs in your
Simulink subsystem that correspond to inputs and outputs that exist in the parent Stateflow chart.
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However, if you add inports and outports to your Simulink based state after it is created, you must
create corresponding input and output data for your Stateflow chart.

To create additional inports or outports for a Simulink based state:

1 Open your Simulink based state.
2 Click the Simulink canvas, type in1, and press Enter. An undefined inport is created.
3 The undefined symbol in1 appears in the Symbols pane of your Stateflow chart. To resolve the

undefined symbol, click the Resolve undefined symbols button .
4 A chart inport named In1 is created.

Create an Additional Outport

In this example, you create an additional outport for the model sf_pole_vault:

1 Open the model.
2 Open the chart PoleVaulter and double-click Simulink based state Take_off.
3 Click the Simulink based state canvas and type out1 and press Enter. An undefined outport is

created. Rename the outport theta_out and connect it to the signal for theta.

4 In the Symbols pane of PoleVaulter, an undefined symbol for theta_out appears. To resolve

the undefined symbol, click the Resolve undefined symbols button .
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5 Stateflow creates an output in the chart called theta_out that corresponds to the outport
theta_out.

For more information about editing data, see “Add and Modify Data, Events, and Messages” on page
34-2.

See Also

More About
• “Simulink Subsystems as States” on page 6-2
• “Access Block State Data” on page 6-17
• “Map Variables in a Simulink Based State” on page 6-23
• “Reuse Charts in Models with Chart Libraries” on page 28-11
• “Create Custom Library” (Simulink)
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Access Block State Data
To model systems that switch between periodic or continuous time dynamics, use Simulink based
states. Simulink based states are not supported in standalone Stateflow charts in MATLAB. For more
information, see “Simulink Subsystems as States” on page 6-2.

You can read and write the state of blocks within your Simulink based states in transition actions of
your Stateflow chart. You can read and write the state of blocks textually on the chart transitions or
by using Simulink State Reader and State Writer blocks.

This Stateflow chart models a person moving through the stages of pole vaulting. The first stage is
the approach run of the vaulter, which is modeled by the Simulink based state Run_up. In the second
stage, the vaulter plants the pole and takes off, which is modeled by the Simulink based state
Take_off. The final stage happens when the vaulter clears the bar and releases the pole, which is
modeled by the Simulink based state Fly.

The states Run_up and Fly are easier to model by using Cartesian coordinates. The state Take_off
is easer to model by using polar coordinates. The Simulink functions InitTakeOff and InitFly are
used to switch from one coordinate system to another. For more details on this chart, see “Model a
Pole Vaulter by Using Simulink Based States” on page 6-2.
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Textual Access
This subsystem is contained within the Simulink based state Run_up. For the transition from Run_up
to Take_off to occur, the position of the pole vaulter along the x-axis, p(1), must be greater than
-4.
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By setting the State Name of the integrator block Position to 'p', you can textually access the
state of this block from your Stateflow chart. To access the state of the integrator block in the
transition condition, type [Run_up.p(1)> -4]. When this condition becomes true, the transition is
taken and the active state becomes Take_off.
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In the Symbols pane, you can see that the state 'p' appears under the state Run_up.

Graphical Access
Stateflow uses State Reader and State Writer blocks to connect the subsystems within a Simulink
based state to other Simulink subsystems in your model. State Reader and State Writer blocks display
the name of the state owner block that they are connected to. Conversely, the state owner block

displays a tag  indicating a link to a State Reader or a State Writer block. If you click the label
above the tag, a list opens with a link for navigating to the State Writer block.

Connect a State Reader Block to an Owner Block

The following subsystem is contained within the Simulink function InitTakeOff. The function uses
State Reader blocks to connect to the state Run_up and reads p and v. The function then converts
the Cartesian values for the position of the pole vaulter and velocity into polar coordinates, r and
theta and rdot and theta_dot, respectively. These polar coordinates are then accessed by using
state owner blocks in the state Take_off.

When the transition action occurs, the State Reader blocks in InitTakeOff read the state of their
state owner blocks. Once the Simulink function finishes executing, the State Writer blocks write to
the state owner blocks in the Simulink based state Take_off.
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To connect a State Reader or a State Writer block to an owner block within a Simulink subsystem:

1 To open the properties, double-click the State Reader.
2 In the State Owner Selector Tree, navigate to the block that you want to be the state owner

block. In this example, by choosing Position, you connect the State Reader block to the
integrator Position in the state Run_up.
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3 By connecting the State Reader block to the Position integrator block, this Simulink function
can use the state of the integrator Position to execute.

See Also

More About
• “Simulink Subsystems as States” on page 6-2
• State Reader (Simulink)
• State Writer (Simulink)
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Map Variables for Simulink Based States
To model systems that switch between periodic or continuous time dynamics, use Simulink based
states. Simulink based states are not supported in standalone Stateflow charts in MATLAB. For more
information, see “Simulink Subsystems as States” on page 6-2.

You can access inports or outports of a subsystem within a Simulink based state by using inputs and
outputs in Stateflow that have the same name as your inports and outports. For Simulink based states
that are created by copying and pasting enabled subsystems and action subsystems from a library,
click the Resolve undefined symbols button to map your Simulink inports and outports to Stateflow
inputs and outputs automatically. See “Create Inports and Outports” on page 6-14.

If you are using a linked Simulink based state where the name of the inport or outport differs from
the Stateflow chart input or output, you must ensure that your variables are mapped correctly. You
can change your mappings from the Property Inspector or in the Mappings dialog box.

Map Variables in a Simulink Based State
To open the mappings dialog box, select the Simulink Based State. In the Simulink State tab, click
Mappings.

Under Input Mapping, you can specify which parent chart input maps to an inport in your Simulink
subsystem.
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Under Output Mapping, you can specify which parent chart output maps to an outport in your
Simulink subsystem.

See Also

More About
• “Simulink Subsystems as States” on page 6-2
• “Create and Edit Simulink Based States” on page 6-11
• “Access Block State Data” on page 6-17
• “Manage Symbols in the Stateflow Editor” on page 34-2
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Set Simulink Based State Properties
Simulink based states are Simulink subsystems within a Stateflow state that enable you to model
systems that switch between periodic or continuous time dynamics. For more information, see
“Simulink Subsystems as States” on page 6-2.

You can specify the properties of a Simulink based state in either the Property Inspector or the
properties dialog box for the Simulink based state.

• To use the Property Inspector:

1 In the Modeling tab, under Design Data, select Property Inspector.
2 In the Stateflow Editor, select the Simulink based state.
3 In the Property Inspector pane, edit the properties of the Simulink based state.

• To use the Simulink Based State properties dialog box:

1 In the Stateflow Editor, right-click the Simulink based state.
2 Select Properties.
3 Edit the Simulink based state properties.

You can also specify Simulink based state properties programmatically by using
Stateflow.SimulinkBasedState objects. For more information about the Stateflow programmatic
interface, see “Overview of the Stateflow API”.

Simulink Based State Properties
You can set the following chart properties in the Properties and Info tabs of the Property Inspector
and the Simulink Based State properties dialog box.

Create data for monitoring self activity

Creates a data output port on the Stateflow block for this self-activity of the state.

Log self activity

Logs the state self-activity. View the activity of the state in the Simulation Data Inspector.

Logging name

Specify the signal logging name. To create a signal logging name that is different from the state
name, choose Custom, and add the name.

Test point

Sets the Simulink based state as a Stateflow test point. For more information, see “Monitor Test
Points in Stateflow Charts” on page 33-43.

Limit data points to last

Maximum number of data points to log. Default value is 5000, which means the chart logs the last
5000 data points generated by the simulation.
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Decimation

Decimation interval limits the amount of data logged by skipping samples. Default value is 2, which
means the chart logs every other sample.

Function packaging

Specify the code format generated for a Simulink based state. You can set the format to one of these
options:

• Auto — Simulink Coder software chooses the optimal format for you based on the type and
number of instances of the subsystem that exist in the model.

• Inline — Simulink Coder software inlines the subsystem unconditionally.
• Nonreusable function — Simulink Coder software explicitly generates a separate function in a

separate file.
• Reusable function — Simulink Coder software generates a function with arguments that allows

reuse of Simulink based state code when a model includes multiple instances of the Simulink
based state.

For more information, see “Function packaging” (Simulink).

Description

Simulink based state description. You can enter brief descriptions of Simulink based states in the
hierarchy.

Document Link

Link to online documentation for the Simulink based state. You can enter a web URL address or a
MATLAB command that displays documentation in a suitable online format, such as an HTML file or
text in the MATLAB Command Window. When you click the Document link hyperlink, Stateflow
displays the documentation.

See Also

More About
• “Guidelines for Naming Stateflow Objects” on page 2-5
• “Inspect and Modify Data and Messages While Debugging” on page 33-9
• “Specify Size of Stateflow Data” on page 12-33
• “Specify Type of Stateflow Data” on page 12-27
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Model a Clutch
This example shows the modeling of the Simulink® clutch example using Simulink based states
inside a Stateflow® chart. For a detailed explanation of the physical system, see “Building a Clutch
Lock-Up Model” (Simulink).

Recommended Workflow

This model shows the recommended way of modeling hybrid systems by using Simulink and
Stateflow. This model also covers when to use Simulink or physical modeling tools if the continuous
dynamics are complex coupled with mode changes.

Modeling a hybrid system involves addressing the following concerns:

• Modeling the continuous dynamics
• Modeling the mode logic
• Initializing states when switching between modes

Continuous Dynamics

Hybrid systems have multiple modes of operation where each mode is defined by continuous
dynamics. When the continuous dynamics are complex, model them by using Simulink based states.
In this model, the Locked and Slipping states represent the two modes of operation of a clutch.
Simulink blocks within a Simulink based state represent the logic of the state. These blocks include
continuous time blocks, such as integrators. Within each Simulink based state, you can access chart
inputs and outputs by creating inports and outports with the same name. Each Simulink based state
reads from a subset of chart inputs and writes to all the chart outputs.

Mode Logic

Mode logic refers to the conditions under which the model switches from one mode of operation to
another. In this example, the mode logic is described by the transition logic between the two Simulink
based states. The conditions needed to switch from one Simulink based state to another depend on
the internal state of the integrators within in the current active mode. For example, when switching
from Slipping to Locked Stateflow must read the internal state of the integrator in the Slipping
mode.
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This is possible using two different mechanisms:

1. Using State Reader and State Writer blocks inside Simulink functions: Stateflow can call
Simulink functions on the transition logic between the two modes. Inside the Simulink function, use
State Reader blocks to refer to the internal state of the integrator. For example, the Simulink function
detectLockup uses the State Reader block EngineSpeed to read the state of the integrator block
sf_clutch/Clutch/Slipping/xe.

2. Using qualified dot notation on the transition conditions: If the transition logic is simple and
can be expressed textually, it is possible to use a syntax like Slipping.we == ... to refer to the
state of the integrator sf_clutch/Clutch/Slipping/xe. For this syntax to work, the State Name
parameter of the integrator has to be set to "we".

State Handoff

When switching from one mode of operation to another, the integrators in the newly activated
subsystem need to be initialized properly in order to get smooth output. This can be done using either
Simulink State Reader and State Writer blocks in Simulink functions or textually using the qualified
dot notation. For example, on the transition from Slipping to Locked, initialize the state of the
single integrator in Locked by using the state of one of the integrators in Slipping. Initialize the
state by using the syntax:

Locked.w = Slipping.we;

Simulation Results

When the system is simulated, the engine and vehicle velocities are as shown in the following graph.
The plates lock at about 4 seconds and begin slipping again at about 6.25 seconds.
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See Also

More About
• “Continuous-Time Modeling in Stateflow” on page 25-2
• “Building a Clutch Lock-Up Model” (Simulink)
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Build Mealy and Moore Charts

• “Overview of Mealy and Moore Machines” on page 7-2
• “Design Considerations for Mealy Charts” on page 7-5
• “Model a Vending Machine by Using Mealy Semantics” on page 7-7
• “Design Considerations for Moore Charts” on page 7-9
• “Model a Traffic Light by Using Moore Semantics” on page 7-12
• “Convert Charts Between Mealy and Moore Semantics” on page 7-14
• “Sequence Recognition by Using Mealy and Moore Charts” on page 7-18
• “Karplus-Strong Algorithm by Using Moore Charts” on page 7-22
• “Initialize Persistent Variables in MATLAB Functions” on page 7-24
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Overview of Mealy and Moore Machines
In a finite state machine, state is a combination of local data and chart activity. "Computing state"
means updating local data and making transitions from a currently active state to a new state. In
state machine models, the next state is a function of the current state and its inputs:

X(n + 1) = f (X(n), u)

In this equation:

• X(n) represents the state at time step n.
• X(n+1) represents the state at the next time step n+1.
• u represents inputs.

State persists from one time step to the next time step.

Semantics of Mealy and Moore Machines
Mealy and Moore machines are often considered the basic, industry-standard paradigms for modeling
finite-state machines. You can create charts that implement pure Mealy or Moore semantics as a
subset of Stateflow chart semantics. You can use Mealy and Moore charts in simulation and code
generation with Embedded Coder®, Simulink Coder, and HDL Coder™ software. Mealy and Moore
semantics are not supported in standalone Stateflow charts in MATLAB.

Semantics of Mealy Charts

Mealy machines are finite state machines in which transitions occur on clock edges. The output of a
Mealy chart is a function of inputs and state:

y = g(X, u)

At every time step, a Mealy chart wakes up, evaluates its input, and then transitions to a new
configuration of active states, also called its next state. The chart computes its output as it transitions
to the next state.

To ensure that output is a function of input and state, Mealy state machines enforce these semantics:

• Outputs do not depend on the next state.
• The chart computes outputs only in transitions, not in states.
• The chart wakes up periodically based on a system clock.

Mealy machines compute their output on transitions. Therefore, Mealy charts can compute their first
output at the time that the default path for the chart executes. If you enable the chart property
Execute (enter) Chart At Initialization for a Mealy chart, this computation occurs at t = 0 (first
time step). Otherwise, it occurs at t = 1 (next time step). For more information, see “Execute (enter)
chart at initialization” on page 28-6.

Semantics of Moore Charts

Moore machines are finite state machines in which output is modified at clock edges. The output of a
Moore chart is a function only of state:

y = g(X)
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At every time step, a Moore chart wakes up, computes its output, and then evaluates its input to
reconfigure itself for the next time step. For example, after evaluating its input, the chart can
transition to a new configuration of active states. The chart computes its output before evaluating its
input and updating its state.

To ensure that output is a function only of the current state, Moore state machines enforce these
semantics:

• Outputs do not depend on inputs.
• Outputs do not depend on previous outputs.
• Outputs do not depend on temporal logic.

Moore machines compute their output in states. Therefore, Moore machines can compute outputs
only after the default path executes. Until then, outputs take the default values.

Create Mealy and Moore Charts
When you create a Stateflow chart, the default type is a hybrid state machine model called a Classic
chart. Classic charts combine the semantics of Mealy and Moore charts with the extended Stateflow
chart semantics.

To create a Mealy chart, at the MATLAB command prompt, enter:

sfnew -Mealy

To create a Moore chart, at the MATLAB command prompt, enter:

sfnew -Moore

Alternatively, after adding a Stateflow chart block to a Simulink model, you can choose the type of
semantics for the chart by setting the State Machine Type chart property. For more information, see
“State Machine Type” on page 28-4.

Advantages of Mealy and Moore Charts
Mealy and Moore charts offer these advantages over Classic Stateflow charts:

• You can verify that the Mealy and Moore charts you create conform to their formal definitions and
semantic rules. Error messages appear at compile time (not at design time).

• Moore charts provide a more efficient implementation than Classic charts for C/C++ and HDL
targets.

• You can use a Moore chart to model a feedback loop. In Moore charts, inputs do not have direct
feedthrough. You can design a loop with feedback from the output port to the input port without
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introducing an algebraic loop. Mealy and Classic charts have direct feedthrough and produce an
error in the presence of an algebraic loop.

See Also
sfnew

More About
• “Design Considerations for Mealy Charts” on page 7-5
• “Design Considerations for Moore Charts” on page 7-9
• “Sequence Recognition by Using Mealy and Moore Charts” on page 7-18
• “Model a Vending Machine by Using Mealy Semantics” on page 7-7
• “Model a Traffic Light by Using Moore Semantics” on page 7-12
• “Convert Charts Between Mealy and Moore Semantics” on page 7-14
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Design Considerations for Mealy Charts
Mealy machines are finite state machines in which transitions occur on clock edges. In Mealy charts,
output is a function of input and state. At every time step, a Mealy chart wakes up, evaluates its
input, and then transitions to a new configuration of active states, also called its next state. The chart
computes its output as it transitions to the next state. Mealy semantics are not supported in
standalone Stateflow charts in MATLAB.

Mealy Semantics
To ensure that output is a function of input and state, Mealy state machines enforce these semantics:

• Outputs do not depend on the next state.
• The chart computes outputs only in transitions, not in states.
• The chart wakes up periodically based on a system clock.

Note A chart provides one time base for input and clock (see “Calculate Output and State by
Using One Time Base” on page 7-6).

Design Rules for Mealy Charts
To conform to the Mealy definition of a state machine, ensure that every time there is a change on the
input port, the chart computes outputs.

Compute Outputs in Condition Actions Only

You can compute outputs only in the condition actions of outer and inner transitions. A common
modeling style for Mealy machines is to test inputs in conditions and compute outputs in the
associated action.

Do Not Use State Actions or Transition Actions

You cannot use state actions or transition actions in Mealy charts. This restriction enforces Mealy
semantics by:

• Preventing the chart from computing output without considering changes on the input port.
• Ensuring that output depends on the current state and not the next state.

Restrict Data Scope

In Mealy charts, these data restrictions apply:

• Restrict Machine-Parented Data. Machine-parented data is data that you define for a Stateflow
machine. The Stateflow machine is the highest level of the Stateflow hierarchy. When you define
data at this level, every chart in the machine can read and modify the data. To ensure that Mealy
charts do not access data that can be modified unpredictably outside the chart, do not use
machine-parented data.

• Do Not Define Data Store Memory. You cannot define data store memory (DSM) in Mealy
charts because objects external to the chart can modify DSM. A Stateflow chart uses data store
memory to share data with a Simulink model. Data store memory acts as global data. In the

 Design Considerations for Mealy Charts

7-5



Simulink hierarchy that contains the chart, other blocks and models can modify DSM. Mealy
charts must not access data that can change unpredictably.

Restrict Use of Events

Limit the use of events in Mealy charts:

• Valid Uses:

• Use input events to trigger the chart.
• Use event-based temporal logic to guard transitions.

The change in value of a temporal logic condition behaves like an event that the Mealy chart
schedules internally. At each time step, the number of ticks before the temporal event executes
depends only on the state of the chart. For more information, see “Temporal Logic Operators”
on page 16-34.

Note In Mealy charts, the base event for temporal logic operators must be a predefined event
such as tick (see “Implicit Events Based on Data and States” on page 14-26).

• Invalid Uses:

• You cannot broadcast an event of any type.
• You cannot use local events to guard transitions. Local events violate Mealy semantics because

they are not deterministic and can occur while the chart computes its outputs.
• You cannot use implicit events such as chg(data_name), en(state_name), or

ex(state_name).

Calculate Output and State by Using One Time Base

You can use one time base for clock and input, as determined by the Simulink solver. The Simulink
solver sets the clock rate to be fast enough to capture input changes. As a result, a Mealy chart
commonly computes outputs and changes states in the same time step. For more information, see
“Compare Solvers” (Simulink).

See Also

More About
• “Overview of Mealy and Moore Machines” on page 7-2
• “Model a Vending Machine by Using Mealy Semantics” on page 7-7
• “Convert Charts Between Mealy and Moore Semantics” on page 7-14
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Model a Vending Machine by Using Mealy Semantics
This example shows how to use Mealy semantics to model a vending machine.

Logic of the Mealy Vending Machine

In this example, the vending machine requires 15 cents to release a can of soda. The purchaser can
insert a nickel or a dime, one at a time, to purchase the soda. The chart behaves like a Mealy machine
because its output soda depends on both the input coin and current state:

When initial state got_0 is active. No coin has been received or no coins are left.

• If a nickel is received (coin == 1), output soda remains 0, but state got_nickel becomes
active.

• If a dime is received (coin == 2), output soda remains 0, but state got_dime becomes active.
• If input coin is not a dime or a nickel, state got_0 stays active and no soda is released (output

soda = 0).

In active state got_nickel. A nickel was received.

• If another nickel is received (coin == 1), state got_dime becomes active, but no can is released
(soda remains at 0).

• If a dime is received (coin == 2), a can is released (soda = 1), the coins are banked, and the
active state becomes got_0 because no coins are left.

• If input coin is not a dime or a nickel, state got_nickel stays active and no can is released
(output soda = 0).

In active state got_dime. A dime was received.

• If a nickel is received (coin == 1), a can is released (soda = 1), the coins are banked, and the
active state becomes got_0 because no coins are left.

• If a dime is received (coin == 2), a can is released (soda = 1), 15 cents are banked, and the
active state becomes got_nickel because a nickel (change) is left.
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• If input coin is not a dime or a nickel, state got_dime stays active and no can is released (output
soda = 0).

Design Rules in Mealy Vending Machine

This example of a Mealy vending machine illustrates these Mealy design rules:

• The chart computes outputs in condition actions.
• There are no state actions or transition actions.
• The chart defines chart inputs (coin) and outputs (soda).
• The value of the input coin determines the output: whether or not soda is released.

See Also

More About
• “Overview of Mealy and Moore Machines” on page 7-2
• “Design Considerations for Mealy Charts” on page 7-5
• “Convert Charts Between Mealy and Moore Semantics” on page 7-14
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Design Considerations for Moore Charts
Moore machines are finite state machines in which output is modified at clock edges. In Moore
charts, output is a function of the current state only. At every time step, a Moore chart wakes up,
computes its output, and then evaluates its input to reconfigure itself for the next time step. For
example, after evaluating its input, the chart can transition to a new configuration of active states.
The chart computes its output before evaluating its input and updating its state. Moore semantics are
not supported in standalone Stateflow charts in MATLAB.

Moore Semantics
To ensure that output is a function only of the current state, Moore state machines enforce these
semantics:

• Outputs do not depend on inputs.
• Outputs do not depend on previous outputs.
• Outputs do not depend on temporal logic.

Design Rules for Moore Charts
To conform to the Moore definition of a state machine, ensure that every time that a Moore chart
wakes up, it computes outputs from the current set of active states without regard to inputs.

Restrictions on State Actions

To ensure that outputs depend solely on the current state, you can compute outputs in state actions,
subject to these restrictions:

• Combine Actions. In Moore charts, you can include only one action per state. The action can
consist of multiple command statements. Stateflow evaluates states in Moore charts from the top
level down. Active states in Moore charts execute the state action before evaluating the
transitions. Therefore, outputs are computed at each time step whether an outer transition is valid
or not.

• Do Not Label State Actions. Do not label state actions in Moore charts with any keywords, such
as entry,during, or exit. By default, Moore charts execute the actions in the active states
before evaluating inputs and updating state.

Restrictions on Transition Actions

Transitions in Moore charts can contain condition and transition actions if these actions do not
introduce a dependency between output values and input values. For example, in this chart, each
transition tests the input u in a condition and modifies the output y in a condition action. Because the
output value depends on the value of the input, this construct violates Moore semantics and triggers
an error.
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Do Not Use Inputs to Compute Outputs

In Moore charts, outputs cannot depend on inputs. Using an input to contribute directly or indirectly
to the computation of an output triggers an error.

Restrict Data Scope

In Moore charts, these data restrictions apply:

• Restrict Machine-Parented Data. Machine-parented data is data that you define for a Stateflow
machine. The Stateflow machine is the highest level of the Stateflow hierarchy. When you define
data at this level, every chart in the machine can read and modify the data. To ensure that Moore
charts do not access data that can be modified unpredictably outside the chart, do not use
machine-parented data.

• Do Not Define Data Store Memory. You cannot define data store memory (DSM) in Moore
charts because objects external to the chart can modify DSM objects. A Stateflow chart uses data
store memory to share data with a Simulink model. Data store memory acts as global data. In the
Simulink hierarchy that contains the chart, other blocks and models can modify DSM. Moore
charts must not access data that can change unpredictably.

Do Not Use coder.extrinsic to Call Extrinsic Functions

You cannot call extrinsic functions with coder.extrinsic in Moore charts because it is not possible
to enforce that the outputs of extrinsic functions depend only on the current state. Calling an
extrinsic function with coder.extrinsic in a Moore chart triggers an error.

Do Not Call Custom Code Functions

You cannot call custom code functions in Moore charts because it is not possible to enforce that the
outputs of custom code functions depend only on the current state. Calling a custom code function in
a Moore chart triggers an error.

Do Not Use Simulink Functions

You cannot use Simulink functions in Moore charts. This restriction prevents violations of Moore
semantics during chart execution.

Do Not Export Functions

You cannot export functions in a Moore chart.

Do Not Disable Inlining

Moore chart semantics require inlining.

Do Not Enable Super Step Semantics

You cannot use super step semantics in a Moore chart.

Do Not Use Messages

You cannot use messages in a Moore chart.

Restrict Use of Events

Limit the use of events in Moore charts:
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• Valid Uses:

• Use only one input event to trigger the chart.
• Use event-based temporal logic to guard transitions.

The change in value of a temporal logic condition behaves like an event that the Moore chart
schedules internally. At each time step, the number of ticks before the temporal event executes
depends only on the state of the chart. For more information, see “Temporal Logic Operators”
on page 16-34.

Note In Moore charts, the base event for temporal logic operators must be a predefined event
such as tick (see “Implicit Events Based on Data and States” on page 14-26).

• Invalid Uses:

• You cannot broadcast an event of any type.
• You cannot use local events to guard transitions. Local events violate Moore semantics because

they are not deterministic and can occur while the chart computes its outputs.
• You cannot use implicit events such as chg(data_name), en(state_name), or

ex(state_name).

Do Not Use Moore Charts for Modeling Continuous-Time Systems

In Moore charts, you cannot set the update method to Continuous. For modeling systems with
continuous time in Stateflow, use Classic or Mealy charts.

See Also

More About
• “Overview of Mealy and Moore Machines” on page 7-2
• “Model a Traffic Light by Using Moore Semantics” on page 7-12
• “Convert Charts Between Mealy and Moore Semantics” on page 7-14
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Model a Traffic Light by Using Moore Semantics
This example shows how to use Moore semantics to model a traffic light.

Logic of the Moore Traffic Light

In this example, the traffic light model contains a Moore chart called Light_Controller, which operates
in five traffic states. Each state represents the color of the traffic light in two opposite directions,
North-South and East-West, and the duration of the current color. The name of each state represents
the operation of the light viewed from the North-South direction.

This chart uses temporal logic to regulate state transitions. The after operator implements a
countdown timer, which initializes when the source state is entered. By default, the timer provides a
longer green light in the East-West direction than in the North-South direction because the volume of
traffic is greater on the East-West road. The green light in the East-West direction stays on for at least
20 clock ticks, but it can remain green as long as no traffic arrives in the North-South direction. A
sensor detects whether cars are waiting at the red light in the North-South direction. If so, the light
turns green in the North-South direction to keep traffic moving.

The Light_Controller chart behaves like a Moore machine because it updates its outputs based on
current state before transitioning to a new state:

When initial state Stop is active. Traffic light is red for North-South, green for East-West.

• Sets output y1 = RED (North-South) based on current state.
• Sets output y2 = GREEN (East-West) based on current state.
• After 20 clock ticks, active state becomes StopForTraffic.

In active state StopForTraffic. Traffic light has been red for North-South, green for East-West for
at least 20 clock ticks.

• Sets output y1 = RED (North-South) based on current state.
• Sets output y2 = GREEN (East-West) based on current state.
• Checks sensor.
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• If sensor indicates cars are waiting ([sens] is true) in the North-South direction, active state
becomes StopToGo.

In active state StopToGo. Traffic light must reverse traffic flow in response to sensor.

• Sets output y1 = RED (North-South) based on current state.
• Sets output y2 = YELLOW (East-West) based on current state.
• After 3 clock ticks, active state becomes Go.

In active state Go. Traffic light has been red for North-South, yellow for East-West for 3 clock ticks.

• Sets output y1 = GREEN (North-South) based on current state.
• Sets output y2 = RED (East-West) based on current state.
• After 10 clock ticks, active state becomes GoToStop.

In active state GoToStop. Traffic light has been green for North-South, red for East-West for 10
clock ticks.

• Sets output y1 = YELLOW (North-South) based on current state.
• Sets output y2 = RED (East-West) based on current state.
• After 3 clock ticks, active state becomes Stop.

Design Rules in Moore Traffic Light

This example of a Moore traffic light illustrates these Moore design rules:

• The chart computes outputs in state actions.
• The chart tests inputs in conditions on transitions.
• The chart uses temporal logic, but no asynchronous events.
• The chart defines chart inputs (sens) and outputs (y1 and y2).

See Also

More About
• “Overview of Mealy and Moore Machines” on page 7-2
• “Design Considerations for Moore Charts” on page 7-9
• “Convert Charts Between Mealy and Moore Semantics” on page 7-14
• “Model An Intersection Of One-Way Streets” on page 13-24
• “Model a Distributed Traffic Control System by Using Messages” on page 15-20
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Convert Charts Between Mealy and Moore Semantics
Mealy and Moore machines are often considered the basic, industry-standard paradigms for modeling
finite-state machines. You can create charts that implement pure Mealy or Moore semantics as a
subset of Stateflow chart semantics. Mealy and Moore semantics are not supported in standalone
Stateflow charts in MATLAB. For more information, see “Overview of Mealy and Moore Machines” on
page 7-2.

A best practice is to not change from one Stateflow chart type to another in the middle of
development. You cannot automatically convert the semantics of the original chart to conform to the
design rules of the new chart type. Changing chart type usually requires you to redesign your chart
to achieve the equivalent behavior of the original chart, so that both charts produce the same
sequence of outputs given the same sequence of inputs. Sometimes, however, there is no way to
translate specific behaviors without violating chart definitions.

This table lists a summary of what happens when you change chart types mid-design.

From To Result
Mealy Classic Mealy charts retain their semantics when changed to Classic type.
Classic Mealy If the Classic chart defines its output at every time step and conforms to

Mealy semantic rules, the Mealy chart exhibits behavior equivalent to the
original Classic chart.

Moore Classic State actions in the Moore chart behave as entry and during actions
because they are not labeled. The Classic chart exhibits behavior that is not
equivalent to the original Moore chart. Requires redesign.

Classic Moore Actions that are unlabeled in the Classic chart (entry and during actions by
default) behave as during and exit actions. The Moore chart exhibits
behavior that is not equivalent to the original Classic chart. Requires
redesign.

Mealy Moore Mealy and Moore rules about placement of actions are mutually exclusive.
Converting chart types between Mealy and Moore semantics does not produce
equivalent behavior. Requires redesign.

Moore Mealy

Transform Chart from Mealy to Moore Semantics
This example shows how to use a Mealy chart to model a vending machine, as described in “Model a
Vending Machine by Using Mealy Semantics” on page 7-7.
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In the Mealy chart, each state represents one of the three possible coin inputs: nickel, dime, or no
coin. Each condition action computes output (whether soda is released) based on input (the coin
received) as the chart transitions to the next state. If you change the chart type to Moore, you get a
compile-time diagnostic message indicating that the chart violates Moore chart semantics. According
to Moore semantics, the chart output soda cannot depend on the value of the input coin.

To convert the chart to valid Moore semantics, redesign your chart by moving the logic that computes
the output out of the transitions and into the states. In the Moore chart, each state must represent
both coins received and the soda release condition (soda = 0 or soda = 1). As a result, the
redesigned chart requires more states.

Before considering the value of coin, the Moore chart must compute the value of soda according to
the active state. As a result, there is a delay in releasing soda, even if the machine receives enough
money to cover the cost.

Compare Semantics of Vending Machines

This table compares the semantics of the charts before and after the transformation.
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Mealy Vending Machine Moore Vending Machine
Uses three states Uses five states
Computes outputs in condition actions Computes outputs in state actions
Updates output based on input Updates output before evaluating input, requiring

an extra time step to produce the soda

For this vending machine, Mealy is a better modeling paradigm because there is no delay in releasing
the soda once sufficient coins are received. By contrast, the Moore vending machine requires an
extra time step before producing the soda. Therefore, it is possible for the Moore vending machine to
produce a can of soda at the same time step that it accepts a coin toward the next purchase. In this
situation, the delivery of a soda can appear to be in response to this coin, but actually occurs because
the vending machine received the purchase price in previous time steps.

Transform Chart from Moore to Mealy Semantics
This example shows how to use a Moore chart to model a traffic light, as described in “Model a
Traffic Light by Using Moore Semantics” on page 7-12.

In the Moore chart, each state represents the colors of the traffic light in two opposite directions and
the duration of the current color. Each state action computes output (the colors of the traffic light)
regardless of input (if there are cars waiting at a sensor). If you change the chart type to Mealy, you
get a compile-time diagnostic message indicating that the chart violates Mealy chart semantics.
According to Mealy semantics, the chart cannot compute its outputs in state actions.

To convert the chart to valid Mealy semantics, redesign your chart by moving the logic that computes
the output out of the states and into the transitions. The redesigned Mealy chart consists of five
states, just like the Moore chart. In most transitions, a temporal logic expression or the Boolean input
sens guards a condition action computing the outputs y1 and y2. The only exceptions are:

• The default transition, which computes the initial outputs without a guarding condition.
• The transition from the Stop state to the StopForTraffic state, which does not compute new

outputs.
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In the same time step, the Mealy chart evaluates the temporal logic expressions and the input signal
sens, and computes the value of the outputs y1 and y2. As a result, in the Mealy chart, the output
changes one time step before the corresponding change occurs in the original Moore chart. In the
Simulink model, you can compensate for the anticipated changes in output by adding a Delay block to
each output signal.

Compare Semantics of Traffic Light Controllers

This table compares the semantics of the charts before and after the transformation.

Moore Traffic Light Controller Mealy Traffic Light Controller
Uses five states Uses five states
Computes outputs in state actions Computes outputs in condition actions
Updates output before evaluating input Updates output based on input, requiring a Delay

block in each output signal

See Also

More About
• “Overview of Mealy and Moore Machines” on page 7-2
• “Design Considerations for Mealy Charts” on page 7-5
• “Design Considerations for Moore Charts” on page 7-9
• “Model a Vending Machine by Using Mealy Semantics” on page 7-7
• “Model a Traffic Light by Using Moore Semantics” on page 7-12
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Sequence Recognition by Using Mealy and Moore Charts
This example shows how to use Mealy and Moore machines for a sequence recognition application in
signal processing. For more information, see “Overview of Mealy and Moore Machines” on page 7-2.

In this model, two Stateflow® charts use a different set of semantics to find the sequence 1, 2, 1, 3 in
the input signal from a Signal Editor (Simulink) block.

Each chart contains an input data u and two output data:

• seqFound indicates when the chart finds the sequence. A value of false means that the chart is
still searching for the sequence. A value of true means that the chart has found the sequence.

• status records the status of the sequence recognition. This value ranges from 0 to 4 and
indicates the number of symbols detected by the chart.

The Moore chart outputs seqFound and status based on the current state of the chart. At each time
step, the chart executes the actions for the current state, evaluates the input u, and transitions to a
new state. For example, when the chart receives the sequence of input values 1, 2, 1, 3 from the
Signal Editor block, it transitions from state s0 to state s1 to state s12 to state s121 to state s1213
in four time steps. The chart sets the value of seqFound to true in a state action after state s1213
becomes active.
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The Mealy chart outputs seqFound and status based on the current state of the chart and the value
of the input. At each time step, the chart evaluates the input u, makes the transition to a new state,
and executes the corresponding condition actions. Because this chart computes its output values in
the condition actions of its transitions, these actions are taken before the state becomes active. For
example, when the chart receives the sequence of input values 1, 2, 1, 3 from the Signal Editor block,
it transitions from state s0 to state s1 to state s12 to state s121 to state s1213 in four time steps.
The chart sets the value of seqFound to true in a condition action in the same time step that state
s1213 becomes active.
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When you simulate the model, the seqFound scope shows that the output of the Moore chart lags
one time step behind the output of the Mealy chart. The delay is a result of the Moore semantics, in
which the output is based on the state of the chart at the start of each time step and not on the
current input.
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Reference

Katz, Bruce F. Digital Design: From Gates to Intelligent Machines, 2006.

See Also
Signal Editor

More About
• “Overview of Mealy and Moore Machines” on page 7-2
• “Design Considerations for Mealy Charts” on page 7-5
• “Design Considerations for Moore Charts” on page 7-9

 Sequence Recognition by Using Mealy and Moore Charts

7-21



Karplus-Strong Algorithm by Using Moore Charts
This example shows a simple implementation of the Karplus-Strong algorithm for string synthesis by
using Stateflow® charts with Moore semantics. For more information, see “Design Considerations for
Moore Charts” on page 7-9.

Principle

The initial burst of white noise is produced by a Uniform Random Number block. It is fed back into a
delay line of the same length. The moving average smooth the signal at each cycle, while the gain less
than 1 maintains the stability of the feedback loop. They both model the string losses over each cycle.

Nondirect Feedthrough

This example illustrates the benefits of Moore Charts in loops. Moore semantics guarantees that
outputs only depend on the current state, but neither on inputs nor the next state. Hence a Moore
Chart has nondirect feedthrough and can safely be used in feedback loops. For more information, see
“Algebraic Loop Concepts” (Simulink).

On the contrary, Classic or Mealy Charts provide direct feedthrough. These charts do not prevent
algebraic loops, unless an external Delay block breaks cyclic dependencies. Simulation would issue
an error if both charts were Classic or Mealy charts.
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See Also

More About
• “Overview of Mealy and Moore Machines” on page 7-2
• “Design Considerations for Moore Charts” on page 7-9
• “Algebraic Loop Concepts” (Simulink)
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Initialize Persistent Variables in MATLAB Functions
A persistent variable is a local variable in a MATLAB function that retains its value in memory
between calls to the function. If you generate code from your model, you must initialize a persistent
variable for your MATLAB functions. For more information, see persistent.

When using MATLAB functions that contain persistent variables in Simulink models, you should
follow these guidelines:

• Initialize the persistent variables in functions only by accessing constants.
• Ensure the control flow of the function does not depend on whether the initialization occurs.

If you do not follow these guidelines, several conditions produce an initialization error:

• MATLAB Function blocks with persistent variables where the Allow direct feedthrough property
is cleared

• MATLAB Function blocks with persistent variables in models with State Control blocks where
State control is set to Synchronous

• Stateflow charts that implement Moore machine semantics and that use MATLAB functions with
persistent variables

For example, the function fcn below uses a persistent variable, n. fcn violates both guidelines. The
initial value of n depends on the input u and the return statement interrupts the normal control flow
of the function. Consequently, this code produces an error when used in a model that has one of the
conditions described above.

function y = fcn(u)
    persistent n
        
    if isempty(n)
        n = u;
        y = 1;
        return
    end
    
    y = n;
    n = n + u; 
end

To prevent the error, initialize the persistent variable by setting it to a constant value and removing
the return statement. This modified version of fcn initializes the persistent variable without
producing an error:

function y = fcn(u)
    persistent n
        
    if isempty(n)
        n = 1;
    end
    
    y = n;
    n = n + u; 
end
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MATLAB Function Block with No Direct Feedthrough
This model contains a MATLAB Function block that uses the first version of fcn, described previously.
The MATLAB Function block input is a square wave, which is provided by a Sign and Sine Wave
block. The MATLAB Function block adds the value of u to the persistent variable n at each time step.

Simulate the model. The simulation returns an error because:

• The initial value of the persistent variable n depends on the input u.
• The return statement interrupts the normal control flow of the function.
• The Allow direct feedthrough property of the MATLAB Function block is cleared.

Modify the MATLAB Function block code, as shown in the corrected version of fcn. Simulate the
model again.
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State Control Block in Synchronous Mode
This model contains a MATLAB Function block that uses the first version of fcn, described previously.
The MATLAB Function block input is a square wave, which is provided by a Sign and Sine Wave
block. The MATLAB Function block adds the value of u to the persistent variable n at each time step.
The model contains a State Control block where State control is set to Synchronous.

Simulate the model. The simulation returns an error because:
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• The initial value of the persistent variable n depends on the input u.
• The return statement interrupts the normal control flow of the function.
• the model contains a State Control block where State control is set to Synchronous.

Modify the MATLAB Function block code, as shown in the corrected version of fcn. Simulate the
model again.

Stateflow Chart Implementing Moore Semantics
This model contains a Stateflow Chart with a MATLAB function that uses the first version of fcn,
described previously. The MATLAB function adds the value (1 or -1) determined by the active state to
the persistent variable n at each time step.
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Simulate the model. The simulation returns an error because:

• The initial value of the persistent variable n depends on the input u.
• The return statement interrupts the normal control flow of the function.
• The chart implements Moore semantics.

Modify the MATLAB function code, as shown in the corrected version of fcn. Simulate the model
again.
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See Also
persistent | MATLAB Function | State Control | Chart

More About
• “Use Nondirect Feedthrough in a MATLAB Function Block” (Simulink)
• “Synchronous Subsystem Behavior with the State Control Block” (HDL Coder)
• “Design Considerations for Moore Charts” on page 7-9
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Techniques for Streamlining Chart
Design

• “Group Chart Objects by Using Boxes” on page 8-2
• “Encapsulate Modal Logic by Using Subcharts” on page 8-7
• “Reuse Logic Patterns by Defining Graphical Functions” on page 8-10
• “Export Stateflow Functions for Reuse” on page 8-15
• “Reuse Functions by Using Atomic Boxes” on page 8-19
• “Add Descriptive Comments in a Chart” on page 8-23
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Group Chart Objects by Using Boxes
A box is a graphical object that defines a namespace that you can use to organize objects in your
chart, such as states, functions, and data. Boxes allow you to quickly glance at your chart and
recognize which states or functions work together to perform certain tasks.

Boxes have square corners to distinguish them from states, which have rounded corners. Boxes are
not supported in standalone Stateflow charts in MATLAB.

Note To add notes to your Stateflow chart, use annotations instead of boxes. For more information,
see “Add Descriptive Comments in a Chart” on page 8-23.

In this chart, the box Heater groups together the related states Off and On.

For more information about this example, see “Model Bang-Bang Temperature Control System” on
page 16-50.

Semantics of Stateflow Boxes
Hierarchy of Graphical Objects in Boxes

Boxes add a level of hierarchy to Stateflow charts. If you refer to a box-parented function or state
from outside of the box, you must include the box name in the path. See “Group Functions Using a
Box” on page 8-3.

Activation Order of Parallel States

Boxes affect the implicit activation order of parallel states in a chart. If your chart uses implicit
ordering, parallel states within a box wake up before other parallel states that are lower or to the
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right in that chart. Within a box, parallel states wake up in top-down, left-right order. See “Group
States Using a Box” on page 8-4.

To specify activation order explicitly on a state-by-state basis, select User-specified state/transition
execution order in the Chart properties dialog box. This option is selected by default when you
create a new chart. For details, see “Explicit Ordering of Parallel States” on page 3-61.

Guidelines for Using Boxes

When you use a box:

• Include the box name in the path when you use dot notation to refer to a box-parented function or
state from a location outside of the box.

• You can add data to a box so that all the elements in the box can share the same data.
• You can group a box and its contents into a single graphical element. See “Group States” on page

4-6.
• You can subchart a box to hide its elements. See “Encapsulate Modal Logic by Using Subcharts”

on page 8-7.
• You cannot define action statements for a box, such as entry, during, and exit actions.
• You cannot define a transition to or from a box. However, you can define a transition to or from a

state within a box.

Draw and Edit a Box
Create a Box

You create boxes in your chart by using the Box icon in the object palette.

1 In the object palette, click the Box tool .
2 On the chart canvas, click the location for the new box. The new box appears with the cursor in

place to add a name.
3 Enter a name for the box and then click outside of the box.

Delete a Box

To delete a box, click the box and press the Delete key.

Examples of Using Boxes
Group Functions Using a Box

This chart shows a box named Status that groups two MATLAB functions.
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The chart executes in this order:

1 The state Cold activates first.
2 Upon entry, the state Cold invokes the function Status.msgCold.

This function displays a status message that the temperature is cold.

Note Because the MATLAB function resides inside a box, the path of the function call must
include the box name Status. If you omit this prefix, an error message appears.

3 If the value of the input data temp exceeds 80, a transition to the state Warm occurs.
4 Upon entry, the state Warm invokes the function Status.msgWarm.

This function displays a status message that the temperature is warm.
5 If the value of the input data temp drops below 60, a transition to the state Cold occurs.
6 Steps 2 through 5 repeat until the simulation ends.

Group States Using a Box

This chart shows a box named Status that groups together related states. The chart uses implicit
ordering for parallel states. For more information, see “Implicit Ordering of Parallel States” on page
3-62.
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In this chart:

• The state Temp wakes up first, followed by the state Wind_Chill. Then, the state Monitor wakes
up.

This implicit activation order occurs because Temp and Wind_Chill reside in a box. If you
remove the box, the implicit activation order changes to Temp, Monitor, then Wind_Chill.

• Based on the input data temp, transitions between substates occur in the parallel states
Status.Temp and Status.Wind_Chill.

• When the transition from Status.Temp.Cold to Status.Temp.Warm occurs, the transition
condition in(Status.Temp.Warm) becomes true.

• When the transition from Status.Temp.Warm to Status.Temp.Cold occurs, the transition
condition in(Status.Temp.Cold) becomes true.
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Because the substates Status.Temp.Cold and Status.Temp.Warm reside inside a box, the
argument of the in operator must include the box name Status. If you omit this prefix, an error
message appears. For information about the in operator, see “Check State Activity by Using the in
Operator” on page 13-18.

See Also
Stateflow.Annotation

More About
• “Add Descriptive Comments in a Chart” on page 8-23
• “Encapsulate Modal Logic by Using Subcharts” on page 8-7
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Encapsulate Modal Logic by Using Subcharts
A subchart is a graphical object that can contain anything that a top-level chart can, including other
subcharts. A subchart, or a subcharted state, is a superstate of the states that it contains. You can
nest subcharts to any level in your chart design.

Using subcharts, you can reduce a complex chart to a set of simpler, hierarchically organized units.
This design makes the chart easier to understand and maintain, without changing the chart behavior.
Subchart boundaries do not apply during simulation and code generation.

The subchart appears as a block with its name in the block center. However, you can define actions
and default transitions for subcharts just as you can for superstates. You can also create transitions to
and from subcharts just as you can create transitions to and from superstates. You can create
transitions between states residing outside a subchart and any state within a subchart. The term
supertransition refers to a transition that crosses subchart boundaries in this way. See “Move
Between Levels of Hierarchy by Using Supertransitions” on page 2-35 for more information.

Subcharts define a containment hierarchy within a top-level chart. A subchart or top-level chart is the
parent of the states it contains at the first level and an ancestor of all the subcharts contained by its
children and their descendants at lower levels.

Some subcharts can become atomic units if they meet certain modeling requirements. For more
information, see “Restrictions for Converting to Atomic Subcharts” on page 19-9.

Create a Subchart
You create a subchart by converting an existing state, box, or graphical function into the subchart.
The object to convert can be one that you create for making a subchart or an existing object whose
contents you want to turn into a subchart.

To convert a new or existing state, box, or graphical function to a subchart:

1 Right-click the object and select Group & Subchart > Subchart.
2 Confirm that the object now appears as a subchart.

To convert the subchart back to its original form, right-click the subchart. In the context menu, select
Group & Subchart > Subchart.

Rules of Subchart Conversion
When you convert a box to a subchart, the subchart retains the attributes of a box. For example, the
position of the resulting subchart determines its activation order in the chart if implicit ordering is
enabled (see “Group Chart Objects by Using Boxes” on page 8-2 for more information).

You cannot undo the operation of converting a subchart back to its original form. When you perform
this operation, the undo and redo buttons are disabled from undoing and redoing any prior
operations.

Convert a State to a Subchart
Suppose that you have the following chart:
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1 To convert the On state to a subchart, right-click the state and select Group & Subchart >
Subchart.

2 Confirm that the On state now appears as a subchart.

Manipulate Subcharts as Objects
Subcharts also act as individual objects. You can move, copy, cut, paste, relabel, and resize subcharts
as you would states and boxes. You can also draw transitions to and from a subchart and any other
state or subchart at the same or different levels in the chart hierarchy (see “Move Between Levels of
Hierarchy by Using Supertransitions” on page 2-35).

Open a Subchart
Opening a subchart allows you to view and change its contents. To open a subchart, do one of the
following:

• Double-click anywhere in the box that represents the subchart.
• Select the box representing the subchart and press the Enter key.
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Edit a Subchart
After you open a subchart (see “Open a Subchart” on page 8-8), you can perform any editing
operation on its contents that you can perform on a top-level chart. This means that you can create,
copy, paste, cut, relabel, and resize the states, transitions, and subcharts in a subchart. You can also
group states, boxes, and graphical functions inside subcharts.

You can also cut and paste objects between different levels in your chart. For example, to copy objects
from a top-level chart to one of its subcharts, first open the top-level chart and copy the objects. Then
open the subchart and paste the objects into the subchart.

Transitions from outside subcharts to states or junctions inside subcharts are called supertransitions.
You create supertransitions differently than you do ordinary transitions. See “Move Between Levels of
Hierarchy by Using Supertransitions” on page 2-35 for information on creating supertransitions.

Navigate Subcharts
The Stateflow Editor toolbar contains a set of buttons for navigating the subchart hierarchy of a
chart.

Tool Description
If the Stateflow Editor is displaying a subchart, clicking this button replaces the
subchart with the parent of the subchart in the Stateflow Editor. If the Stateflow
Editor is displaying a top-level chart, clicking this button replaces the chart with the
Simulink model window containing that chart.
Clicking this button shows the chart that you visited before the current chart, so that
you can navigate up the hierarchy.
Clicking this button shows the chart that you visited after visiting the current chart,
so that you can navigate down the hierarchy.

Note You can also use the Escape key to navigate up to the parent object for a subcharted state,
box, or function.
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Reuse Logic Patterns by Defining Graphical Functions
A graphical function in a Stateflow chart is a graphical element that helps you reuse control-flow
logic and iterative loops. You create graphical functions with flow charts that use connective junctions
and transitions. You can call a graphical function in the actions of states and transitions. With
graphical functions, you can:

• Create modular, reusable logic that you can call anywhere in your chart.
• Track simulation behavior visually during chart animation.

A graphical function can reside anywhere in a chart, state, or subchart. The location of the function
determines the set of states and transitions that can call the function.

• If you want to call the function within one state or subchart and its substates, put your graphical
function in that state or subchart. That function overrides any other functions of the same name in
the parents and ancestors of that state or subchart.

• If you want to call the function anywhere in a chart, put your graphical function at the chart level.
• If you want to call the function from any chart in your model, put your graphical function at the

chart level and enable exporting of chart-level functions. For more information, see “Export
Stateflow Functions for Reuse” on page 8-15.

Note A graphical function can access chart and state data above it in the Stateflow hierarchy.

For example, this graphical function has the name f1. It takes three arguments (a, b, and c) and
returns three output values (x, y, and z). The function contains a flow chart that computes three
different products of the arguments.

Define a Graphical Function
1 In the object palette, click the graphical function icon .
2 On the chart canvas, click the location for the new graphical function.
3 Enter the signature label for the function.

The signature label of the function specifies a name for your function and the formal names for
its arguments and return values. A signature label has this syntax:

[return_val1,return_val2,...] = function_name(arg1,arg2,...)
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You can specify multiple return values and multiple input arguments. Each return value and input
argument can be a scalar, vector, or matrix of values. For functions with only one return value,
omit the brackets in the signature label.

You can use the same variable name for both arguments and return values. For example, a
function with this signature label uses the variables y1 and y2 as both inputs and outputs:

[y1,y2,y3] = f(y1,u,y2)

If you export this function to C code, y1 and y2 are passed by reference (as pointers), and u is
passed by value. Passing inputs by reference reduces the number of times that the generated
code copies intermediate data, resulting in more optimal code.

Note Do not use the name of a chart symbol as a function argument or return value. For
example, if either x or y are chart data, defining a function with the signature y = f(x) results
in a run-time error.

4 To program the function, construct a flow chart inside the function box, as described in “Flow
Charts in Stateflow” on page 5-2.

Because a graphical function must execute completely when you call it, you cannot use states.
Connective junctions and transitions are the only graphical elements that you can use in a
graphical function.

Note In a graphical function, do not broadcast events that can cause the active state to change.
In a graphical function, the behavior of an event broadcast that causes an exit from the active
state is unpredictable.

5 In the Model Explorer, expand the chart object and select the graphical function. The arguments
and return values of the function signature appear as data items that belong to your function.
Arguments have the scope Input. Return values have the scope Output.

6 In the Data properties dialog box for each argument and return value, specify the data
properties, as described in “Set Data Properties” on page 12-5.

7 Create any additional data items required by your function. For more information, see “Add Data
Through the Model Explorer” on page 12-3.

Your function can access its own data or data belonging to parent states or the chart. The data
items in the function can have one of these scopes:

• Constant — Constant data retains its initial value through all function calls.
• Parameter — Parameter data retains its initial value through all function calls.
• Local — Local data persists across function calls throughout the simulation. Valid only in

charts that use C as the action language.
• Temporary — Temporary data initializes at the start of every function call. Valid only in

charts that use C as the action language.

In charts that use C as the action language, define local data when you want your data values to
persist across function calls throughout the simulation. Define temporary data when you want to
initialize data values at the start of every function call. For example, you can define a counter
with Local scope if you want to track the number of times that you call the function. In contrast,
you can designate a loop counter to have Temporary scope if you do not need the counter value
to persist after the function completes.
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In charts that use MATLAB as the action language, you do not need to define local or temporary
function data. If you use an undefined variable, Stateflow creates a temporary variable that is
available to the rest of the function. To store values that persist across function calls, your
function can access local data at the chart level.

Tip You can initialize local and temporary data in your function from the MATLAB workspace.
For more information, see “Initialize Data from the MATLAB Base Workspace” on page 12-19.

Call Graphical Functions in States and Transitions
You can call graphical functions from the actions of any state or transition or from other functions. If
you export a graphical function, you can call it from any chart in the model. For more information
about exporting functions, see “Export Stateflow Functions for Reuse” on page 8-15.

To call a graphical function, use the function signature and include an actual argument value for each
formal argument in the function signature.

[return_val1,return_val2,...] = function_name(arg1,arg2,...)

If the data types of the actual and formal arguments differ, the function casts the actual argument to
the type of the formal argument.

Manage Large Graphical Functions
You can choose to make your graphical function as large as you want. If your function grows too
large, you can hide its contents by right-clicking inside the function box and selecting Group &
Subchart > Subchart from the context menu.

To make the graphical function box opaque, right-click the function and clear the Content Preview
property from the context menu.

To dedicate the entire chart window to programming your function, access the flow chart in your
subcharted graphical function by double-clicking the function box. For more information, see
“Encapsulate Modal Logic by Using Subcharts” on page 8-7.
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Specify Properties of Graphical Functions
You can specify properties for a graphical function in the Model Explorer or the Function properties
dialog box.

• To use the Model Explorer:

1 To open the Model Explorer, in the Modeling tab, select Model Explorer.
2 In the Model Hierarchy pane, select the graphical function.
3 In the Function pane, edit the graphical function properties.

• To use the Function properties dialog box:

1 In the Stateflow Editor, right-click the graphical function.
2 Select Properties.
3 Edit the graphical function properties.

You can also specify graphical function properties programmatically by using Stateflow.Function
objects. For more information about the Stateflow programmatic interface, see “Overview of the
Stateflow API”.

Name

Function name. Click the function name link to bring your function to the foreground in its native
chart.

Function Inline Option

Controls the inlining of your function in generated code:

• Auto — Determines whether to inline your function based on an internal calculation.
• Inline — Inlines your function if you do not export it to other charts and it is not part of a

recursion. (A recursion exists if your function calls itself directly or indirectly through another
function call.)

• Function — Does not inline your function.

Label

Signature label for your function. The function signature label specifies a name for your function and
the formal names for its arguments and return values.

Description

Function description. You can enter brief descriptions of functions in the hierarchy.

Document Link

Link to online documentation for the function. You can enter a web URL address or a MATLAB
command that displays documentation in a suitable online format, such as an HTML file or text in the
MATLAB Command Window. When you click the Document link hyperlink, Stateflow displays the
documentation.
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See Also

More About
• “Flow Charts in Stateflow” on page 5-2
• “Create Flow Charts by Using Pattern Wizard” on page 5-5
• “Export Stateflow Functions for Reuse” on page 8-15
• “Reuse Functions by Using Atomic Boxes” on page 8-19
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Export Stateflow Functions for Reuse
You can extend the scope of the chart-level functions in your Stateflow chart to other blocks in the
Simulink model by exporting the functions. You can export:

• Graphical functions
• MATLAB functions
• Truth tables

When you export chart-level functions, you can call them in other Stateflow charts and Simulink
Caller blocks.

• To export chart-level functions that you can call by using qualified notation such as
chartName.functionName, select the Export chart level functions chart property, as
described in “Specify Properties for Stateflow Charts” on page 28-2.

• To export chart-level functions that you can call without using qualified notation, select Export
chart level functions, and then select Treat exported functions as globally visible. You
cannot export functions with the same name.

Share Functions Across Stateflow Charts
This example shows how to call exported functions from other charts in your Simulink model. This
model contains a main Stateflow chart, mainChart, and two auxiliary library charts, lib1Chart and
lib2Chart. Each chart contains a chart-level graphical function and has both the Export chart
level functions and Treat exported functions as globally visible chart properties enabled.

The main chart contains two data objects, x and y, with initial values of 0 and 1, respectively. When
you simulate the model, the default transition in this chart calls the function lib1_func using these
values as arguments.
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The function lib1_func is defined in the library chart lib1Chart. The function reads its input
arguments and passes them to the function lib2_func.

The function lib2_func is defined in the library chart lib2Chart. The function reads its input
arguments and passes them to the function main_func.

The function main_func is defined in the main chart. The function adds its input arguments and
returns the result. The main chart stores this result as the output data x. The sequence of function
calls repeats in each time step of the simulation. The Scope block shows the value of x increasing
during the simulation.

8 Techniques for Streamlining Chart Design

8-16



Guidelines for Exporting Chart-Level Functions
Do Not Export Chart-Level Functions That Contain Unsupported Inputs or Outputs

You cannot export a chart-level function when inputs or outputs have any of the following properties:

• Fixed-point data type with word length greater than 32 bits
• Variable size

Do Not Export Simulink Functions

If you enable the Export chart level functions chart property in a chart that contains chart-level
Simulink functions, a run-time error occurs. To resolve the error, disable the Export chart level
functions chart property or move the Simulink functions to a lower level in the chart hierarchy.

Alternatively, you can call a Simulink function from other blocks in the model by defining it directly in
the Simulink canvas using a Simulink Function block. For more information, see “Share Functions
Across Simulink and Stateflow” on page 11-39.

 Export Stateflow Functions for Reuse

8-17



Do Not Export Functions Across Model Reference Boundaries

You cannot export functions from a referenced model and call the functions from a parent model.

Combine Output and Update Functions When Generating Code

If you generate code for a model that uses exported chart-level functions, enable the model
configuration parameter Single output/update function (Simulink Coder) to ensure consistent
behavior between simulation and code generation.

See Also

Related Examples
• “Share Functions Across Simulink and Stateflow” on page 11-39
• “Reuse Logic Patterns by Defining Graphical Functions” on page 8-10
• “Reuse MATLAB Code by Defining MATLAB Functions” on page 9-2
• “Use Truth Tables to Model Combinatorial Logic” on page 10-2

8 Techniques for Streamlining Chart Design

8-18



Reuse Functions by Using Atomic Boxes
An atomic box is a graphical object that helps you encapsulate graphical, truth table, MATLAB, and
Simulink functions in a separate namespace. Atomic boxes are not supported in standalone Stateflow
charts in MATLAB. Atomic boxes allow for:

• Faster simulation after making small changes to a function in a chart with many states or levels of
hierarchy

• Reuse of the same functions across multiple charts and models
• Ease of team development for people working on different parts of the same chart
• Manual inspection of generated code for a specific function in a chart

An atomic box looks opaque and includes the label Atomic in the upper left corner. If you use a linked
atomic box from a library, the label Link appears in the upper left corner.

Example of an Atomic Box
This example shows how to use a linked atomic box to reuse a graphical function across multiple
charts and models.

The function GetTime is defined in a chart in the library model sf_timer_utils_lib. The
graphical function returns the simulation time in C charts where the equivalent MATLAB® function
getSimulationTime is not available.

The model sf_timer_function_calls consists of two charts with a similar structure. Each chart
contains a pair of states (A and B) and an atomic box (Time) linked from the library chart. The entry
action in state A calls the function GetTime and stores its value as t0. The condition guarding the
transition from A to B calls the function again and compares its output with the parameter T.
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The top model sf_timer_modelref reuses the timer function in multiple referenced blocks.
Because there are no exported functions, you can use more than one instance of the referenced block
in the top model.

Benefits of Using Atomic Boxes
Atomic boxes combine the functionality of normal boxes and atomic subcharts. Atomic boxes:

• Improve the organization and clarity of complex charts.
• Support usage as library links.
• Support the generation of reusable code.
• Allow mapping of inputs, outputs, parameters, data store memory, and input events.

Atomic boxes contain only functions. They cannot contain states. Adding a state to an atomic box
results in a compilation-time error.

To call a function that resides in an atomic box from a location outside the atomic box, use dot
notation to specify its full path:

atomic_box_name.function_name

Using the full path for the function call:

• Makes clear the dependency on the function in the linked atomic box.
• Avoids pollution of the global namespace.
• Does not affect the efficiency of generated code.

Create an Atomic Box
You can create an atomic box by converting an existing box or by linking a chart from a library model.
After creating the atomic box, update the mapping of variables by right-clicking the atomic box and
selecting Subchart Mappings. For more information, see “Map Variables for Atomic Subcharts and
Boxes” on page 19-11.
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Convert a Normal Box to an Atomic Box

To create a container for your functions that allows for faster debugging and code generation
workflows, convert an existing box into an atomic box. In your chart, right-click a normal box and
select Group & Subchart > Atomic Subchart. The label Atomic appears in the upper left corner of
the box.

The conversion process gives the atomic box its own copy of every data object that the box accesses
in the chart. Local data is copied as data store memory. The scope of other data, including input and
output data, does not change.

Note If a box contains any states or messages, you cannot convert it to an atomic box.

Link an Atomic Box from a Library

To create a collection of functions for reuse across multiple charts and models, create a link from a
library model. Copy a chart in a library model and paste it to a chart in another model. If the library
chart contains only functions and no states, it appears as a linked atomic box with the label Link in
the upper left corner.

This modeling method minimizes maintenance of reusable functions. When you modify the atomic box
in the library, your changes propagate to the links in all charts and models.

If the library chart contains any states, then it appears as a linked atomic subchart in the chart. For
more information, see “Create Reusable Subcomponents by Using Atomic Subcharts” on page 19-2.

Convert an Atomic Box to a Normal Box

Converting an atomic box back to a normal box removes all of its variable mappings by merging
subchart-parented data objects with the chart-parented data to which they map.

1 If the atomic box is a library link, right-click the atomic box and select Library Link > Disable
Link.

2 To convert an atomic box to a subcharted box, right-click the atomic box and clear the Group &
Subchart > Atomic Subchart check box.

3 To convert the subcharted box back to a normal box, right-click the subchart and clear the
Group & Subchart > Subchart check box.

4 If necessary, rearrange graphical objects in your chart.

You cannot convert an atomic box to a normal box if:

• The atomic box maps a parameter to an expression other than a single variable name. For
example, mapping a parameter data1 to one of these expressions prevents the conversion of an
atomic box to a normal box:

• 3
• data2(3)
• data2 + 3

• Both of these conditions are true:

• The atomic box contains MATLAB functions or truth table functions that use MATLAB as the
action language.
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• The atomic box does not map each variable to a variable of the same name in the main chart.

When to Use Atomic Boxes
Debug Functions Incrementally

Suppose that you want to test a sequence of changes to a library of functions. The functions are part
of a chart that contains many states or several levels of hierarchy, so recompiling the entire chart can
take a long time. If you define the functions in an atomic box, recompilation occurs for only the box
and not for the entire chart. For more information, see “Reduce the Compilation Time of a Chart” on
page 19-37.

Reuse Functions

Suppose that you have a set of functions for use in multiple charts and models. The functions reside
in the library model to enable easier configuration management. To use the functions in another
model, you can either:

• Configure the library chart to export functions and create a link to the library chart in the model.
• Link the library chart as an atomic box in each chart of the model.

Models that use these functions can appear as referenced blocks in a top model. When the functions
are exported, you can use only one instance of that referenced block for each top model. For more
information, see “Model Reference Requirements and Limitations” (Simulink).

With atomic boxes, you can avoid this limitation. Because there are no exported functions in the
charts, you can use more than one instance of the referenced block in the top model.

Develop Charts Used by Multiple People

Suppose that multiple people are working on different parts of a chart. If you store each library of
functions in a linked atomic box, different people can work on different libraries without affecting the
other parts of the chart. For more information, see “Divide a Chart into Separate Units” on page 19-
40.

Inspect Generated Code

Suppose that you want to inspect code generated by Simulink Coder or Embedded Coder manually
for a specific function. You can specify that the code for an atomic box appears in a separate file to
avoid searching through unrelated code. For more information, see “Generate Code from Atomic
Subcharts” on page 32-15.

See Also

More About
• “Group Chart Objects by Using Boxes” on page 8-2
• “Create Reusable Subcomponents by Using Atomic Subcharts” on page 19-2
• “Map Variables for Atomic Subcharts and Boxes” on page 19-11
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Add Descriptive Comments in a Chart
You can enter comments or annotations in any location on a Stateflow chart. Annotations can contain
any combination of:

• Text.
• Images.
• Equations using TeX commands.
• Hyperlinks that open a website or perform MATLAB functions. See “Describe Models Using Notes

and Annotations” (Simulink).

To create an annotation:

1 Double-click in the desired location of the chart. An annotation box opens.
2 In the annotation box, type your comments. To start a new line, press the Enter key.
3 After you finish typing, click outside the annotation box.

Alternatively, in the object palette, click the Annotation icon  or the Image icon . Then, on the
chart canvas, click the location for the new annotation.

Change Annotation Properties
You can change the style of an existing annotation by using the annotation formatting toolbar, the
annotation context menu, or the Annotation properties dialog box.

• To access the annotation formatting toolbar, double-click the annotation text. Buttons on the
formatting toolbox enable you to change font styles, text alignment, colors, and other options. For
more information, see “Describe Models Using Notes and Annotations” (Simulink).

• To open the annotation context menu, right-click the annotation text and select one of these
options:

• Format － choose font size, style (bold or italics), and whether to display a drop shadow
around the annotation text.

• Text Alignment － choose between left, center, and right justified text.
• Enable TeX Commands － include TeX formatting commands in the annotation text. See

“Include TeX Formatting Instructions” on page 8-24.
• To open the Annotation properties dialog box, right-click the annotation text and select

Properties. You can specify the layout of the annotation, including:

• Fixed height and width options.
• Text and background color.
• Text alignment.
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• Margins between the text and the border of the annotation.

Include TeX Formatting Instructions
In your annotations, you can embed a subset of TeX commands to produce special characters such as
Greek letters and mathematical symbols. For example, suppose that you enter this annotation text:

\it{\omega_N = e^{(-2\pii)/N}}

When you select the Enable TeX Commands annotation property, the chart renders this annotation
like this:

For a list of more information on using TeX commands in annotations, see “Describe Models Using
Notes and Annotations” (Simulink).

See Also

More About
• “Describe Models Using Notes and Annotations” (Simulink)
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MATLAB Functions in Stateflow Charts

• “Reuse MATLAB Code by Defining MATLAB Functions” on page 9-2
• “Program a MATLAB Function in a Chart” on page 9-6
• “Access Simulink Bus Signals in MATLAB Functions” on page 9-12
• “Debug a MATLAB Function in a Chart” on page 9-15
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Reuse MATLAB Code by Defining MATLAB Functions
A MATLAB function in a Stateflow chart is a graphical element that you use to write algorithms that
are easier to implement by calling built-in MATLAB functions. Typical applications include:

• Matrix-oriented calculations
• Data analysis and visualization

This type of function is useful for coding algorithms that are more easily expressed by using MATLAB
instead of the graphical Stateflow constructs. MATLAB functions also provide optimizations for
generating efficient, production-quality C code for embedded applications.

A MATLAB function can reside anywhere in a chart, state, or subchart. The location of the function
determines the set of states and transitions that can call the function.

• If you want to call the function within one state or subchart and its substates, put your MATLAB
function in that state or subchart. That function overrides any other functions of the same name in
the parents and ancestors of that state or subchart.

• If you want to call the function anywhere in a chart, put your MATLAB function at the chart level.
• If you want to call the function from any chart in your model, put your MATLAB function at the

chart level and enable exporting of chart-level functions. For more information, see “Export
Stateflow Functions for Reuse” on page 8-15.

Note A MATLAB function can access chart and state data above it in the Stateflow hierarchy.

For example, this MATLAB function has the name stdevstats. It takes an argument vals and
returns an output value stdevout.

To compute the standard deviation of the values in vals, the function uses this code.

function stdevout = stdevstats(vals)
%#codegen

% Calculates the standard deviation for vals

len = length(vals);
stdevout = sqrt(sum(((vals-avg(vals,len)).^2))/len);

function mean = avg(array,size)
mean = sum(array)/size;

Define a MATLAB Function in a Chart
1

In the object palette, click the MATLAB function icon .
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2 On the chart canvas, click the location for the new MATLAB function.
3 Enter the signature label for the function.

The signature label of the function specifies a name for your function and the formal names for
its arguments and return values. A signature label has this syntax:

[return_val1,return_val2,...] = function_name(arg1,arg2,...)

You can specify multiple return values and multiple input arguments. Each return value and input
argument can be a scalar, vector, or matrix of values. For functions with only one return value,
omit the brackets in the signature label.

You can use the same variable name for both arguments and return values. For example, a
function with this signature label uses the variables y1 and y2 as both inputs and outputs:

[y1,y2,y3] = f(y1,u,y2)

If you export this function to C code, y1 and y2 are passed by reference (as pointers), and u is
passed by value. Passing inputs by reference reduces the number of times that the generated
code copies intermediate data, resulting in more optimal code.

Note Do not use the name of a chart symbol as a function argument or return value. For
example, if either x or y are chart data, defining a function with the signature y = f(x) results
in a run-time error.

4 To program the function, open the MATLAB Function Block Editor by double-clicking the function
box.

5 In the MATLAB Function Block Editor, enter the MATLAB code implementing your function. For
more information, see “Program a MATLAB Function in a Chart” on page 9-6.

6 In the Model Explorer, expand the chart object and select the MATLAB function. The arguments
and return values of the function signature appear as data items that belong to your function.
Arguments have the scope Input. Return values have the scope Output.

7 In the Data properties dialog box for each argument and return value, specify the data
properties, as described in “Set Data Properties” on page 12-5.

8 Create any additional data items required by your function. For more information, see “Add Data
Through the Model Explorer” on page 12-3.

Your function can access its own data or data belonging to parent states or the chart. The data
items in the function can have one of these scopes:

• Constant — Constant data retains its initial value through all function calls.
• Parameter — Parameter data retains its initial value through all function calls.

In MATLAB functions, you do not need to create local or temporary function data explicitly. If you
use an undefined variable, Stateflow creates a temporary variable that is available to the rest of
the function. To store values that persist across function calls, use the keyword persistent.

Call MATLAB Functions in States and Transitions
You can call MATLAB functions from the actions of any state or transition or from other functions. If
you export a MATLAB function, you can call it from any chart in the model. For more information
about exporting functions, see “Export Stateflow Functions for Reuse” on page 8-15.

 Reuse MATLAB Code by Defining MATLAB Functions

9-3



To call a MATLAB function, use the function signature and include an actual argument value for each
formal argument in the function signature.

[return_val1,return_val2,...] = function_name(arg1,arg2,...)

If the data types of the actual and formal arguments differ, the function casts the actual argument to
the type of the formal argument.

Specify Properties of MATLAB Functions
You can specify properties for a MATLAB function in the Model Explorer or the MATLAB Function
properties dialog box.

• To use the Model Explorer:

1 To open the Model Explorer, in the Modeling tab, select Model Explorer.
2 In the Model Hierarchy pane, select the MATLAB function.
3 In the MATLAB Function pane, edit the MATLAB function properties.

• To use the MATLAB Function properties dialog box:

1 In the Stateflow Editor, right-click the MATLAB function.
2 Select Properties.
3 Edit the MATLAB function properties.

You can also specify MATLAB function properties programmatically by using
Stateflow.EMFunction objects. For more information about the Stateflow programmatic interface,
see “Overview of the Stateflow API”.

Name

Function name. Click the function name link to open your function in the MATLAB Function Block
Editor.

Function Inline Option

Controls the inlining of your function in generated code:

• Auto — Determines whether to inline your function based on an internal calculation.
• Inline — Inlines your function if you do not export it to other charts and it is not part of a

recursion. (A recursion exists if your function calls itself directly or indirectly through another
function call.)

• Function — Does not inline your function.

Label

Signature label for your function. The function signature label specifies a name for your function and
the formal names for its arguments and return values.

Saturate on Integer Overflow

Specifies whether integer overflows saturate in the generated code. For more information, see
“Handle Integer Overflow for Chart Data” on page 12-36.
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This property applies only to MATLAB functions in charts that use C as the action language. In charts
that use MATLAB as the action language, the behavior of data depends on the value of the “Saturate
on integer overflow” on page 28-7 property for the chart.

MATLAB Function fimath

Defines the fimath properties for the MATLAB function. The fimath properties specified are
associated with all fi and fimath objects constructed in the MATLAB function. Choose one of these
options:

• Same as MATLAB — The function uses the same fimath properties as the current global
fimath. The edit box appears dimmed and displays the current global fimath in read-only form.
For more information on the global fimath and fimath objects, see the Fixed-Point Designer™
documentation.

• Specify Other — Specify your own fimath object by one of these methods:

• Construct the fimath object inside the edit box.
• Construct the fimath object in the MATLAB or model workspace and enter its variable name

in the edit box.

This property applies only to MATLAB functions in charts that use C as the action language. In charts
that use MATLAB as the action language, the behavior of data depends on the value of the “MATLAB
Chart fimath” on page 28-8 property for the chart.

Description

Function description. You can enter brief descriptions of functions in the hierarchy.

Document Link

Link to online documentation for the function. You can enter a web URL address or a MATLAB
command that displays documentation in a suitable online format, such as an HTML file or text in the
MATLAB Command Window. When you click the Document link hyperlink, Stateflow displays the
documentation.

See Also

More About
• “Program a MATLAB Function in a Chart” on page 9-6
• “Export Stateflow Functions for Reuse” on page 8-15
• “Reuse Functions by Using Atomic Boxes” on page 8-19
• “Enhance Code Readability for MATLAB Function Blocks” (Embedded Coder)
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Program a MATLAB Function in a Chart
A MATLAB function in a Stateflow chart is a graphical element that you use to write algorithms that
are easier to implement by calling built-in MATLAB functions. This type of function is useful for
coding algorithms that are more easily expressed by using MATLAB instead of the graphical Stateflow
constructs. For more information, see “Reuse MATLAB Code by Defining MATLAB Functions” on page
9-2.

Inside a MATLAB function, you can call these types of functions:

• Local functions defined in the body of the MATLAB function.
• Graphical, Simulink, truth table, and other MATLAB functions in the chart.
• Built-in MATLAB functions that support code generation. These functions generate C code for

building targets that conform to the memory and data type requirements of embedded
environments.

• Extrinsic MATLAB functions that do not support code generation. These functions execute only in
the MATLAB workspace during simulation of the model. For more information, see “Call Extrinsic
MATLAB Functions in Stateflow Charts” on page 31-30.

• Simulink Design Verifier™ functions for property proving and test generation. These functions
include:

• sldv.prove
• sldv.assume
• sldv.test
• sldv.condition

This example shows how to create a model with a Stateflow chart that calls two MATLAB functions,
meanstats and stdevstats:

• meanstats calculates the mean of the values in vals.
• stdevstats calculates a standard deviation for the values in vals.

Build Model
Follow these steps:

1 Create a new model with the following blocks:

2 Save the model as call_stats_function_stateflow.
3 In the model, double-click the Chart block.
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4 Drag two MATLAB functions into the empty chart using this icon from the toolbar:

A text field with a flashing cursor appears in the middle of each MATLAB function.
5 Label each function as shown:

You must label a MATLAB function with its signature. Use the following syntax:

[return_val1, return_val2,...] = function_name(arg1, arg2,...)

You can specify multiple return values and multiple input arguments, as shown in the syntax.
Each return value and input argument can be a scalar, vector, or matrix of values.

Tip For MATLAB functions with only one return value, you can omit the brackets in the signature
label.

6 In the chart, draw a default transition into a terminating junction with this condition action:

{
mean = meanstats(invals);
stdev = stdevstats(invals);
}

The chart should look something like this:

Tip If the formal arguments of a function signature are scalars, verify that inputs and outputs of
function calls follow the rules of scalar expansion. For more information, see “Assign Values to All
Elements of a Matrix” on page 21-6.
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7 In the Modeling tab, under Design Data, select Model Explorer.
8 In the Model Hierarchy pane of the Model Explorer, select the function meanstats.

The Contents pane displays the input argument vals and output argument meanout. Both are
scalars of type double by default.

9 Double-click the vals row under the Size column to set the size of vals to 4.
10 In the Model Hierarchy pane of the Model Explorer, select the function stdevstats and repeat

the previous step.
11 In the Model Hierarchy pane of the Model Explorer, select Chart and add the following data:

Name Scope Size
invals Input 4
mean Output Scalar (no change)
stdev Output Scalar (no change)

You should now see the following data in the Model Explorer.
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After you add the data invals, mean, and stdev to the chart, the corresponding input and
output ports appear on the Stateflow block in the model.

12 Connect the Constant and Display blocks to the ports of the Chart block and save the model.

Program MATLAB Functions
To program the functions meanstats and stdevstats, follow these steps:

1 Open the chart in the model call_stats_function_stateflow.
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2 In the chart, open the function meanstats.

The function editor appears with the header:

function meanout = meanstats(vals)

This header is taken from the function label in the chart. You can edit the header directly in the
editor, and your changes appear in the chart after you close the editor.

3 On the line after the function header, enter:

%#codegen

The %#codegen compilation directive helps detect compile-time violations of syntax and
semantics in MATLAB functions supported for code generation.

4 Enter a line space and this comment:

% Calculates the statistical mean for vals
5 Add the line:

len = length(vals);

The function length is an example of a built-in MATLAB function that is supported for code
generation. You can call this function directly to return the vector length of its argument vals.
When you build a simulation target, the function length is implemented with generated C code.
Functions supported for code generation appear in “Functions and Objects Supported for C/C++
Code Generation” (MATLAB Coder).

The variable len is an example of implicitly declared local data. It has the same size and type as
the value assigned to it — the value returned by the function length, a scalar double. To learn
more about declaring variables, see “Data Definition Basics” (MATLAB Coder).

The MATLAB function treats implicitly declared local data as temporary data, which exists only
when the function is called and disappears when the function exits. You can declare local data for
a MATLAB function in a chart to be persistent by using the persistent construct.

6 Enter this line to calculate the value of meanout:

meanout = avg(vals,len);

The function meanstats stores the mean of vals in the Stateflow data meanout. Because these
data are defined for the parent Stateflow chart, you can use them directly in the MATLAB
function.

Two-dimensional arrays with a single row or column of elements are treated as vectors or
matrices in MATLAB functions. For example, in meanstats, the argument vals is a four-element
vector. You can access the fourth element of this vector with the matrix notation vals(4,1) or
the vector notation vals(4).

The MATLAB function uses the functions avg and sum to compute the value of mean. sum is a
function supported for code generation. avg is a local function that you define later. When
resolving function names, MATLAB functions in your chart look for local functions first, followed
by functions supported for code generation.

Note If you call a function that the MATLAB function cannot resolve as a local function or a
function for code generation, you must declare the function to be extrinsic.
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7 Now enter this statement:

coder.extrinsic('plot');
8 Enter this line to plot the input values in vals against their vector index.

plot(vals,'-+');

Recall that you declared plot to be an extrinsic function because it is not supported for code
generation. When the MATLAB function encounters an extrinsic function, it sends the call to the
MATLAB workspace for execution during simulation.

9 Now, define the local function avg, as follows:

function mean = avg(array,size)
mean = sum(array)/size;

The header for avg defines two arguments, array and size, and a single return value, mean.
The local function avg calculates the average of the elements in array by dividing their sum by
the value of argument size.

The complete code for the function meanstats looks like this:

function meanout = meanstats(vals)
%#codegen

% Calculates the statistical mean for vals

len = length(vals);
meanout = avg(vals,len);

coder.extrinsic('plot');
plot(vals,'-+');

function mean = avg(array,size)
mean = sum(array)/size;

10 Save the model.
11 Back in the chart, open the function stdevstats and add code to compute the standard

deviation of the values in vals. The complete code should look like this:

function stdevout = stdevstats(vals)
%#codegen

% Calculates the standard deviation for vals

len = length(vals);
stdevout = sqrt(sum(((vals-avg(vals,len)).^2))/len);

function mean = avg(array,size)
mean = sum(array)/size;

12 Save the model again.
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Access Simulink Bus Signals in MATLAB Functions
This example shows how to read from and write to Simulink® bus signals in a MATLAB® function by
using MATLAB and Stateflow® structures. MATLAB structures enable you to bundle data of different
sizes and types into a single variable. You can create a MATLAB structure to:

• Store related data in a local or persistent variable of a MATLAB function
• Read from or write to a local Stateflow structure
• Interface with a Simulink bus signal at an input or output port

MATLAB functions support nonvirtual buses only. For more information, see “Types of Composite
Signals” (Simulink).

Define Structures in MATLAB Functions

In this example, a Stateflow chart processes data from one Simulink bus signal and outputs the result
to another Simulink bus signal. Both the input and output bus signals are defined by the
Simulink.Bus (Simulink) object BusObject. These buses have four fields: sb, a, b, and c. The field
sb is also a bus signal defined by the Simulink.Bus object SubBus. It has one field called ele.

In the chart, the Simulink bus signals interface with the Stateflow structures in and out. The
function sb2abc extracts information from the input structure and stores it in the local Stateflow
structure localbus. Then the chart writes to the output structure by combining the values of the
local structure and one of the elements of the array of structures subBusArray. For more
information on accessing and modifying the contents of a Stateflow structure or an array of Stateflow
structures, see “Index and Assign Values to Stateflow Structures” on page 29-7.
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The MATLAB® function sb2abc takes a Stateflow structure of type SubBus and returns a Stateflow
structure of type BusObject. The function decomposes the value of the field ele from its input into
three components: a vector, a 3-by-2 matrix, and a scalar. The function stores these components in a
local MATLAB struct that has the same fields as the Simulink.Bus object BusObject. Then the
function assigns the value of the MATLAB struct to the output structure y.

function y = sb2abc(u)

% extract data from input structure

A = double(u.ele(1:2,1));
B = uint8(u.ele(:,2:3));
C = double(u.ele(3,1));

% create local structure

X = struct('ele',int8(zeros(3)));
Y = struct('sb',X,'a',A,'b',B,'c',C);

% assign value to output structure

y = Y;

end

Define Input and Output Structures

In a MATLAB function, you can access a local Stateflow structure or interface with a Simulink bus
signal by defining the input and output structures for the function:

1 In the base workspace, create a Simulink.Bus object that defines the structure data type.
2 In the Symbols pane, select the function input or output.
3 In the Property Inspector, set the Type property to Bus: <object name>. Replace <object

name> with the name of the Simulink.Bus object that defines the Stateflow structure.

For example, in the function sb2abc:

• The Type property of the input structure u is specified as Bus: SubBus.
• The Type property of the output structure y is specified as Bus: BusObject.

For more information, see “Define Stateflow Structures” on page 29-2.
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Define Local and Persistent Structure Variables

To store related data in a single variable inside a MATLAB function, you can create a MATLAB
struct as a local or persistent variable. For example, the function sb2abc defines two local MATLAB
structures to temporarily store the data extracted from the input structure u before writing to the
output structure y:

• X is a scalar struct with a single field called ele. This field contains a 3-by-3 matrix of type
int8, which matches the structure of the Simulink.Bus object SubBus.

• Y is a scalar struct with four fields: sb is a substructure of type SubBus, a is a two-dimensional
vector of type double, b is a 3-by-2 matrix of type uint8, and c is a scalar of type double. These
fields match the structure of the Simulink.Bus object BusObject.

For more information, see “Define Scalar Structures for Code Generation” (Simulink).

See Also
struct | Simulink.Bus

More About
• “Access Bus Signals Through Stateflow Structures” on page 29-2
• “Index and Assign Values to Stateflow Structures” on page 29-7
• “Identify Data by Using Dot Notation” on page 12-38
• “Define Scalar Structures for Code Generation” (Simulink)
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Debug a MATLAB Function in a Chart

Check MATLAB Functions for Syntax Errors
Before you can build a simulation application for a model, you must fix syntax errors. Follow these
steps to check the MATLAB function meanstats for syntax violations:

1 Open the function meanstats inside the chart in the call_stats_function_stateflow
model that you constructed in “Program a MATLAB Function in a Chart” on page 9-6.

The editor automatically checks your function code for errors and recommends corrections.
2 In the Apps tab, click Simulink Coder. In the C Code tab, click Build.

If there are no errors or warnings, the Builder window appears and reports success. Otherwise, it
lists errors. For example, if you change the name of local function avg to a nonexistent local
function aug in meanstats, errors appear in the Diagnostic Viewer.

3 The diagnostic message provides details of the type of error and a link to the code where the
error occurred. The diagnostic message also contains a link to a diagnostic report that provides
links to your MATLAB functions and compile-time type information for the variables and
expressions in these functions. If your model fails to build, this information simplifies finding
sources of error messages and aids understanding of type propagation rules. For more
information about this report, see “MATLAB Function Reports” (Simulink).

4 In the diagnostic message, click the link after the function name meanstats to display the
offending line of code.

The offending line appears highlighted in the editor.
5 Correct the error by changing aug back to avg and recompile. No errors are found and the

compile completes successfully.

Run-Time Debugging for MATLAB Functions in Charts
You use simulation to test your MATLAB functions for run-time errors that are not detectable by
Stateflow. When you simulate your model, your MATLAB functions undergo diagnostic tests for
missing or undefined information and possible logical conflicts as described in “Check MATLAB
Functions for Syntax Errors” on page 9-15. If no errors are found, the simulation of your model
begins.

Follow these steps to simulate and debug the meanstats function during run-time conditions:

1 In the function editor, click the line number of this line:

len = length(vals);

The line number is highlighted in red, indicating that you have set a breakpoint.
2 Start simulation for the model.

If you get any errors or warnings, make corrections before you try to simulate again. Otherwise,
simulation pauses when execution reaches the breakpoint you set. The line of code is highlighted,
indicating this pause.

3 To advance execution to the next line, select Step Over.
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Notice that this line calls the local function avg. If you select Step Over here, execution
advances past the execution of the local function avg. To track execution of the lines in the local
function avg, select Step In instead.

4 To advance execution to the first line of the called local function avg, select Step In.

Once you are in the local function, you can advance through one line at a time with the Step
Over tool. If the local function calls another local function, use the Step In tool to step into it. To
continue through the remaining lines of the local function and go back to the line after the local
function call, select Step Out.

5 Select Step Over to execute the only line in avg.
6 Select Step Over to return to the function meanstats.

Execution advances to the line after the call to avg.
7 To display the value of the variable len, point to the text len in the function editor for at least a

second.

The value of len appears adjacent to your pointer.

You can display the value for any data in the MATLAB function in this way, no matter where it
appears in the function. For example, you can display the values for the vector vals by placing
your pointer over it as an argument to the function length, or as an argument in the function
header.

You can also report the values for MATLAB function data in the MATLAB Command Window
during simulation. When you reach a breakpoint, the debug>> command prompt appears in the
MATLAB Command Window (you may have to press Enter to see it). At this prompt, you can
inspect data defined for the function by entering the name of the data, as shown in this example:

debug>> len
len =
     4
debug>>

As another debugging alternative, you can display the execution result of a function line by
omitting the terminating semicolon. If you do, execution results appear in the MATLAB Command
Window during simulation.

8 To leave the function until it is called again and the breakpoint is reached, select Continue.

At any point in a function, you can advance through the execution of the remaining lines of the
function with the Continue tool. If you are at the end of the function, selecting Step Over
completes the same action.

9 Click the breakpoint to remove it and click Stop to complete the simulation.

In the model, the computed values of mean and stdev now appear in the Display blocks.
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Check for Data Range Violations
To control data range checking, set Simulation range checking in the Diagnostics: Data Validity
pane of the Model Configuration Parameters dialog box.

Specify a Range

To specify a range for input and output data, follow these steps:

1 In the Model Explorer, select the MATLAB function input or output of interest.

The Data properties dialog box opens in the Dialog pane of the Model Explorer.
2 In the Data properties dialog box, click the General tab and enter a limit range, as described in

“Limit Range” on page 12-10.
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Truth Table Functions for Decision-
Making Logic

• “Use Truth Tables to Model Combinatorial Logic” on page 10-2
• “Program a Truth Table” on page 10-8
• “Debug Errors in a Truth Table” on page 10-21
• “Correct Overspecified and Underspecified Truth Tables” on page 10-28
• “Home Climate Control Using the Truth Table Block” on page 10-32
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Use Truth Tables to Model Combinatorial Logic
Truth tables implement combinatorial logic design in a concise, tabular format. Typical applications
for truth tables include decision making for:

• Fault detection and management
• Mode switching

Truth tables are not supported in standalone Stateflow charts in MATLAB.

You can add a Truth Table block directly to your Simulink model, or you can define a truth table
function in a Stateflow chart, state, or subchart. Truth Table blocks in a Simulink model execute as a
Simulink block, while truth table functions in a Stateflow chart execute only when you call the truth
table function. The location of the function determines the set of states and transitions that can call
the function.

• If you want to call the function from within one state or subchart and its substates, put your truth
table function in that state or subchart. That function overrides any other functions of the same
name in the parents and ancestors of that state or subchart.

• If you want to call the function anywhere in a chart, put your truth table function at the chart
level.

• If you want to call the function from any chart in your model, put your truth table at the chart
level and enable exporting of chart-level functions. For more information, see “Export Stateflow
Functions for Reuse” on page 8-15.

Note A truth table function can access chart and state data above it in the Stateflow hierarchy.

Layout of a Truth Table
This truth table function has the name ttable. It takes three arguments (x, y, and z) and returns
one output value (r).

The function consists of this arrangement of conditions, decisions, and actions.

Condition Decision 1 Decision 2 Decision 3 Decision 4
x == 1 T F F -
y == 1 F T F -
z == 1 F F T -
Action r = 1 r = 2 r = 3 r = 4

Each of the conditions entered in the Condition column must evaluate to true (nonzero value) or
false (zero value). Outcomes for each condition are specified as T (true), F (false), or - (true or false).
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Each of the decision columns combines an outcome for each condition with a logical AND into a
compound condition, which is referred to as a decision.

You evaluate a truth table one decision at a time, starting with Decision 1. The Decision 4 covers all
possible remaining decisions. If one of the decisions is true, the table perform the associated action,
and then the truth table execution is complete.

For example, if conditions x == 1 and y == 1 are false and condition z == 1 is true, then Decision
3 is true and the variable r is set equal to 3. The remaining decisions are not tested and evaluation of
the truth table is finished. If the first three decisions are false, then the default decision is
automatically true and its action (r=4) is executed. This table lists pseudocode corresponding to the
evaluation of this truth table example.

Pseudocode Description
if ((x == 1) & !(y == 1) & !(z == 1))
  r = 1;

If Decision 1 is true, then set r=1.

elseif (!(x == 1) & (y == 1) & !(z == 1))
  r = 2;

If Decision 2 is true, then set r=2.

elseif (!(x == 1) & !(y == 1) & (z == 1))
  r = 3;

If Decision 3 is true, then set r=3.

else
  r = 4;
endif

If all other decisions are false, then default
decision is true. Set r=4.

Define a Truth Table Function
To define a truth table function:

1 In the object palette, click the truth table function icon .
2 On the chart canvas, click the location for the new truth table function.
3 Enter the signature label for the function.

The signature label of the function specifies a name for your function and the formal names for
its arguments and return values. A signature label has this syntax:

[return_val1,return_val2,...] = function_name(arg1,arg2,...)

You can specify multiple return values and multiple input arguments. Each return value and input
argument can be a scalar, vector, or matrix of values. For functions with only one return value,
omit the brackets in the signature label.

You can use the same variable name for both arguments and return values. For example, a
function with this signature label uses the variables y1 and y2 as both inputs and outputs:

[y1,y2,y3] = f(y1,u,y2)

If you export this function to C code, y1 and y2 are passed by reference (as pointers), and u is
passed by value. Passing inputs by reference reduces the number of times that the generated
code copies intermediate data, resulting in more optimal code.
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Note Do not use the name of a chart symbol as a function argument or return value. For
example, if either x or y are chart data, defining a function with the signature y = f(x) results
in a run-time error.

4 To program the function, open the truth table editor by double-clicking the function box.
5 In the truth table editor, add conditions, decisions, and actions. For more information, see

“Program a Truth Table” on page 10-8.
6 In the Model Explorer, expand the chart object and select the truth table function. The arguments

and return values of the function signature appear as data items that belong to your function.
Arguments have the scope Input. Return values have the scope Output.

7 In the Data properties dialog box for each argument and return value, specify the data
properties, as described in “Set Data Properties” on page 12-5.

8 Create any additional data items required by your function. For more information, see “Add Data
Through the Model Explorer” on page 12-3.

Your function can access its own data or data belonging to parent states or the chart. The data
items in the function can have one of these scopes:

• Constant — Constant data retains its initial value through all function calls.
• Parameter — Parameter data retains its initial value through all function calls.
• Local — Local data persists from one function call to the next function call. Valid only for

truth tables that use C as the action language.
• Temporary — Temporary data initializes at the start of every function call. Valid only for truth

tables that use C as the action language.

In truth table functions that use C as the action language, define local data when you want your
data values to persist across function calls throughout the simulation. Define temporary data
when you want to initialize data values at the start of every function call. For example, you can
define a counter with Local scope if you want to track the number of times that you call the
function. In contrast, you can designate a loop counter to have Temporary scope if you do not
need the counter value to persist after the function completes.

In truth table functions that use MATLAB as the action language, you do not need to define local
or temporary function data. If you use an undefined variable, Stateflow creates a temporary
variable that is available to the rest of the function. To store values that persist across function
calls, your function can access local data at the chart level.

Tip You can initialize local and temporary data in your function from the MATLAB workspace.
For more information, see “Initialize Data from the MATLAB Base Workspace” on page 12-19.

Call Truth Table Functions in States and Transitions
You can call truth table functions from the actions of any state or transition or from other functions. If
you export a truth table function, you can call it from any chart in the model. For more information
about exporting functions, see “Export Stateflow Functions for Reuse” on page 8-15.

To call a truth table function, use the function signature and include an actual argument value for
each formal argument in the function signature.

[return_val1,return_val2,...] = function_name(arg1,arg2,...)
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If the data types of the actual and formal arguments differ, the function casts the actual argument to
the type of the formal argument.

Specify Properties of Truth Table Functions
You can specify properties for a truth table function in the Model Explorer or the Truth Table
properties dialog box.

• To use the Model Explorer:

1 To open the Model Explorer, in the Modeling tab, select Model Explorer.
2 In the Model Hierarchy pane, select the truth table function.
3 In the Truth Table pane, edit the truth table function properties.

• To use the Truth Table properties dialog box:

1 In the Stateflow Editor, right-click the truth table function.
2 Select Properties.
3 Edit the truth table function properties.

You can also specify truth table function properties programmatically by using
Stateflow.TruthTable objects. For more information about the Stateflow programmatic interface,
see “Overview of the Stateflow API”.

Name

Function name. Click the function name link to bring your function to the foreground in its native
chart.

Function Inline Option

Controls the inlining of your function in generated code:

• Auto — Determines whether to inline your function based on an internal calculation.
• Inline — Inlines your function if you do not export it to other charts and it is not part of a

recursion. (A recursion exists if your function calls itself directly or indirectly through another
function call.)

• Function — Does not inline your function.

Label

Signature label for your function. The function signature label specifies a name for your function and
the formal names for its arguments and return values.

Underspecification

Controls the level of diagnostics for underspecification in your truth table function. For more
information, see “Correct Overspecified and Underspecified Truth Tables” on page 10-28.

Overspecification

Controls the level of diagnostics for overspecification in your truth table function. For more
information, see “Correct Overspecified and Underspecified Truth Tables” on page 10-28.
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Action Language

Controls the action language for your Stateflow truth table function. Choose between MATLAB or C.
For more information, see “Differences Between MATLAB and C as Action Language Syntax” on page
17-5.

Description

Function description. You can enter brief descriptions of functions in the hierarchy.

Document Link

Link to online documentation for the function. You can enter a web URL address or a MATLAB
command that displays documentation in a suitable online format, such as an HTML file or text in the
MATLAB Command Window. When you click the Document link hyperlink, Stateflow displays the
documentation.

Specify Properties for Truth Table Blocks
To open the Truth Table properties dialog box, in the Modeling tab, click Table Properties.

The properties for Truth Table blocks are a combination of properties of truth table functions and
charts that use MATLAB as the action language. For a description of each property, see “Specify
Properties of Truth Table Functions” on page 10-5 and “Specify Properties for Stateflow Charts” on
page 28-2.

You can also specify Truth Table block properties programmatically by using
Stateflow.TruthTableChart objects. For more information about the Stateflow programmatic
interface, see “Overview of the Stateflow API”.

See Also
Truth Table
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More About
• “Program a Truth Table” on page 10-8
• “Differences Between MATLAB and C as Action Language Syntax” on page 17-5
• “Export Stateflow Functions for Reuse” on page 8-15
• “Reuse Functions by Using Atomic Boxes” on page 8-19
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Program a Truth Table
Once you've created a new truth table, you can program it to execute according to your
specifications. To program a truth table you add conditions, decisions, and actions. For more
information about creating a truth table, see “Use Truth Tables to Model Combinatorial Logic” on
page 10-2.

Truth tables are not supported in standalone Stateflow charts in MATLAB. For more information, see
“Use Truth Tables to Model Combinatorial Logic” on page 10-2.

Open a Truth Table for Editing
After you create and label a truth table in a chart or Simulink model, you specify its logical behavior.
These specifications apply to both the truth table block in a Simulink model and the truth table
function in a Stateflow chart. In this example, you specify the behavior of a truth table function.

To open the truth table, double-click the truth table function, ttable, that you created in “Use Truth
Tables to Model Combinatorial Logic” on page 10-2.

By default, a truth table contains a Condition Table and an Action Table, each with one row. The
Condition Table contains a single decision column, D1, and a single action row.

Select an Action Language
If the truth table is inside a Stateflow chart that uses C as the action language, you can specify the
action language for your Stateflow truth table:

1 Open the Property Inspector. In the Modeling tab, under Design Data, select Property
Inspector.

2 Under the Properties section, select C or MATLAB as the Action Language.
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Stateflow charts that use MATLAB as the action language only support truth tables that use MATLAB
as the action language.

Enter Truth Table Conditions
Conditions are the starting point for specifying logical behavior in a truth table. Open your new truth
table, ttable, for editing. You start programming the behavior of ttable by specifying conditions.

You enter conditions in the Condition column of the Condition Table. For each condition that you
enter, you can enter an optional description in the Description column. To enter conditions for the
truth table ttable:

1 Click the row on the Condition Table that you want to append.
2

Click the Append Row button  on the side panel twice.

The truth table appends two rows to the bottom of the Condition Table.
3 Click and drag the bar that separates the Condition Table and the Action Table panes down to

enlarge the Condition Table pane.
4 In the Condition Table, click the top cell of the Description column.

A flashing text cursor appears in the cell, which appears highlighted.
5 Enter this text:

x is equal to 1
6 Click the next cell on the right, in the Condition column..
7 In the first cell of the Condition column, enter:

XEQ1:

This text is an optional label that you can include with the condition. Each label must begin with
an alphabetic character ([a-z][A-Z]) followed by any number of alphanumeric characters ([a-
z][A-Z][0-9]) or an underscore (_).

8 Press Enter and this text:

x == 1

This text is the actual condition. Each condition that you enter must evaluate to zero (false) or
nonzero (true). You can use optional brackets in the condition (for example, [x == 1]).

In truth table conditions, you can use data that passes to the truth table function through its
arguments. The preceding condition tests whether the argument x is equal to 1. You can also use
data defined for parent objects of the truth table, including the chart.

9 Repeat the preceding steps to enter the other two conditions.
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Enter Truth Table Decisions
Each decision column (D1, D2, and so on) binds a group of condition outcomes together with an AND
relationship into a decision. The possible values for condition outcomes in a decision are T (true), F
(false), and - (true or false). In “Enter Truth Table Conditions” on page 10-9, you entered conditions
for the truth table ttable. Continue by entering values in the decision columns:

1 Click the decision column of the Condition Table that you want to append.
2

Click the Append Column button  on the side panel three times.
3 Click the top cell in decision column D1.
4 Press the space bar until a value of T appears.

Pressing the space bar toggles through the possible values of F, T, and -. You can also enter
these characters directly. Pressing 1 sets the value to T, while pressing 0 sets the value to F.
Pressing x sets the value to -.

5 Enter the remaining values for the decision columns:
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During execution of the truth table, decision testing occurs in left-to-right order. The order of testing
for individual condition outcomes within a decision is undefined. Truth tables evaluate the conditions
for each decision in top-down order (first condition 1, then condition 2, and so on). Because this
implementation is subject to change in the future, do not rely on a specific evaluation order.

The Default Decision Column

The last decision column in ttable, D4, is the default decision for this truth table. The default
decision covers any decisions not tested for in preceding decision columns. Create a default decision
by entering - in every cell of the farthest right decision column. This entry represents any outcome for
the condition, T or F. The default decision column must be the last column on the right in the
Condition Table.

Enter Truth Table Actions
During execution of the truth table, decision testing occurs in left-to-right order. When a decision
match occurs, the action in the Action Table that is specified in the Actions row for that decision
column executes. Then the truth table exits.

In “Enter Truth Table Decisions” on page 10-10, you entered decisions in the truth table. The next
step is to enter actions you want to occur for each decision in the Action Table. Later, you assign
these actions to their decisions in the Actions row of the Condition Table.

 Program a Truth Table

10-11



Set Up the Action Table

1 Click the row Action Table that you want to append.
2

Click the Append Row button  on the side panel three times.

3 Program the actions for the truth table.

Program Actions of a Truth Table

For truth tables that use MATLAB as the action language, you can write MATLAB code to program
your actions. Using this code, you can add control flow logic and call MATLAB functions directly. In
the following procedure, you program an action in the truth table ttable, using the following
features of MATLAB syntax:

• Persistent variables
• if ... else ... end control flows
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• for loop

Follow these steps:

1 Click the top cell in the Description column of the Action Table.

A flashing text cursor appears in the cell, which appears highlighted.
2 Enter this description:

Maintain a counter and a circular 
vector of values of length 6.
Every time this action is called, 
output r takes the next value of 
the vector.

3 Press the right arrow key to select the next cell on the right, in the Action column.
4 Enter the following text:

A1:

You begin an action with an optional label followed by a colon (:). Later, you enter these labels in
the Actions row of the Condition Table to specify an action for each decision column. Like
condition labels, action labels must begin with an alphabetic character ([a-z][A-Z]) followed
by any number of alphanumeric characters ([a-z][A-Z][0-9]) or an underscore (_).

5 Press Enter and enter the following text:

persistent values counter;
cycle = 6;

coder.extrinsic('plot');

if isempty(counter)
   % Initialize counter to be zero
   counter = 0;
else
   % Otherwise, increment counter
   counter = counter + 1;
end

if isempty(values)
   % Values is a vector of 1 to cycle
   values = zeros(1, cycle);
   for i = 1:cycle
      values(i) = i;
   end

   % For debugging purposes, call the MATLAB
   % function "plot" to show values
   plot(values);
end

% Output r takes the next value in values vector
r = values( mod(counter, cycle) + 1);

In truth table actions, you can use data that passes to the truth table function through its
arguments and return value. The preceding action sets the return value r equal to the next value
of the vector values. You can also specify actions with data defined for a parent object of the
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truth table, including the chart. Truth table actions can also broadcast or send events that are
defined for the truth table, or for a parent, such as the chart itself.

6 Enter the remaining actions in the Action Table, as shown:

If action A1 executes during simulation, a plot of the values vector appears:
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Now you are ready to assign actions to decision.

Assign Truth Table Actions to Decisions
You must assign at least one action from the Action Table to each decision in the Condition Table.
The truth table uses this association to determine what action to execute when a decision tests as
true.

Rules for Assigning Actions to Decisions

The following rules apply when you assign actions to decisions in a truth table:

• You specify actions for decisions by entering a row number or a label in the Actions row cell of a
decision column.

If you use a label specifier, the label must appear with the action in the Action Table.
• You must specify at least one action for each decision.
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Actions for decisions are not optional. Each decision must have at least one action specifier that
points to an action in the Action Table. If you want to specify no action for a decision, specify a
row that contains no action statements.

• You can specify multiple actions for a decision with multiple specifiers separated by a comma,
semicolon, or space.

For example, for the decision column D1, you can specify A1,A2,A3 or 1;2;3 to execute the first
three actions when decision D1 is true.

• You can mix row number and label action specifiers interchangeably in any order.

The following example uses both row and label action specifiers.

• You can specify the same action for more than one decision, as shown:
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• Row number action specifiers in the Actions row of the Condition Table automatically adjust to
changes in the row order of the Action Table.

How to Assign Actions to Decisions

This section describes how to assign actions to decisions in the truth table ttable. In this example,
the Actions row cell for each decision column contains a label specified for each action in the Action
Table. Follow these steps:

1 Click the bottom cell in decision column D1, the first cell of the Actions row of the Condition
Table.

2 Enter the action specifier A1 for decision column D1.

When D1 is true, action A1 in the Action Table executes.
3 Enter the action specifiers for the remaining decision columns:

 Program a Truth Table

10-17



Now you are ready to perform the final step in programming a truth table.

Add Initial and Final Actions
In addition to actions for decisions, you can add initial and final actions to the truth table function.
Initial actions specify an action that executes before any decision testing occurs. Final actions specify
an action that executes as the last action before the truth table exits. To specify initial and final
actions for a truth table, use the action labels INIT and FINAL in the Action Table.

Use this procedure to add initial and final actions that display diagnostic messages in the MATLAB
Command Window before and after execution of the truth table ttable:

1 In the truth table, right-click row 1 of the Action Table and select Insert Row.

A blank row appears at the top of the Action Table.
2 In the Modeling tab, select Append Row.
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A blank row appears at the bottom of the Action Table.
3 Click and drag the bottom border of the truth table to show all six rows of the Action Table:

4 Add the initial action in row 1 as follows:
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Description Action
Initial action:

Display message

INIT:

coder.extrinsic('disp');

disp('truth table ttable entered');
5 Add the final action in row 6 as follows:

Description Action
Final action:

Display message

FINAL:

coder.extrinsic('disp');

disp('truth table ttable exited');

Although the initial and final actions for the preceding truth table example appear in the first and last
rows of the Action Table, you can enter these actions in any row. You can also assign initial and final
actions to decisions by using the action specifier INIT or FINAL in the Actions row of the Condition
Table.

See Also

More About
• “Use Truth Tables to Model Combinatorial Logic” on page 10-2
• “Export Stateflow Functions for Reuse” on page 8-15
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Debug Errors in a Truth Table
Once you completely specify your truth tables, you begin the process of debugging them. The first
step is to run diagnostics to check truth tables for syntax errors including overspecification and
underspecification, as described in “Correct Overspecified and Underspecified Truth Tables” on page
10-28. Additionally, you can add breakpoints directly into your truth table to debug during
simulation.

Truth tables are not supported in standalone Stateflow charts in MATLAB. For more information, see
“Use Truth Tables to Model Combinatorial Logic” on page 10-2.

Find Syntax Errors by Running Diagnostics
To check for syntax errors:

1 Double-click the truth table.
2

In the truth table, click Run Diagnostics .

For example, if you change the action for decision column D4 to an action that does not exist, you
get an error message in the Diagnostic Viewer.

Truth table diagnostics run automatically when you simulate a model with a new or modified truth
table. If no errors exist, the diagnostic window does not appear and simulation starts immediately.

Debug Logic by Using Breakpoints
You can use breakpoints in a Stateflow truth table to pause simulation and debug your logic. Once a
breakpoint causes the simulation to pause, you can step through the actions and examine the data
values at that specific point in the simulation.

With truth tables, you can set these different breakpoint types:

• Condition tested
• Decision tested
• Decision valid
• Action executed

After simulation stops at a breakpoint, you can continue chart execution on the Stateflow Editor
toolbar, at the MATLAB command prompt, or by selecting a keyboard shortcut.

Toolbar Icon Option Command Description Keyboard
Shortcut

Continue dbcont Continue the simulation to the
next breakpoint.

Ctrl+T

Step Over dbstep Advance to the next step in the
truth table execution.

F10
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Toolbar Icon Option Command Description Keyboard
Shortcut

Step In dbstep in From a state or transition action
that calls a function, advance to
the first executable statement in
the function.

From a statement in a function
containing another function call,
advance to the first executable
statement in the second
function.

Otherwise, advance to the next
step in the truth table
execution. (See Step Over.)

F11

Step Out dbstep out From a function call, return to
the statement calling the
function.

Otherwise, continue simulation
to the next breakpoint. (See
Continue.)

Shift+F11

Step Forward  Exit debug mode and pause
simulation before next time
step.

 

Stop dbquit Exit debug mode and stop
simulation.

Ctrl+Shift+T

Condition Breakpoints

To set a breakpoint when a condition is tested, right-click the condition cell and select Set
Breakpoint (Condition Tested). A red badge appears on the far left of the table next to the number
of the condition. When you run the model, the simulation pauses when the condition is tested.
Stateflow highlights the condition row being tested. Place your cursor over the data in the truth table
to see its current value.
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Decision Breakpoints

To set a breakpoint when a decision is tested, right-click the top of the decision column and select Set
Breakpoint (Decision Tested). A red badge appears on the top of the decision column next to the
number of the decision. When you run the model, the simulation pauses when the decision is tested.
Stateflow highlights the decision column being tested. Place your cursor over the data in the truth
table to see its current value.
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To set a breakpoint when a decision is valid, right-click the action cell at the bottom of the decision
column and select Set Breakpoint (Decision Valid). A red badge appears on the top of the cell next
to the action number. When you run the model, the simulation pauses when the action is valid.
Stateflow highlights the valid decision. Place your cursor over the data in the truth table to see its
current value.

If there is more than one action to take when a decision is valid, the breakpoint is set for the first
executable.
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Action Breakpoints

To set a breakpoint when an action is executed, right-click the action cell and select Set Breakpoint
(Action Executed). A red badge appears on the far left of the table next to the number of the action.
When you run the model, the simulation pauses when the action is executed. Stateflow highlights the
action row being tested. Place your cursor over the data in the truth table to see its current value.

If there is more than one action within the action cell, the breakpoint is set for the first action.
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Edit Breakpoints
Click the breakpoint to open the Edit Breakpoint dialog box. From this window you can disable the
breakpoint by clearing the Enable Breakpoint check box.

When you add a condition to a breakpoint, the breakpoint pauses the simulation only when its
associated condition is true.
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See Also

More About
• “Use Truth Tables to Model Combinatorial Logic” on page 10-2
• “Program a Truth Table” on page 10-8
• “Correct Overspecified and Underspecified Truth Tables” on page 10-28
• “Debug MATLAB Function Blocks” (Simulink)
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Correct Overspecified and Underspecified Truth Tables
When programming your truth table, you might program an overspecified or underspecified truth
table. An overspecified truth table contains at least one true or false combination that is specified by
another decision column. When this happens, the action associated with that decision column never
executes. An underspecified truth table occurs when your truth table does not have enough decision
columns to account for all possible true or false combinations.

By default, Stateflow reports an error for overspecified and underspecified truth tables. To adjust the
error settings for truth tables, open your truth table. After opening the truth table, in the Modeling
tab, click Table Properties and change the settings for Underspecification or Overspecification.

Truth tables are not supported in standalone Stateflow charts in MATLAB. For more information, see
“Use Truth Tables to Model Combinatorial Logic” on page 10-2.

Example of an Overspecified Truth Table
An overspecified truth table contains at least one decision that never executes because a previous
decision specifies it in the Condition Table. The following example shows the Condition Table of an
overspecified truth table.

The decision in column D3 (-TT) specifies the decisions FTT and TTT. These decisions are duplicates
of decisions D1 (FTT) and D2 (TTT and TFT). Therefore, column D3 is an overspecification.

The following example shows the Condition Table of a truth table that appears to be overspecified,
but is not.
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In this case, the decision D4 specifies two decisions (TTT and FTT). FTT also appears in decision D1,
but TTT is not a duplicate. Therefore, this Condition Table is not overspecified.

Example of an Underspecified Truth Table
An underspecified truth table includes undefined behavior because it lacks decisions that cover every
combination of the specified conditions.. The following example shows the Condition Table of an
underspecified truth table.

Complete coverage of the conditions in the preceding truth table requires a Condition Table with
every possible decision:
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To avoid underspecification specify an action for all other possible decisions through a default
decision, named DA:

The last decision column, D4, is the default decision for the truth table. The default decision covers
any remaining decisions not tested in the preceding decision columns. See “The Default Decision
Column” on page 10-11 for an example and more complete description of the default decision column
for a Condition Table.
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See Also

More About
• “Use Truth Tables to Model Combinatorial Logic” on page 10-2
• “Program a Truth Table” on page 10-8
• “Debug Errors in a Truth Table” on page 10-21
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Home Climate Control Using the Truth Table Block
This example models a home climate control system by using a Truth Table block. Homes rarely
maintain a constant climate without a climate control system in place, and occupants usually rely on
automated systems to maintain a desired climate. Because temperature and humidity are dynamic,
maintaining desired conditions requires consistent monitoring and adjusting. To model how a home
activates different subsystems that maintain a desired climate, this model uses a Truth Table block to
manage logical decision making.

Examine the Truth Table

In this example, the Truth Table block labeled ClimateController controls all of the physical
subsystem outputs. The block uses four inputs: the desired temperature T_thresh, the actual home
temperature t, the desired humidity H_thresh, and the actual home humidity h. Double-click the

10 Truth Table Functions for Decision-Making Logic

10-32



block to see how the block uses the inputs to produce the outputs. The ClimateController block
includes two tables: the Condition Table and the Action Table.

The Condition Table shows how the inputs are logically evaluated, and illustrates the two
comparisons made by the block and the four actions that can be taken. To execute the first action, the
two conditions must be True. If either condition is not True, the block tests the conditions outlined
in the next decision column, which requires only the first condition to be True. This evaluation
continues from left to right until a decision is made or the last decision column is reached, which then
executes. In this example, the - entries function like False conditions. As a result, the block would
behave the same way if the - conditions were explicitly defined as False. However, automatically
generated code using only True and False conditions may produce suboptimal code coverage. To
avoid that issue, this example uses - conditions.

In the first row, the block compares the home temperature to the desired temperature, and the home
cooler and heater are controlled using the CoolOn and HeatOn actions, respectively. When t >
T_thresh, the block activates the CoolOn action. If this condition is not True, the block activates
the HeatOn action. In the second row, the block compares the home humidity to the desired humidity,
and the humidifier is controlled using the HumidOn action. When h < H_thresh, the block activates
the HumidOn action.

The Action Table defines the block outputs associated with each logical action. In the first row,
CoolOn sets the value of cooler to 1 and the value of heater to 0. In the second row, HeatOn sets
the value of heater to 1 and the value of cooler to 0. By default, the humidifier is 0 unless the
block enables HumidOn.
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Examine the Home Subsystems

In the model, the green blocks labeled Humidifier, Cooler, and Heater represent the physical
subsystems that regulate the climate of the home. The Humidifier subsystem includes a Switch
block that engages from the output of the ClimateController block. If the input to the
Humidifier subsystem is 1, the subsystem outputs 1.5. Otherwise, the subsystem outputs a value
of 0.

The Heater and Cooler subsystems work on similar principles. They each include two Switch
blocks. One Switch block outputs a value that affects the temperature, which is the output at the dt
and dt1 ports for the Cooler and Heater, respectively. The other Switch block outputs a value that
affects the humidity, which is output at the dh and dh1 ports for the Cooler and Heater,
respectively. If cooler = 1, the Cooler subsystem activates, and if heater = 1, the Heater
subsystem activates. When engaged, the Heater subsystem outputs 1 at dt1, and the Cooler
outputs -1 at dt. Both subsystems output -0.5 at dh and dh1 when engaged.
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Due to how the ClimateController block is configured, the Cooler and Heater subsystems will
not activate at the same time.

Examine the External Subsystems

External heat and humidity also affect the climate of the home. The model represents the effect of
these conditions as heat and humidity flow. The externalHeatFlow subsystem models external heat
flow, and the externalHumidityFlow subsystem models external humidity flow. The
externalHeatFlow subsystem takes the difference between the external and internal temperatures
and multiplies the difference by a coefficient.

Higher values of the coefficient represent larger heat flows, which occur in less insulated homes.
Although the externalHumidityFlow subsystem represents a different physical behavior than
externalHeatFlow, the externalHumidityFlow subsystem uses the same arrangement of blocks
and connections. The externalHumidityFlow subsystem takes the difference between between the
external and internal humidities and multiplies the difference by a coefficient.

Simulate the Model

Running the model populates the two Floating Scope blocks. The Scope block labeled
temperatureScope displays the external temperature (ET) and the home temperature
(temperature).
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The Scope block labeled humidityScope plots the external humidity (EH) and the home humidity
(humidity).

The simulation is configured to run indefinitely. To stop the simulation, you can stop it manually by
pressing the Stop button or by adjusting the stop time before running the simulation.

10 Truth Table Functions for Decision-Making Logic

10-36



Explore and Modify the Model

You can adjust the external temperature by using a different external temperature signal or by
modifying the signal amplitude. Try adjusting the amplitude of the Sine Wave blocks, externalTemp
and externalHumid, and observe how the model responds.

Other homes may not be as insulated or might have more effective climate control subsystems. These
physical differences affect the outputs of the subsystems. Try adjusting the Heater or Cooler
subsystem outputs by changing the Constant block values.

See Also
Truth Table

More About
• “Use Truth Tables to Model Combinatorial Logic” on page 10-2
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Simulink Functions in Stateflow Charts

• “Reuse Simulink Functions in Stateflow Charts” on page 11-2
• “Guidelines for Using Simulink Functions” on page 11-10
• “Bind a Simulink Function to a State” on page 11-12
• “Design Charts with Simulink Functions” on page 11-18
• “Schedule Execution of Multiple Controllers” on page 11-25
• “Schedule Simulink Algorithms by Using Stateflow” on page 11-32
• “Design Switching Controllers by Using Simulink Functions” on page 11-34
• “Share Functions Across Simulink and Stateflow” on page 11-39
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Reuse Simulink Functions in Stateflow Charts
A Simulink function is a graphical object that enables you to call a Simulink subsystem in the actions
of states and transitions. Simulink functions are not supported in standalone Stateflow charts in
MATLAB.

Simulink functions can improve the efficiency of your design and increase the readability of your
model. Typical applications include:

• Defining a function that requires Simulink blocks
• Scheduling execution of multiple controllers

Simulink functions in a Stateflow chart provide these advantages:

• No function-call subsystem blocks
• No output events
• No signal lines

A Simulink function can reside anywhere in a chart, state, or subchart. The location of a function
determines what states and transitions are able to call the function.

• If you want to call the function within only one state or subchart and its substates, put your
Simulink function in that state or subchart. That function overrides any other functions of the
same name in the parents of that state or subchart.

• If you want to call the function from anywhere in a chart, put your Simulink function at the chart
level.

• If you want to call the function from any chart in your model, use a Simulink Function block to
define the function directly in the Simulink canvas. For more information, see “Simulink Functions
Overview” (Simulink).

To access Stateflow data from your Simulink function, you must include that data as an input to your
Simulink function.

This Simulink function has the name sim_fcn. It takes three arguments (a, b, and c) and returns two
output values (x and y).

The function contains a Simulink subsystem that multiplies the first argument times a gain of 25 and
combines the other two arguments into a complex output signal.
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Once you have your Simulink function defined, you can place it anywhere in your Stateflow chart or
Simulink model. Additionally, you can reuse this function as many times as needed within the same or
different models.

Define a Simulink Function
1

In the object palette, click the Simulink function icon .
2 On the chart canvas, click the location for the new Simulink function.
3 Enter the signature label for the function.

The signature label of the function specifies a name for your function and the formal names for
its arguments and return values. A signature label has this syntax:

[return_val1,return_val2,...] = function_name(arg1,arg2,...)

You can specify multiple return values and multiple input arguments. Each return value and input
argument can be a scalar, vector, or matrix of values. For functions with only one return value,
omit the brackets in the signature label.

You must use unique variable names for all arguments and return values.
4 To program the function, open the Simulink Editor by double-clicking the function box. Initially,

the editor contains a function-call Trigger block and Inport and Outport blocks that match the
function signature. You cannot delete the Trigger block.

5 In the Simulink Editor, add blocks to create your Simulink subsystem and connect them to the
Inport and Outport blocks.

6 Configure the Inport and Outport blocks.

a Double-click each block to open the Block Parameters dialog box.
b In the Signal Attributes tab, enter the Data type and Port dimensions of the input

parameter or return value.
c Click OK.

Note An Inport block in a Simulink function cannot inherit its Data type and Port dimensions.
For more information, see “Explicitly Set the Properties of Inport Blocks” on page 11-10.

Call Simulink Functions in States and Transitions
You can call Simulink functions from the actions of any state or transition or from other functions.
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To call a Simulink function, use the function signature and include an argument value for each formal
argument in the function signature.

[return_val1,return_val2,...] = function_name(arg1,arg2,...)

If the data types of the two arguments differ, the function casts the argument to the type of the formal
argument.

Specify Properties of Simulink Functions
You can specify properties for a Simulink function in the Block Parameters dialog box.

1 In the Stateflow Editor, right-click the Simulink function.
2 Select Properties.
3 Edit the Simulink function properties.

You can also edit the Simulink function properties from the Model Explorer. For more information, see
Model Explorer (Simulink).

For a description of the Simulink function properties, see Subsystem, Atomic Subsystem, CodeReuse
Subsystem.

You can specify additional properties of Simulink functions programmatically by using
Stateflow.SLFunction objects. For more information about the Stateflow programmatic interface,
see “Overview of the Stateflow API”.

Use a Simulink Function to Access Simulink Blocks
In this example, you can compare modeling the shift logic of a car system. The first model does not
use Simulink functions while the second does.

Model Without a Simulink Function

This model uses a function-call subsystem, run(), Simulink model to calculate the threshold for
shifting gears. The Stateflow chart then uses an output event, CALC_TH(), to call the subsystem.
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For more information about function-call subsystems, see “Using Function-Call Subsystems”
(Simulink).

Model With a Simulink Function

This same functionality can be achieved with a Simulink function. In this Stateflow chart, the
Simulink function calc_th is used to calculate the threshold.
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The during action in selection_state contains a function call to calc_th, which contains
Simulink blocks.

This modeling method minimizes the objects in your model.
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Use a Simulink Function to Schedule Execution of Multiple Controllers
In this example, you can compare two ways of scheduling execution of multiple controllers. The first
model does not use Simulink functions while the second does.

Model Without Simulink Functions

This model uses function-call subsystems to model each controller. The model includes output events
in a Stateflow chart to schedule execution of the subsystems.

For each output event, a signal line is needed to connect the Stateflow chart with the corresponding
function-call subsystem.

Model Method With Simulink Functions

Each controller can also be modeled with a Simulink function in a Stateflow chart. This model uses
function calls to schedule execution of the subsystems.
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This modeling method minimizes the objects in your model.

See Also
Simulink Function | Trigger | Inport | Outport | Signal Conversion | Bus Creator | Mux

11 Simulink Functions in Stateflow Charts

11-8



More About
• “Export Stateflow Functions for Reuse” on page 8-15
• “Simulink Functions Overview” (Simulink)
• “Add a Simulink Function to a Model” (Simulink)
• “Share Functions Across Simulink and Stateflow” on page 11-39
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Guidelines for Using Simulink Functions

Use Alphanumeric Characters and Underscores in Argument Names
By using alphanumeric characters for argument names, you ensure that the names of Inport and
Output blocks are compatible with the identifier naming rules of Stateflow charts.

Explicitly Set the Properties of Inport Blocks
The Inport blocks in a Simulink function cannot inherit their data types and sizes. You must set the
Data type and Port dimensions of each Inport block that is not a scalar of type double.

The Outport blocks in a Simulink function can inherit sizes and data types based on the connections
inside the subsystem. You can specify the Data type and Port dimensions of these blocks as
inherited.

Tip To make it easier to update the properties of Inport blocks, you can specify data types and sizes
as parameters.

Convert Discontiguous Signals to Contiguous Signals
Outport blocks in Simulink functions do not support discontiguous signals. If your function contains a
block that outputs a discontiguous signal, insert a Signal Conversion block between the discontiguous
output and the Outport block. This ensures that the output signal is contiguous.

Blocks that can output a discontiguous signal include the Bus Creator block and the Mux block. For
the Bus Creator block, the output is discontiguous when the block outputs a virtual bus. If you select
Output as nonvirtual bus, the output signal is contiguous and no conversion is necessary. For more
information, see “Create Nonvirtual Buses” (Simulink).

Do Not Export Simulink Functions
Exporting a Simulink function results in a run-time error during simulation. To avoid this error, open
the Chart Properties dialog box and clear the Export Chart Level Functions check box.

Do Not Use Simulink Functions in Moore Charts
You cannot use Simulink functions in Moore charts. This restriction prevents violations of Moore
semantics during chart execution.

Do Not Call Simulink Functions in Default Transitions That Execute
During Chart Initialization
If you select the chart property Execute (enter) Chart At Initialization, you cannot call Simulink
functions in default transitions that execute the first time that the chart awakens. Otherwise, the
chart generates a run-time error during simulation.
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Do Not Call Simulink Functions in State During Actions Or Transition
Conditions of Continuous-time Charts
In continuous-time charts, you cannot call Simulink functions during minor time steps. Instead, call
Simulink functions in actions that occur during major time steps: state entry or exit actions and
transition actions. Calling Simulink functions in state during actions or transition conditions results
in a run-time error during simulation.

Do Not Generate HDL Code for Simulink Functions
Simulink functions do not support HDL code generation. Generating HDL code for charts that contain
Simulink functions results in a run-time error during simulation.

Pass Arguments by Value
Passing an argument to a Simulink function by reference results in a run-time error during
simulation.

See Also

More About
• “Export Stateflow Functions for Reuse” on page 8-15
• “Simulink Functions Overview” (Simulink)
• “Add a Simulink Function to a Model” (Simulink)
• “Share Functions Across Simulink and Stateflow” on page 11-39
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Bind a Simulink Function to a State
Simulink functions are not supported in standalone Stateflow charts in MATLAB.

When a Simulink function resides inside a state, the function binds to that state. Binding results in
the following behavior:

• Function calls can occur only in state actions and on transitions within the state and its substates.
• When the state is entered, the function is enabled.
• When the state is exited, the function is disabled.

For example, the following Stateflow chart shows a Simulink function that binds to a state.

Since the function queue resides in state A1, the function binds to state A1.

• State A1 and its substates A2 and A3 can call the function queue, but state B1 cannot.
• When state A1 is entered, queue is enabled.
• When state A1 is exited, queue is disabled.

Control Subsystem Variables When the Simulink Function Is Disabled
If a Simulink function binds to a state, you can hold the subsystem variables at their values from the
previous execution or reset the variables to their initial values. To choose the desired behavior for
your subsystem, follow these steps:

1 In the Simulink function, double-click the trigger port to open the Block Parameters dialog box.
2 Select an option for States when enabling.
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Option Description
held Holds the values of the subsystem variables

from the previous execution
reset Resets the subsystem variables to their initial

values

Binding a Simulink Function to a State
This example shows how a Simulink function behaves when bound to a state.

The function queue contains a block diagram that increments a counter by 1 each time the function
executes.

The Block Parameters dialog box for the trigger port appears as follows.
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In the dialog box, setting Sample time type to periodic enables the Sample time field, which
defaults to 1. These settings tell the function to execute for each time step specified in the Sample
time field while the function is enabled.

If you use a fixed-step solver, the value in the Sample time field must be an integer multiple of the
fixed-step size. This restriction does not apply to variable-step solvers. For more information, see
“Compare Solvers” (Simulink).
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Simulation Behavior of the Chart

When you simulate the chart, the following actions occur.

1 The chart takes the default transition to state A1, and the local data u1 is set to 1.
2 When A1 is entered, the function queue is enabled.
3 Function calls to queue occur until the condition after(5, sec) is true.
4 Once the condition is true, the transition from state A1 to B1 occurs.
5 When A1 is exited, the function queue is disabled.
6 After two more seconds pass, the transition from B1 to A1 occurs.
7 Steps 2 through 6 repeat until the simulation ends.

Function Behavior When Variables Are Held

If you set States when enabling to held, the output y1 is as follows.
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When state A1 becomes inactive at t = 5, the Simulink function holds the counter value. When A1 is
active again at t = 7, the counter has the same value as it did at t = 5. Therefore, the output y1
continues to increment over time.

Function Behavior When Variables Are Reset

If you set States when enabling to reset, the output y1 is as follows.
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When state A1 becomes inactive at t = 5, the Simulink function does not hold the counter value.
When A1 is active again at t = 7, the counter resets to zero. Therefore, the output y1 resets too.

See Also

More About
• “Reuse Simulink Functions in Stateflow Charts” on page 11-2
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Design Charts with Simulink Functions
In this tutorial, you use a Simulink function in a Stateflow chart to improve the design of a model
named old_sf_car.

Simulink functions are not supported in standalone Stateflow charts in MATLAB.

The old_sf_car model contains a function-call subsystem named Threshold Calculation and a
Stateflow chart named shift_logic.

When running this model, first the chart broadcasts the output event CALC_TH to trigger the
function-call subsystem. The subsystem interpolates two values for the shift_logic chart. Next,
the chart broadcasts the output event CALC_TH to trigger the function-call subsystem. Lastly, the
subsystem outputs (up_th and down_th) return to the chart as inputs.

You can replace a function-call subsystem with a Simulink function in a chart when:

• The subsystem performs calculations required by the chart.
• Other blocks in the model do not need access to the subsystem outputs.

Edit a Model to Use a Simulink Function
The sections that follow describe how to replace a function-call subsystem in a Simulink model with a
Simulink function in a Stateflow chart. This procedure reduces the number of objects in the model
while retaining the same simulation results.

Step Task Reference
1 Open the model. “Open the Model” on page 11-19
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Step Task Reference
2 Move the contents of the function-call

subsystem into a Simulink function in the
chart.

“Add a Simulink Function to the Chart” on
page 11-20

3 Change the scope of specific chart-level data
to Local.

“Change the Scope of Chart Data” on page
11-22

4 Replace the event broadcast with a function
call.

“Update State Action in the Chart” on page
11-22

5 Verify that function inputs and outputs are
defined.

“Add Data to the Chart” on page 11-23

6 Remove unused items in the model. “Remove Unused Items in the Model” on
page 11-23

Note To skip the conversion steps, open the model sf_car.

Open the Model

Open the model old_sf_car. If you simulate the model, you see these results in the two scopes.
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Add a Simulink Function to the Chart

Follow these steps to add a Simulink function to the shift_logic chart.

1 In the Simulink model, right-click the Threshold Calculation block in the lower left corner and
select Cut from the context menu.
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2 Open the shift_logic chart.
3 In the chart, right-click below selection_state and select Paste from the context menu.
4 Expand the new Simulink function so that the signature fits inside the function box.
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Tip To change the font size of a function, right-click the function box and select a new size from
the Font Size menu.

5 Expand the border of selection_state to include the new function.

Note The function resides in this state instead of the chart level because no other state in the
chart requires the function outputs up_th and down_th. See “Bind a Simulink Function to a
State” on page 11-12.

6 Rename the Simulink function from Threshold_Calculation to calc_threshold by entering
[down_th, up_th] = calc_threshold(gear, throttle) in the function box.

Change the Scope of Chart Data

In the Model Explorer, change the scope of chart-level data up_th and down_th to Local because
calculations for those data now occur inside the chart.

Update State Action in the Chart

In the Stateflow Editor, change the during action in selection_state to call the Simulink function
calc_threshold.

during: [down_th, up_th] = calc_threshold(gear, throttle);
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Add Data to the Chart

Because the function calc_threshold takes throttle as an input, you must define that data as a
chart input. (For details, see “Add Stateflow Data” on page 12-2.)

1 Add input data throttle to the chart with a Port property of 1.

Using port 1 prevents signal lines from overlapping in the Simulink model.
2 In the Simulink model, add a signal line for throttle to an input to the Engine block and to an

input to the shift_logic chart.

Remove Unused Items in the Model

1 In the Model Explorer, delete the function-call output event CALC_TH because the Threshold
Calculation block no longer exists.

2 Delete any dashed signal lines from your model.

Run the New Model
Your new model looks something like this:
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If you simulate the new model, the results match those of the original design.

See Also

More About
• “Reuse Simulink Functions in Stateflow Charts” on page 11-2
• “Define a Simulink Function” on page 11-3
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Schedule Execution of Multiple Controllers
A Simulink function is a graphical object that you fill with Simulink blocks and call in the actions of
states and transitions. Simulink functions are not supported in standalone Stateflow charts in
MATLAB. For more information, see “Reuse Simulink Functions in Stateflow Charts” on page 11-2.

Goal of the Tutorial
The goal of this tutorial is to use Simulink functions in a Stateflow chart to improve the design of a
model named sf_temporal_logic_scheduler.

Rationale for Improving the Model Design

The sf_temporal_logic_scheduler model contains a Stateflow chart and three function-call
subsystems. These blocks interact as follows:

• The chart broadcasts the output events A1, A2, and A3 to trigger the function-call subsystems.
• The subsystems A1, A2, and A3 execute at different rates defined by the chart.
• The subsystem outputs feed directly into the chart.

No other blocks in the model access the subsystem outputs.

You can replace function-call subsystems with Simulink functions inside a chart when:

• The subsystems perform calculations required by the chart.
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• Other blocks in the model do not need access to the subsystem outputs.

Edit a Model to Use Simulink Functions
The sections that follow describe how to replace function-call subsystem blocks in a Simulink model
with Simulink functions in a Stateflow chart. This procedure reduces the number of objects in the
model while retaining the same simulation results.

Step Task Reference
1 Open the model. “Open the Model” on page 11-26
2 Move the contents of the function-call

subsystems into Simulink functions in the
chart.

“Add Simulink Functions to the Chart” on
page 11-27

3 Change the scope of specific chart-level data
to Local.

“Change the Scope of Chart Data” on page
11-29

4 Replace event broadcasts with function calls. “Update State Actions in the Chart” on page
11-29

5 Verify that function inputs and outputs are
defined.

“Add Data to the Chart” on page 11-30

6 Remove unused items in the model. “Remove Unused Items in the Model” on
page 11-30

Note To skip the conversion steps, you can access the new model directly.

Open the Model

Open the sf_temporal_logic_scheduler model. If you simulate the model, you see this result in
the scope.
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For more information, see “Schedule Subsystems to Execute at Specific Times” on page 30-9.

Add Simulink Functions to the Chart

Follow these steps to add Simulink functions to the Temporal Logic Scheduler chart.

1 In the Simulink model, right-click the A1 block in the lower right corner and select Cut from the
context menu.
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2 Open the Temporal Logic Scheduler chart.
3 In the chart, right-click outside any states and select Paste from the context menu.
4 Expand the new Simulink function so that the signature fits inside the function box.

Tip To change the font size of a function, right-click the function box and select a new size from
the Font Size menu.
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5 Rename the Simulink function from A1 to f1 by entering y = f1(u) in the function box.
6 Repeat steps 1 through 5 for these cases:

• Copying the contents of A2 into a Simulink function named f2.
• Copying the contents of A3 into a Simulink function named f3.

Note The new functions reside at the chart level because both states FastScheduler and
SlowScheduler require access to the function outputs.

Change the Scope of Chart Data

In the Model Explorer, change the scope of chart-level data y to Local because the calculation for
that data now occurs inside the chart.

Update State Actions in the Chart

In the Stateflow Editor, you can replace event broadcasts in state actions with function calls.

1 Edit the state actions in FastScheduler and SlowScheduler to call the Simulink functions f1,
f2, and f3.
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2 In both states, update each during action as follows.

du: y = u1-y2;

Add Data to the Chart

For the on every state actions of FastScheduler and SlowScheduler, define three data. (For
details, see “Add Stateflow Data” on page 12-2.)

1 Add local data y1 and y2 to the chart.
2 Add output data y3 to the chart.
3 In the model, connect the output for y3 to the scope.

Tip To flip the Scope block, select the block. Then, in the toolstrip, on the Format tab, click Flip
left-right .

Remove Unused Items in the Model

1 In the Model Explorer, delete output events A1, A2, and A3 and input data u2 because the
function-call subsystems no longer exist.

2 Delete any dashed signal lines from your model.

Run the New Model
Your new model looks something like this:

11 Simulink Functions in Stateflow Charts

11-30



If you simulate the new model, the results match those of the original design.

See Also

More About
• “Reuse Simulink Functions in Stateflow Charts” on page 11-2
• “Define a Simulink Function” on page 11-3
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Schedule Simulink Algorithms by Using Stateflow
This model shows how you can schedule a Simulink® algorithm using Stateflow®.

The Stateflow chart in this model consists of a Simulink algorithm which runs at different rates at
different times in the simulation. Stateflow is ideally suited to designing the transition logic which
determines when these rate transitions happen. The Simulink algorithm on the other hand is used for
the actual data processing. The chart merely passes inputs and outputs to the Simulink subsystem.
For the purposes of this example, the Simulink algorithm adds the input to the output each time the
chart calls it.

Upon running the simulation, we see the counter counting at varying rates:
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See Also

More About
• “Reuse Simulink Functions in Stateflow Charts” on page 11-2
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Design Switching Controllers by Using Simulink Functions
This model shows how you can design switching controllers by combining the power of Stateflow®
and Simulink® functions.

The Stateflow chart SwitchingController implements a simple switching controller which
switches between three states: STEADY, P and PID. When in STEADY state, we produce zero control
output. When in P or PID, we delegate to Simulink function call subsystems in order to compute the
required control effort.

The Create data for monitoring option for the state PID is checked. Therefore, in addition to the
control output u, the Stateflow chart also produces a logging output with the same name as the state
PID.

The condition for switching from P to PID is based on the error being low enough [e <
PID_TRESH]. PID_TRESH is a variable defined in the Model Workspace with a value of 0.3.
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The Simulink subsystem SwitchingController/P.p_control implements a very simple
proportional control with a gain of 3. If we had continued to stay in the state P, the steady state gain
of the closed-loop system would be 3/4 = 0.75. Therefore, we would get an error of 0.25.

The Simulink subsystem SwitchingController/PID.pid_control implements a simple PID
control strategy. The proportional gain is the same as in P thereby ensuring a smooth transition in the
control effort.
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When we simulate the model, we notice that the steady state error approaches zero.
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In the absence of the PID control, we would have had a steady state error of 0.25. If we change
PID_TRESH to 0.1, we will never get to PID, because the error will never get below 0.25 as long as
we are in state P.
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See Also

More About
• “Reuse Simulink Functions in Stateflow Charts” on page 11-2
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Share Functions Across Simulink and Stateflow
This example shows how to call functions across Simulink® and Stateflow®. The
slexPrinterExample model consists of three computer clients that share a printer. Each computer
creates print jobs by calling the Simulink function addPrintJob.

Communicate and Share Resources with Functions

In this example, the Stateflow chart communicates with the model by:

• Defining and exporting a graphical function that is called by Simulink.
• Calling a Simulink function that is defined in Simulink.

Each computer client invokes the printer server with a call to the Simulink function, addPrintJob.
The addPrintJob function calls the Stateflow graphical function queuePrintJob to add the print
job to the work load. The chart processes the work and calls the Simulink function printerInk to
model usage of printer ink.

Call a Simulink Function from Stateflow

The function printerInk is defined in a Simulink Function block at the top level of the model. The
function interface printerInk(work) defines one input argument. The Simulink Function,
printerInk, also interacts with the model with signal lines through the inport ink and outport ink'.
The state Busy matches the function signature for printerInk(work) by passing one input
argument.
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Export Stateflow Functions to Simulink

In the chart Queuing and Processing Incoming Jobs, the properties Export chart level
functions and Treat exported functions as globally visible are selected. These properties allow
the Simulink function addPrintJob to call the chart graphical function, queuePrintJob.

See Also
Simulink Function

More About
• “Export Stateflow Functions for Reuse” on page 8-15
• “Simulink Functions Overview” (Simulink)
• “Model Reference Basics” (Simulink)
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Define Data

• “Add Stateflow Data” on page 12-2
• “Set Data Properties” on page 12-5
• “Share Data with Simulink and the MATLAB Workspace” on page 12-19
• “Share Parameters with Simulink and the MATLAB Workspace” on page 12-21
• “Access Data Store Memory from a Chart” on page 12-23
• “Specify Type of Stateflow Data” on page 12-27
• “Specify Size of Stateflow Data” on page 12-33
• “Handle Integer Overflow for Chart Data” on page 12-36
• “Identify Data by Using Dot Notation” on page 12-38
• “Resolve Data Properties from Simulink Signal Objects” on page 12-42
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Add Stateflow Data
When you want to store values that are visible at a specific level of the Stateflow hierarchy, add data
to your chart. When you simulate your model, chart data objects retain their values for the duration
of the simulation.

Data defined in a Stateflow chart is visible by multiple Stateflow objects in the chart, including states,
transitions, MATLAB functions, and truth tables. To determine what data is used in a state or
transition, right-click the state or transition and select Explore. A context menu lists the names and
scopes of all resolved symbols in the state or transition. Selecting a symbol from the context menu
displays its properties in the Model Explorer. Selecting an output event from the context menu opens
the Simulink subsystem or Stateflow chart associated with the event.

Note Stateflow data is not available to Simulink functions within a Stateflow chart.

You can add data to a Stateflow chart by using the Symbols pane, the Stateflow Editor menu, or the
Model Explorer.

Add Data Through the Symbols Pane
1 In the Modeling tab, under Design Data, select Symbols Pane.
2

Click the Create Data icon .
3 In the row for the new data, under TYPE, click the icon and choose:

• Input Data
• Local Data
• Output Data
• Constant
• Data Store Memory
• Parameter
• Temporary

.For more information about data types, see “Stateflow Data Properties” on page 12-5.
4 Edit the name of the data.
5 For input and output data, click the PORT field and choose a port number.
6 To specify properties for data, open the Property Inspector. In the Symbols pane, right-click the

row for the symbol and select Explore.

Add Data by Using the Stateflow Editor Menu
1 In a Stateflow chart in a Simulink model, select the menu option corresponding to the scope of

the data that you want to add.

Scope Menu Option
Input In the Modeling tab, under Design Data, select Data Input.
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Scope Menu Option
Output In the Modeling tab, under Design Data, select Data Output.
Local In the Modeling tab, under Design Data, select Local.
Constant In the Modeling tab, under Design Data, select Constant.
Parameter In the Modeling tab, under Design Data, select Parameter.
Data Store
Memory

In the Modeling tab, under Design Data, select Data Store.

2 In the Data dialog box, specify data properties. For more information, see “Stateflow Data
Properties” on page 12-5.

Add Data Through the Model Explorer
To add function- or state-parented data to Stateflow charts in Simulink models, use the Model
Explorer:

1 In the Modeling tab, under Design Data, select Model Explorer.
2 In the Model Hierarchy pane, select the object in the Stateflow hierarchy where you want to

make the new data visible. The object that you select becomes the parent of the new data.
3 In the Model Explorer toolstrip, select the Add Data  button. Alternatively, in the Model

Explorer menu, select Add > Data. The new data with a default definition appears in the
Contents pane of the Model Explorer.

4 In the Data pane, specify the properties of the data. For more information, see “Stateflow Data
Properties” on page 12-5.

Best Practices for Using Data in Charts
Avoid Inheriting Output Data Properties from Simulink Blocks

Stateflow output data should not inherit properties from output signals, because the values back
propagate from Simulink blocks and can be unpredictable.

Restrict Use of Machine-Parented Data

Avoid using machine-parented data. Machine-parented data is data that is defined at the highest level
of the Stateflow hierarchy. The presence of machine-parented data in a model prevents the reuse of
generated code and other code optimizations. This type of data is also incompatible with many
Simulink and Stateflow features.

For example, the following features do not support machine-parented data:

• Enumerated data
• Simulink functions
• Chart operating point
• Implicit change events
• Detection of unused data
• Parameters binding to a Simulink.Parameter object in the base workspace
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• Model referencing (see “Model Reference Requirements and Limitations” (Simulink) )
• Use of code replacement libraries in code generated by Embedded Coder. For more information,

see “Code You Can Replace From Simulink Models” (Embedded Coder).
• Code generation by Simulink PLC Coder™ software
• Analysis by Simulink Design Verifier software

To make Stateflow data accessible to other charts and blocks in a model, use data store memory. For
details, see “Access Data Store Memory from a Chart” on page 12-23.

See Also

More About
• “Set Data Properties” on page 12-5
• “Specify Type of Stateflow Data” on page 12-27
• “Manage Symbols in the Stateflow Editor” on page 34-2
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Set Data Properties
When you create Stateflow charts in Simulink, you can specify data properties in either the Property
Inspector or the Model Explorer.

• To use the Property Inspector:

1 In the Modeling tab, under Design Data, select Symbols Pane and Property Inspector.
2 In the Symbols pane, select the data object.
3 In the Property Inspector pane, edit the data properties.

• To use the Model Explorer:

1 In the Modeling tab, under Design Data, select Model Explorer.
2 In the Contents pane, select the data object.
3 In the Message pane, edit the data properties.

You can also specify data properties programmatically by using Stateflow.Data objects. For more
information about the Stateflow programmatic interface, see “Overview of the Stateflow API”.

Properties vary according to the scope and type of the data object. For many data properties, you can
enter expressions or parameter values. Using parameters to set properties for many data objects
simplifies maintenance of your model because you can update multiple properties by changing a
single parameter.

Stateflow Data Properties
You can set these data properties in:

• The main and Advanced sections of the Property Inspector.
• The General tab of the Model Explorer.

Name

Name of the data object. For more information, see “Guidelines for Naming Stateflow Objects” on
page 2-5.

Scope

Location where data resides in memory, relative to its parent.

Setting Description
Local Data defined in the current chart only.
Constant Read-only constant value that is visible to the parent Stateflow object and

its children.
Parameter Constant whose value is defined in the MATLAB base workspace or derived

from a Simulink block parameter that you define and initialize in the
parent masked subsystem. The Stateflow data object must have the same
name as the MATLAB variable or the Simulink parameter. For more
information, see “Share Parameters with Simulink and the MATLAB
Workspace” on page 12-21.
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Setting Description
Input Input argument to a function if the parent is a graphical function, truth

table, or MATLAB function. Otherwise, the Simulink model provides the
data to the chart through an input port on the Stateflow block. For more
information, see “Share Input and Output Data with Simulink” on page 12-
19.

Output Return value of a function if the parent is a graphical function, truth table,
or MATLAB function. Otherwise, the chart provides the data to the
Simulink model through an output port on the Stateflow block. For more
information, see “Share Input and Output Data with Simulink” on page 12-
19.

Data Store Memory Data object that binds to a Simulink data store, which is a signal that
functions like a global variable. All blocks in a model can access that
signal. This binding allows the chart to read and write to the Simulink data
store, sharing global data with the model. The Stateflow object must have
the same name as the Simulink data store. For more information, see
“Access Data Store Memory from a Chart” on page 12-23.

Temporary Data that persists during only the execution of a function. You can define
temporary data only for graphical functions, truth tables, or MATLAB
functions in charts that use C as the action language.

Port

Index of the port associated with the data object. This property applies only to input and output data.
See “Share Input and Output Data with Simulink” on page 12-19.

Update Method

Specifies whether a variable updates in discrete or continuous time. This property applies only when
the chart is configured for continuous-time simulation. See “Continuous-Time Modeling in Stateflow”
on page 25-2.

Data Must Resolve to Signal Object

Specifies that output or local data explicitly inherits properties from Simulink.Signal objects of
the same name in the MATLAB base workspace or the Simulink model workspace. The data can
inherit these properties:

• Size
• Complexity
• Type
• Unit
• Minimum value
• Maximum value
• Initial value
• Storage class
• Sampling mode (for Truth Table block output data)
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This option is available only when you set the model configuration parameter Signal resolution to a
value other than None. For more information, see “Resolve Data Properties from Simulink Signal
Objects” on page 12-42.

Size

Size of the data object. The size can be a scalar value or a MATLAB vector of values.

• To specify a scalar, set the Size property to 1 or leave the field blank.
• To specify an n-by-1 column vector, set the Size property to n.
• To specify a 1-by-n row vector, set the Size property to [1 n].
• To specify an n-by-m matrix, set the Size property to [n m].
• To specify an n-dimensional array, set the Size property to [d1 d2 ⋯ dn], where di is the size of

the ith dimension.
• To configure a Stateflow data object to inherit its size from the corresponding Simulink signal or

from its definition in the chart, specify a size of –1.

The scope of the data object determines what sizes you can specify. Stateflow data store memory
inherits all its properties, including its size, from the Simulink data store to which it is bound. For all
other scopes, size can be scalar, vector, or a matrix of n-dimensions. For more information, see
“Specify Size of Stateflow Data” on page 12-33.

You can specify data size through a MATLAB expression that evaluates to a valid size specification.
For more information, see “Specify Data Size by Using Expressions” on page 12-34 and “Specify
Data Properties by Using MATLAB Expressions” on page 12-18.

Variable Size

Specifies that the data object changes dimensions during simulation. This option is available for input
and output data only when you enable the chart property Support variable-size arrays. For more
information, see “Declare Variable-Size Data in Stateflow Charts” on page 22-2.

Complexity

Specifies whether the data object accepts complex values.

Setting Description
Off Data object does not accept complex values.
On Data object accepts complex values.
Inherited Data object inherits the complexity setting from a Simulink block.

The default value is Off. For more information, see “Complex Data in Stateflow Charts” on page 27-
2.

First Index

Index of the first element of the data array. The first index can be any integer. The default value is 0.
This property is available only for C charts.

Type

Type of data object. To specify the data type:
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• From the Type drop-down list, select a built-in type.
• In the Type field, enter an expression that evaluates to a data type. Use one of these expressions:

• A call to the fixdt function to create a Simulink.NumericType object that describes a
fixed-point or floating-point data type. See “Specify Fixed-Point Data” on page 26-2.

• A call to the type operator to specify the type of previously defined data. See “Derive Data
Types from Other Data Objects” on page 12-30.

• A Simulink.AliasType object that defines a data type alias in the MATLAB base workspace.
See “Specify Data Types by Using a Simulink Alias” on page 12-31.

For more information, see “Specify Data Properties by Using MATLAB Expressions” on page 12-
18.

Additionally, in the Model Explorer, you can open the Data Type Assistant by clicking the Show data
type assistant button . Specify a data Mode, and then specify the data type based on that
mode. For more information, see “Specify Type of Stateflow Data” on page 12-27.

Note If you enter an expression for a fixed-point data type, you must specify scaling explicitly. For
example, you cannot enter an incomplete specification such as fixdt(1,16) in the Type field. If you
do not specify scaling explicitly, an error appears when you try to simulate your model.

Lock Data Type Against Fixed-Point Tools

Prevents replacement of the current fixed-point type with an autoscaled type chosen by the Fixed-
Point Tool (Fixed-Point Designer). For more information, see “Iterative Fixed-Point Conversion Using
the Fixed-Point Tool” (Fixed-Point Designer).

Unit (e.g., m, m/s^2, N*m)

Specifies physical units for input and output data. For more information, see “Specify Units for
Stateflow Data” on page 28-16.

Initial Value

Initial value of the data object. For constant data, this property is called Constant value. The options
for specifying this property depend on the scope of the data object.
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Scope Specify for Initial Value
Local Expression or parameter defined in the Stateflow hierarchy, MATLAB base

workspace, or Simulink masked subsystem. To specify the initial value
when you leave the Initial value field blank, open the Model Explorer or
the Data properties dialog box and set the Initial value drop-down list to
Expression or Parameter.

• Expression — Numeric data resolves to a default value of 0. For
enumerated data, the default value typically is the first one listed in the
enumeration section of the definition. You can specify a different
default enumerated value in the methods section of the definition. For
more information, see “Define Enumerated Data Types” on page 23-
5.

• Parameter — The data object resolves to a variable in the base
workspace with the same name.

The default setting is Expression.
Constant Constant value or expression. The expression is evaluated when you update

the chart. The resulting value is used as a constant for running the chart.

When you leave the Constant value field blank, numeric data resolves to a
default value of 0. For enumerated data, the default value typically is the
first one listed in the enumeration section of the definition. You can
specify a different default enumerated value in the methods section of the
definition. For more information, see “Define Enumerated Data Types” on
page 23-5.

Parameter You cannot enter a value. The chart inherits the initial value from the
parameter.

Input You cannot enter a value. The chart inherits the initial value from the
Simulink input signal at the designated port.

Output Expression or parameter defined in the Stateflow hierarchy, MATLAB base
workspace, or Simulink masked subsystem. To specify the initial value
when you leave the Initial value field blank, open the Model Explorer or
the Data properties dialog box and set the Initial value drop-down list to
Expression or Parameter.

• Expression — Numeric data resolves to a default value of 0. For
enumerated data, the default value typically is the first one listed in the
enumeration section of the definition. You can specify a different
default enumerated value in the methods section of the definition. For
more information, see “Define Enumerated Data Types” on page 23-
5.

• Parameter — The data object resolves to a variable in the base
workspace with the same name.

The default setting is Expression.
Data Store Memory You cannot enter a value. The chart inherits the initial value from the

Simulink data store to which it resolves.

The time of initialization depends on the data parent and scope of the Stateflow data object.
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Data Parent Scope Initialization Time
Chart Input Not applicable

Output, Local Start of simulation or when chart reinitializes as
part of an enabled Simulink subsystem

State with History
Junction

Local Start of simulation or when chart reinitializes as
part of an enabled Simulink subsystem

State without History
Junction

Local State entry

Function (graphical,
truth table, and
MATLAB functions)

Input, Output Function-call invocation
Local Start of simulation or when chart reinitializes as

part of an enabled Simulink subsystem

For more information on using an expression to specify an initial value, see “Specify Data Properties
by Using MATLAB Expressions” on page 12-18.

Limit Range

Range of acceptable values for this data object. Stateflow charts use this range to validate the data
object during simulation.

• Minimum — The smallest value allowed for the data item during simulation. You can enter an
expression or parameter that evaluates to a numeric scalar value.

• Maximum — The largest value allowed for the data item during simulation. You can enter an
expression or parameter that evaluates to a numeric scalar value.

The smallest value that you can set for Minimum is -inf. The largest value that you can set for
Maximum is inf.

You can specify the minimum and maximum values through a MATLAB expression. For more
information, see “Specify Data Properties by Using MATLAB Expressions” on page 12-18.

Note A Simulink model uses the Limit range properties to calculate best-precision scaling for fixed-
point data types. Before you select Calculate Best-Precision Scaling, specify a minimum or
maximum value. For more information, see “Calculate Best-Precision Scaling” on page 12-13.

Add to Watch Window

Enables watching the data values in the Stateflow Breakpoints and Watch window. For more
information, see “View Data in the Breakpoints and Watch Window” on page 33-11.

Fixed-Point Data Properties
In the Model Explorer, when you set the Data Type Assistant Mode to Fixed point, the Data Type
Assistant displays fields for specifying additional information about your fixed-point data.
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Signedness

Specifies whether the fixed-point data is Signed or Unsigned. Signed data can represent positive
and negative values. Unsigned data represents positive values only. The default setting is Signed.

Word Length

Specifies the bit size of the word that holds the quantized integer. Large word sizes represent large
values with greater precision than small word sizes. The default value is 16.

• Word length can be any integer from 0 through 128 for chart-level data of these scopes:

• Input
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• Output
• Parameter
• Data Store Memory

• For other Stateflow data, word length can be any integer from 0 through 32.

You can specify the word length through a MATLAB expression. For more information, see “Specify
Data Properties by Using MATLAB Expressions” on page 12-18.

Scaling

Specifies the method for scaling your fixed-point data to avoid overflow conditions and minimize
quantization errors. The default method is Binary point scaling.

Setting Description
Binary point If you select this mode, the Data Type Assistant displays the Fraction

length field, which specifies the binary point location.

Fraction length can be any integer. The default value is 0. A positive
integer moves the binary point left of the rightmost bit by that amount. A
negative integer moves the binary point farther right of the rightmost bit.

Slope and bias If you select this mode, the Data Type Assistant displays fields for entering
the Slope and Bias for the fixed-point encoding scheme.

Slope can be any positive real number. The default value is 1.0.

Bias can be any real number. The default value is 0.0.

You can enter slope and bias as expressions that contain parameters you
define in the MATLAB base workspace.

Whenever possible, use binary-point scaling to simplify the implementation of fixed-point data in
generated code. Operations with fixed-point data that use binary-point scaling are performed with
simple bit shifts and eliminate expensive code implementations required for separate slope and bias
values. For more information about fixed-point scaling, see “Scaling” (Fixed-Point Designer).

You can specify Fraction length, Slope, and Bias through a MATLAB expression. For more
information, see “Specify Data Properties by Using MATLAB Expressions” on page 12-18.

Data Type Override

Specifies whether to inherit the data type override setting of the Fixed-Point Tool that applies to this
model. If the data does not inherit the model-wide setting, the specified data type applies.
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Calculate Best-Precision Scaling

Specifies whether to calculate the best-precision values for Binary point and Slope and bias
scaling, based on the values in the Minimum and Maximum fields in the Limit range section.

To calculate best-precision scaling values:

1 Specify Limit range properties.
2 Click Calculate Best-Precision Scaling.

The best-precision scaling values are displayed in the Fraction length field or the Slope and Bias
fields. For more information, see “Maximize Precision” (Fixed-Point Designer).

Note The Limit range properties do not apply to Constant and Parameter scopes. For Constant,
Simulink software calculates the scaling values based on the Initial value setting. The software
cannot calculate best-precision scaling for data of Parameter scope.

Show Fixed-Point Details

Displays information about the fixed-point data type that is defined in the Data Type Assistant:

• Minimum and Maximum show the same values that appear in the corresponding Minimum and
Maximum fields in the Limit range section.

• Representable minimum, Representable maximum, and Precision show the minimum
value, maximum value, and precision that the fixed-point data type can represent.

If the value of a field cannot be determined without first compiling the model, the Fixed-point
details subpane shows the value as Unknown.
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The values displayed by the Fixed-point details subpane do not automatically update if you change
the values that define the fixed-point data type. To update the values shown in the Fixed-point
details subpane, click Refresh Details.
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Clicking Refresh Details does not modify the model. It changes only the display. To apply the
displayed values, click Apply or OK.

The Fixed-point details subpane indicates any error resulting from the fixed-point data type
specification. For example, this figure shows two errors.

The row labeled Maximum indicates that the value specified in the Maximum field of the Limit
range section is not representable by the fixed-point data type. To correct the error, make one of
these modifications so the fixed-point data type can represent the maximum value:
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• Decrease the value in the Maximum field of the Limit range section.
• Increase Word length.
• Decrease Fraction length.

The row labeled Minimum shows the error Cannot evaluate because evaluating the expression
MySymbol, specified in the Minimum field of the Limit range section, does not return a numeric
value. When an expression does not evaluate successfully, the Fixed-point details subpane shows
the unevaluated expression (truncating to 10 characters as needed) in place of the unavailable value.
To correct this error, define MySymbol in the base workspace to provide a numeric value. If you click
Refresh Details, the error indicator and description are removed and the value of MySymbol
appears in place of the unevaluated text.

Logging Properties
You can set logging properties for data in:

• The Logging section of the Property Inspector.
• The Logging tab of the Model Explorer.

Log Signal Data

Saves the data value to the MATLAB base workspace during simulation. For more information, see
“Log Simulation Output for States and Data” on page 33-47.

Test Point

Designates the data as a test point. A test point is a signal that you can observe in a Floating Scope
block in a model. Data objects can be test points if:

• Scope is Local.
• Parent is not a Stateflow machine.
• Data type is not ml.

For more information, see “Monitor Test Points in Stateflow Charts” on page 33-43.

Logging Name

Specifies the name associated with logged signal data. Simulink software uses the signal name as its
logging name by default. To specify a custom logging name, select Custom from the list box and enter
the new name in the adjacent edit field.

Limit Data Points to Last

Limits the amount of data logged to the most recent samples.

Decimation

Limits the amount of data logged by skipping samples. For example, a decimation factor of 2 saves
every other sample.

Additional Properties
You can set additional data properties in:
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• The Info tab of the Property Inspector.
• The Description tab of the Model Explorer.

Save Final Value to Base Workspace

Assigns the value of the data object to a variable of the same name in the MATLAB base workspace at
the end of simulation. This option is available only in the Model Explorer for charts that use C as the
action language. For more information, see “Model Workspaces” (Simulink).

Units

Units of measurement associated with the data object. The unit in this field resides with the data
object in the Stateflow hierarchy. This property is available only in the Model Explorer for C charts.

Description

Description of the data object. You can enter brief descriptions of data in the hierarchy.

Document Link

Link to online documentation for the data object. You can enter a web URL address or a MATLAB
command that displays documentation in a suitable online format, such as an HTML file or text in the
MATLAB Command Window. When you click the Document link hyperlink, Stateflow evaluates the
link and displays the documentation.

Default Data Property Values

When you leave a property field blank, Stateflow assumes a default value.

Property Default Value
“Size” on page 12-7 −1 (inherited), for inputs, parameters, and function outputs

1 (scalar), for other data objects
“First Index” on page 12-
7

0

“Initial Value” on page
12-8

0.0

“Limit
Range” on
page 12-10

Minimum -inf

 Maximum inf
“Fixed-Point
Data
Properties”
on page 12-
10

Word
length

16

 Fraction
length

0
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Property Default Value
 Slope 1.0
 Bias 0.0

Specify Data Properties by Using MATLAB Expressions
In the Property Inspector and Model Explorer, you can enter MATLAB expressions as values for these
properties:

• “Size” on page 12-7
• “Type” on page 12-7
• “Initial Value” on page 12-8
• “Limit Range” on page 12-10: Minimum and Maximum
• “Fixed-Point Data Properties” on page 12-10: Word length, Fraction length, Slope, and Bias

Expressions can contain a mix of numeric values, constants, parameters, variables, arithmetic
operations, parameters, constants, arithmetic operators, and calls to MATLAB functions. For example,
you can use these functions to specify data properties.

Property Function Description
Size size Returns the size of a data object
Type type on

page 12-
30

Returns the type of a data object

fixdt Returns a Simulink.NumericType object that describes a fixed-point or
floating-point data type

fi Returns a fixed-point numeric object
Minimum min Returns the smallest element or elements of an array
Maximum max Returns the largest element or elements of an array

For more information, see “Specify Data Size by Using Expressions” on page 12-34 and “Derive Data
Types from Other Data Objects” on page 12-30.

See Also
fi | fixdt | max | min | size | Simulink.AliasType | Simulink.NumericType

More About
• “Add Stateflow Data” on page 12-2
• “Guidelines for Naming Stateflow Objects” on page 2-5
• “Specify Type of Stateflow Data” on page 12-27
• “Specify Size of Stateflow Data” on page 12-33
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Share Data with Simulink and the MATLAB Workspace
Stateflow charts interface with the other blocks in a Simulink model by:

• Sharing data through input and output connections.
• Importing initial data values from the MATLAB base workspace.
• Saving final data values to the MATLAB base workspace.

Charts also can access Simulink parameters and data stores. For more information, see “Share
Parameters with Simulink and the MATLAB Workspace” on page 12-21 and “Access Data Store
Memory from a Chart” on page 12-23.

Share Input and Output Data with Simulink
Data flows from Simulink into a Stateflow chart through input ports. Data flows from a Stateflow
chart into Simulink through output ports.

To define input or output data in a chart:

1 Add a data object to the chart, as described in “Add Stateflow Data” on page 12-2.
2 Set the Scope property for the data object.

• To define input data, set Scope to Input Data. An input port appears on the left side of the
chart block.

• To define output data, set Scope to Output Data. An output port appears on the right side of
the chart block.

By default, Port values appear in the order in which you add data objects. You can change these
assignments by modifying the Port property of the data. When you change the Port property for
an input or output data object, the Port values for the remaining input or output data objects
automatically renumber.

3 Set the data type of the data object, as described in “Specify Type of Stateflow Data” on page 12-
27.

4 Set the size of the data object, as described in “Specify Size of Stateflow Data” on page 12-33.

Note You cannot set the type or size of Stateflow input data to accept frame-based data from
Simulink.

Initialize Data from the MATLAB Base Workspace
You can import the initial value of a data symbol by defining it in the MATLAB base workspace and in
the Stateflow hierarchy.

1 Define and initialize a variable in the MATLAB base workspace.
2 In the Stateflow hierarchy, define a data object with the same name as the MATLAB variable.
3 Select the Allow initial value to resolve to a parameter property for the data object.

When the simulation starts, data resolution occurs. During this process, the Stateflow data object
gets its initial value from the associated MATLAB variable.
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One-dimensional Stateflow arrays are compatible with MATLAB row and column vectors of the same
size. For example, a Stateflow vector of size 5 is compatible with a MATLAB row vector of size [1,5]
or column vector of size [5,1]. Each element of the Stateflow array initializes to the same value as
the corresponding element of the array in the MATLAB base workspace.

The time of initialization depends on the data parent and scope of the Stateflow data object.

Data Parent Scope Initialization Time
Chart Input Not applicable

Output, Local Start of simulation or when chart reinitializes as
part of an enabled Simulink subsystem

State with History
Junction

Local Start of simulation or when chart reinitializes as
part of an enabled Simulink subsystem

State without History
Junction

Local State entry

Function (graphical,
truth table, and
MATLAB functions)

Input, Output Function-call invocation
Local Start of simulation or when chart reinitializes as

part of an enabled Simulink subsystem

Save Data to the MATLAB Base Workspace
At the end of simulation, a Stateflow chart that uses C as the action language can save the final value
of a data object to the MATLAB base workspace.

1 Open the Model Explorer. In the Modeling tab, select Model Explorer.
2 Double-click the data object in the Contents pane.
3 In the Description pane of the Data properties dialog box, select Save final value to base

workspace.

This option is available for data symbols of all scopes except Constant and Parameter.

See Also

More About
• “Add Stateflow Data” on page 12-2
• “Set Data Properties” on page 12-5
• “Share Parameters with Simulink and the MATLAB Workspace” on page 12-21
• “Access Data Store Memory from a Chart” on page 12-23
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Share Parameters with Simulink and the MATLAB Workspace
A parameter is a constant data object that you can:

• Define in the MATLAB base workspace.
• Derive from a Simulink block parameter that you define and initialize in a mask.

Use parameters to avoid hard-coding data values and properties. Share Simulink parameters with
charts to maintain consistency with your Simulink model.

You can access parameter values in multiple Stateflow objects in a chart such as states, MATLAB
functions, and truth tables. You can include parameters in expressions defining data properties such
as:

• Size
• Type
• Initial Value
• Minimum and Maximum
• Fixed-Point Data Properties

For more information, see “Specify Data Properties by Using MATLAB Expressions” on page 12-18

Initialize Parameters from the MATLAB Base Workspace
You can initialize a parameter by defining it in the MATLAB base workspace and in the Stateflow
hierarchy.

1 Define and initialize a variable in the MATLAB base workspace.
2 In the Stateflow hierarchy, define a data object with the same name as the MATLAB variable.
3 Set the scope of the Stateflow data object to Parameter.

When the simulation starts, data resolution occurs. During this process, the Stateflow parameter gets
its value from the associated MATLAB variable.

Share Simulink Parameters with Charts
You can share a parameter from a Simulink subsystem containing a Stateflow chart by creating a
mask for the subsystem.

1 In the Simulink mask editor for the parent subsystem, define and initialize a Simulink parameter.
2 In the Stateflow hierarchy, define a data object with the same name as the Simulink parameter.
3 Set the scope of the Stateflow data object to Parameter.

When the simulation starts, Simulink tries to resolve the Stateflow data object to a parameter at the
lowest-level masked subsystem. If unsuccessful, Simulink moves up the model hierarchy to resolve
the data object to a parameter at higher-level masked subsystems.
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See Also

More About
• “Create a Mask to Share Parameters with Simulink” on page 28-13
• “Add Stateflow Data” on page 12-2
• “Set Data Properties” on page 12-5
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Access Data Store Memory from a Chart
A Simulink model implements global variables as data stores, either as Data Store Memory blocks or
as instances of Simulink.Signal objects. You can use data stores to share data between multiple
Simulink blocks without explicit input or output connections to pass data from one block to another.
Stateflow charts share global data with Simulink models by reading from and writing to data store
memory symbolically.

To access global data from a chart, bind a Stateflow data object to a Simulink data store. After you
create the binding, the Stateflow data object becomes a symbolic representation of the Simulink data
store memory. You can then use this symbolic object to store and retrieve global data. Stateflow can
access data stores in Simulink that have unbounded dimensions.

Local and Global Data Store Memory
Stateflow charts can interface with local and global data stores.

• Local data stores are visible to all blocks in one model. To interact with a local data store, a chart
must reside in the model where you define the local data store. You can define a local data store
by adding a Data Store Memory block to a model or by creating a Simulink signal object.

• Global data stores have a broader scope that crosses model reference boundaries. To interact with
global data stores, a chart must reside in the top model where you define the global data store or
in a model that the top model references. You implement global data stores as Simulink signal
objects.

For more information, see “Local and Global Data Stores” (Simulink).

Bind Stateflow Data to Data Stores
1 To define the Simulink data store memory, add a Data Store Memory block to your model or

create a Simulink signal object. For more information, see “Data Stores with Data Store Memory
Blocks” (Simulink) and “Data Stores with Signal Objects” (Simulink).

2 Add a data object to the Stateflow chart, as described in “Add Stateflow Data” on page 12-2.
3 Set the Name property as the name of the Simulink data store memory to which you want to

bind the Stateflow data object.
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4 Set the Scope property to Data Store Memory.

The Stateflow data object inherits all additional properties from the data store memory to which you
bind the object.

Multiple local and global data stores with the same name can exist in the same model hierarchy. In
this situation, the Stateflow data object binds to the data store that is the nearest ancestor.

Store and Retrieve Global Data
After binding a Stateflow data object to a Simulink data store, you can store and retrieve global data
in state and transition actions. The data object acts as a global variable that you reference by its
symbolic name. When you store numeric values in this variable, you are writing to the Simulink data
store memory. When you retrieve numeric values from this variable, you are reading from the data
store memory.

For example, in this chart, the state actions read from and write to a Data Store Memory block called
myglobal.

Best Practices for Using Data Stores
Data Store Properties in Charts

When you bind a Stateflow data object to a data store, the Stateflow object inherits all of its
properties from the data store. To ensure that properties propagate correctly, when you create the
Simulink data stores:

• Specify a data type other than auto.
• Minimize the use of automatic-mode properties.

Share Data Store Memory Across Multiple Models

To access a global data store from multiple models:

• Verify that your models do not contain any Data Store Memory blocks. You can include Data Store
Read and Data Store Write blocks.
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• In the MATLAB base workspace, create a Simulink.Signal object with these attributes:

• Set Data type to an explicit data type. The data type cannot be Auto.
• Fully specify Dimensions. The signal dimensions cannot be –1 or Inherited.
• Fully specify Complexity. The complexity cannot be Auto.
• Set Storage class to ExportedGlobal.

• In each chart that shares the data, bind a Stateflow data object to the Simulink data store.

Write to Data Store Memory Before Reading

To avoid algorithm latency, write to data store memory before reading from it. Otherwise, the read
actions retrieve the value that was stored in the previous time step, rather than the value computed
and stored in the current time step. When unconnected blocks share global data while running at
different rates:

• Segregate read actions into separate blocks from write actions.
• Assign priorities to blocks so that your model invokes write blocks before read blocks. For more

information, see “Control and Display Execution Order” (Simulink).

To avoid situations when multiple reads and writes occur unintentionally in the same time step,
enable the Data Store Memory block diagnostics to:

• Detect Read Before Write
• Detect Write After Read
• Detect Write After Write

If you use a data store memory block as a persistent global storage area for accumulating values
across time steps, avoid unnecessary warnings by disabling the Data Store Memory block diagnostics.
For more information, see “Data Store Diagnostics” (Simulink).

See Also
Simulink.Signal | Data Store Memory | Data Store Read | Data Store Write

More About
• “Add Stateflow Data” on page 12-2
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• “Data Store Basics” (Simulink)
• “Model Global Data by Creating Data Stores” (Simulink)
• “Data Store Diagnostics” (Simulink)
• “Control and Display Execution Order” (Simulink)
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Specify Type of Stateflow Data
The term data type refers to how computers represent information in memory. The data type
determines the amount of storage allocated to data, the method of encoding a data value as a pattern
of binary digits, and the operations available for manipulating the data.

Specify Data Type by Using the Data Type Assistant
You can specify the type of a data object in either the Property Inspector or the Model Explorer. In the
Type field, select a type from the drop-down list or enter an expression that evaluates to a data type.
For more information, see “Set Data Properties” on page 12-5.

Alternatively, use the Data Type Assistant to specify a data Mode and select the data type based on
that mode:

1 In the Model Explorer, on the Data pane, click the Show data type assistant button .
2 Select a Mode from the drop-down list. The list of available modes depends on the scope of the

data object.

Scope Modes
Local Inherit (available only in charts that use MATLAB as the action language), Built in,

Fixed point, Enumerated, Bus object, Expression
Constant Built in, Fixed point, Expression
Parameter Inherit, Built in, Fixed point, Enumerated, Bus object, Expression
Input Inherit, Built in, Fixed point, Enumerated, Bus object, Expression
Output Inherit, Built in, Fixed point, Enumerated, Bus object, Expression
Data Store
Memory

Inherit

3 Specify additional information based on the mode. The Data Type Assistant populates the Type
field based on your specification.
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Mode Data Types
Inherit You cannot specify a data type. You inherit the data type based on the scope that you

select for the data object:

• For charts that use MATLAB as the action language, if scope is Local, the data
infers its type from the context of the MATLAB code in the chart.

• If the scope is Parameter, the data inherits its type from the associated parameter,
which you can define in the Simulink model or in the MATLAB base workspace. See
“Share Parameters with Simulink and the MATLAB Workspace” on page 12-21.

• If the scope is Input, the data inherits its type from the Simulink input signal on
the designated input port. See “Share Input and Output Data with Simulink” on
page 12-19.

• If the scope is Output, the data inherits its type from the Simulink output signal on
the designated output port. See “Share Input and Output Data with Simulink” on
page 12-19.

Note Avoid inheriting data types from output signals. See “Avoid Inheriting Output
Data Properties from Simulink Blocks” on page 12-3.

• If the scope is Data Store Memory, the data inherits its type from the Simulink
data store to which you bind the data object. See “Access Data Store Memory from a
Chart” on page 12-23.

For more information, see “Inherit Data Types from Simulink Objects” on page 12-30.
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Mode Data Types
Built in Specify a data type from the drop-down list of supported data types:

• double: 64-bit double-precision floating point.
• single: 32-bit single-precision floating point.
• half: A half-precision data type occupies 16 bits of memory, but its floating-point

representation enables it to handle wider dynamic ranges than integer or fixed-
point data types of the same size. See “The Half-Precision Data Type in Simulink”
(Fixed-Point Designer).

• int64: 64-bit signed integer.
• int32: 32-bit signed integer.
• int16: 16-bit signed integer.
• int8: 8-bit signed integer.
• uint64: 64-bit unsigned integer.
• uint32: 32-bit unsigned integer.
• uint16: 16-bit unsigned integer.
• uint8: 8-bit unsigned integer.
• boolean: Boolean (1 = true; 0 = false).
• ml: Typed internally with the MATLAB array mxArray. Supported only in charts

that use C as the action language. The ml data type provides Stateflow data with
the benefits of the MATLAB environment, including the ability to assign the
Stateflow data object to a MATLAB variable or pass it as an argument to a MATLAB
function. ml data cannot have a scope outside the Stateflow hierarchy. That is, it
cannot have a scope of Input or Output. For more information, see “ml Data Type”
on page 16-22.

• string: String. Supported only in charts that use C as the action language. For
more information, see “Manage Textual Information by Using Strings” on page 24-
2.

Fixed point Specify this information about the fixed-point data:

• Signedness: Whether the data is signed or unsigned
• Word Length: Bit size of the word that holds the quantized integer. Large word

sizes represent large values with greater precision than small word sizes. The
default value is 16.

• Scaling: Method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors. The default method is Binary point.

For information, see “Fixed-Point Data Properties” on page 12-10.
Enumerated Specify the class name for the enumerated data type. For more information, see

“Define Enumerated Data Types” on page 23-5.
Bus object Specify the name of a Simulink.Bus object to associate with the Stateflow bus object

structure. Click Edit to create or edit a bus object in the Bus Editor. You can also
inherit bus object properties from Simulink signals.
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Mode Data Types
Expression Specify an expression that evaluates to a data type. Use one of these expressions:

• A call to the fixdt function to create a Simulink.NumericType object that
describes a fixed-point or floating-point data type. See “Specify Fixed-Point Data” on
page 26-2.

• A call to the type operator to specify the type of previously defined data. See
“Derive Data Types from Other Data Objects” on page 12-30.

• A Simulink.AliasType object that defines a data type alias in the MATLAB base
workspace. See “Specify Data Types by Using a Simulink Alias” on page 12-31.

For more information, see “Specify Data Properties by Using MATLAB Expressions” on
page 12-18.

4 To save the data type settings, click Apply.

The Data Type Assistant is available only through the Model Explorer.

Inherit Data Types from Simulink Objects
When you select Inherit: Same as Simulink from the Type drop-down list, data objects of scope
Input, Output, Parameter, and Data Store Memory inherit their data types from Simulink
objects.

Scope Description
Input Inherits type from the Simulink input signal connected to corresponding

input port in chart.
Output Inherits type from the Simulink output signal connected to corresponding

output port in chart.

Avoid inheriting data types from output signals. Values that back-propagate
from Simulink blocks can be unpredictable.

Parameter Inherits type from the corresponding MATLAB base workspace variable or
Simulink parameter in a masked subsystem.

Data Store Memory Inherits type from the corresponding Simulink data store.

To determine the data types that the objects inherit:

1 Build the Simulink model.
2 Open the Model Explorer.
3 In the Contents pane, examine the CompiledType column.

Derive Data Types from Other Data Objects
You can use the type operator to derive data types from other Stateflow data objects:

type(data_obj)

For example, in the model sf_bus_demo, the expression type(inbus) returns the data type of the
input structure inbus. Because inbus derives its type from the Simulink.Bus object COUNTERBUS,
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the data type of the local structure counterbus_struct also derives its data type from
COUNTERBUS.

After you build your model, the CompiledType column of the Model Explorer shows the type used in
the compiled simulation application.

Specify Data Types by Using a Simulink Alias
You can specify the type of Stateflow data by using a Simulink data type alias. For more information,
see Simulink.AliasType.

For example, suppose that you want to define a data type alias MyFloat that corresponds to the built-
in data type single. At the MATLAB command prompt, enter:

MyFloat = Simulink.AliasType;
MyFloat.BaseType = 'single';

To use this alias to specify the type of a data object, select the object in the Property Inspector or the
Model Explorer. In the Type field, enter the alias name MyFloat.

After you build your model, the CompiledType column of the Model Explorer shows the type used in
the compiled simulation application.

Strong Data Typing with Simulink Inputs and Outputs
By default, the Use Strong Data Typing with Simulink I/O chart property allows C charts to
interface directly with signals from Simulink models. The chart accepts only input signals whose data
type matches the type of the corresponding Stateflow data object. Otherwise, a type mismatch error
occurs. For example, by selecting Use Strong Data Typing with Simulink I/O, you can flag
mismatches between input or output fixed-point data in charts and their counterparts in Simulink
models. For more information, see “Specify Properties for Stateflow Charts” on page 28-2.

 Specify Type of Stateflow Data

12-31



If you clear the Use Strong Data Typing with Simulink I/O chart property, the chart converts
inputs signals of type double to the type of the corresponding input data object in the chart. The
chart converts output data objects to type double before exporting them as output signals to
Simulink models.

Note The Use Strong Data Typing with Simulink I/O chart property is provided for backward
compatibility. Clearing this check box can produce unpredictable results and is not recommended.

See Also
fixdt | Simulink.AliasType | Simulink.NumericType

More About
• “Set Data Properties” on page 12-5
• “Specify Properties for Stateflow Charts” on page 28-2
• “About Data Types in Simulink” (Simulink)
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Specify Size of Stateflow Data
In a Stateflow chart in a Simulink model, you specify the size of a data object by:

• Setting the Size property, as described in “Set Data Properties” on page 12-5. For more
information, see “Size” on page 12-7.

• Setting the Props.Array.Size property through the Stateflow API. For more information, see
Stateflow.Data.

Use one of these methods to specify the size:

• Inherit the size from a Simulink signal or from its definition in the Stateflow chart.
• Enter a numeric value.
• Enter a MATLAB expression.

Support for each sizing method depends on the scope of your data.

Scope of Data Method for Sizing Data
Inherit the Size Use Numeric Values Use MATLAB

Expressions
Local Only in charts that use

MATLAB as the action
language

Yes Yes

Constant No Yes Yes
Parameter Yes Yes Yes
Input Yes Yes Yes
Output Yes Yes Yes
Data store memory Yes No No

Inherit Data Size
To configure a Stateflow data object to inherit its size from the corresponding Simulink signal or its
definition in the chart, specify a size of –1. After you simulate or build your model, you can find the
inherited size of the data in the Model Explorer, under the Compiled Size column.

Note Charts cannot inherit data sizes from Simulink frame-based signals. For more information, see
“Sample- and Frame-Based Concepts” (DSP System Toolbox).

Specify Data Size by Using Numeric Values
When you specify data size by entering a numeric value, follow these guidelines:

• To specify a scalar, enter 1 or leave the field blank.
• To specify an n-by-1 column vector, enter n.
• To specify a 1-by-n row vector, enter [1 n].
• To specify an n-by-m matrix, enter [n m].
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• To specify an n-dimensional array, enter [d1 d2 ⋯ dn], where di is the size of the ith dimension.

In charts that use C as the action language, one-dimensional Stateflow vectors are compatible with
Simulink row or column vectors of the same size. For example, a Stateflow input data of size 3 is
compatible with a Simulink row vector of size [1 3] or a column vector of size [3 1].

Specify Data Size by Using Expressions
You can specify data size by entering a MATLAB expression that evaluates to one of the size
specifications described in “Specify Data Size by Using Numeric Values” on page 12-33. These
guidelines also apply:

• Expressions can contain a mix of numeric values, constants, parameters, variables, arithmetic
operations, and calls to MATLAB functions.

• Expressions that specify the size of a dimension must evaluate to a positive integer value.
• Expressions can only combine compatible values. For example, integers can only be combined

with other integers of the same type or with scalar doubles.
• If the expression contains an enumerated value, you must include the type prefix for consistency

with MATLAB naming rules. For example, Colors.Red is valid but Red is not. For more
information, see “Notation for Enumerated Values” on page 23-3.

• You cannot use a MATLAB expression to:

• Specify inherited data size. Do not use expressions that evaluate to -1.
• Specify the size of Stateflow input data that accepts frame-based data from Simulink. For more

information, see “Sample- and Frame-Based Concepts” (DSP System Toolbox).

Examples of Valid Data Size Expressions

These examples are valid MATLAB expressions for specifying data size in your chart:

• K+3, where K is a chart-level Stateflow constant or parameter.
• N/2, where N is a variable in the MATLAB base workspace.
• [P Q], where P and Q are Simulink parameters. Charts that use C as the action language

propagate these symbolic dimensions throughout the model. See “Propagate Symbolic Dimensions
of Stateflow Data” on page 12-35.

• 2*Colors.Red, where Red is an enumerated value of type Colors.
• size(u), where u is a chart-level variable. The function size enables you to specify the size of

one data object based on the size of another data object. This type of expression is useful in a
library chart that you reuse with data of different sizes. In other situations, you can improve the
clarity of your chart by avoiding the size function and specifying the size of the data directly.

• floor((a*b)/c), where a and c are scalars of type int16 and b is a scalar of type double.
• [fi(2,1,16,2) fi(4,1,16,2)]. This expression specifies a data size of [2 4] by calling the

function fi. This function returns signed fixed-point numbers with a word length of 16 and a
fraction length of 2.

Avoid Variables That Can Lead to Naming Conflicts

When a model contains multiple variables with identical names, the variable with the highest priority
is used to specify size.
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Priority Variable
1 Mask parameter
2 Model workspace variable
3 MATLAB base workspace variable
4 Stateflow data

To avoid confusion, do not specify data size by using a variable name that you define in multiple levels
of your model.

Propagate Symbolic Dimensions of Stateflow Data

When you select the model configuration parameter Allow symbolic dimension specification,
charts that use C as the action language can propagate the symbolic dimensions of Stateflow data
throughout the model. If you have Embedded Coder, the symbolic dimensions go into the generated
code for ERT targets. Specify the size of the symbolic dimensions by using Simulink parameters with
one of these storage classes:

• Define or ImportedDefine with a specified header file
• CompilerFlag
• A user-defined custom storage class that defines data as a macro in a specified header file

For more information, see “Allow symbolic dimension specification” (Simulink) and “Implement
Dimension Variants for Array Sizes in Generated Code” (Embedded Coder).

Stateflow charts that use MATLAB as the action language do not support symbolic dimension
propagation. To specify data size by using Simulink parameters, clear the Allow symbolic
dimension specification check box.

See Also
fi | size

More About
• “Vectors and Matrices in Stateflow Charts” on page 21-2
• “Stateflow Data Properties” on page 12-5
• “Reference Values by Name by Using Enumerated Data” on page 23-2
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Handle Integer Overflow for Chart Data
When Integer Overflow Can Occur
For some arithmetic operations, a processor may need to take an n-bit fixed-point value and store it in
m bits, where m ≠ n. If m < n, the reduced range of the value can cause an overflow for an arithmetic
operation. Some processors identify this overflow as Inf or NaN. Other processors, especially digital
signal processors (DSPs), handle overflows by saturating or wrapping the value.

For more information about saturation and wrapping for integer overflow, see “Saturation and
Wrapping” (Fixed-Point Designer).

Support for Handling Integer Overflow in Charts
For Stateflow charts in Simulink models, you can control whether or not saturation occurs for integer
overflow. To control overflow handling, set the Saturate on integer overflow chart property, as
described in “Specify Properties for Stateflow Charts” on page 28-2.

Chart Property
Setting

When to Use This Setting Overflow Handling Example of the Result

Selected Overflow is possible for data
in your chart and you want
explicit saturation protection
in the generated code.

Overflows saturate to either
the minimum or maximum
value that the data type can
represent.

An overflow associated with a
signed 8-bit integer saturates
to –128 or +127 in the
generated code.

Cleared You want to optimize
efficiency of the generated
code.

The handling of overflows
depends on the C compiler
that you use for generating
code.

The number 130 does not fit
in a signed 8-bit integer and
wraps to –126 in the
generated code.

Arithmetic operations for which you can enable saturation protection are:

• Unary minus: –a
• Binary operations: a + b, a – b, a * b, a / b, a ^ b
• Assignment operations: a += b, a –=b, a *= b, a /= b
• In C charts, increment and decrement operations: ++, --

When you select Saturate on integer overflow, be aware that:

• Saturation applies to all intermediate operations, not just the output or final result.
• The code generator can detect some cases when overflow is not possible. In these cases, the

generated code does not include saturation protection.

To determine whether clearing the Saturate on integer overflow check box is a safe option,
perform a careful analysis of your logic, including simulation if necessary. If saturation is necessary in
only some sections of the logic, encapsulate that logic in atomic subcharts or MATLAB functions and
define a different set of saturation settings for those units.

Effect of Integer Promotion Rules on Saturation
Charts use ANSI® C rules for integer promotion.
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• All arithmetic operations use a data type that has the same word length as the target word size.
Therefore, the intermediate data type in a chained arithmetic operation can be different from the
data type of the operands or the final result.

• For operands with integer types smaller than the target word size, promotion to a larger type of
the same word length as the target size occurs. This implicit cast occurs before any arithmetic
operations take place.

For example, when the target word size is 32 bits, an implicit cast to int32 occurs for operands
with a type of uint8, uint16, int8, or int16 before any arithmetic operations occur.

Suppose that you have the following expression, where y, u1, u2, and u3 are of uint8 type:

y = (u1 + u2) - u3;

Based on integer promotion rules, that expression is equivalent to the following statements:

uint8_T u1, u2, u3, y;
int32_T tmp, result;
tmp = (int32_T) u1 + (int32_T) u2;
result = tmp - (int32_T) u3;
y = (uint8_T) result;

For each calculation, the following data types and saturation limits apply.

Calculation Data Type Saturation Limits
tmp int32 (MIN_INT32, MAX_INT32)
result int32 (MIN_INT32, MAX_INT32)
y uint8 (MIN_UINT8, MAX_UINT8)

Suppose that u1, u2, and u3 are equal to 200. Because the saturation limits depend on the
intermediate data types and not the operand types, you get the following values:

• tmp is 400.
• result is 200.
• y is 200.

Impact of Saturation on Error Checks
Suppose that you set Wrap on overflow in the Diagnostics: Data Validity pane of the Model
Configuration Parameters dialog box to error or warning. When you select Saturate on integer
overflow, Stateflow does not flag cases of integer overflow during simulation. However, Stateflow
continues to flag the following situations:

• Out-of-range data violations based on minimum and maximum range checks
• Division-by-zero operations
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Identify Data by Using Dot Notation
To specify the path from the parent state to a data object, a qualified data name uses dot notation.
Dot notation is a way to identify data at a specific level of the Stateflow chart hierarchy. The first part
of a qualified data name identifies the parent object. Subsequent parts identify the children along a
hierarchical path.

For example, in this chart, the symbol data resides in the substate aa of the state a. The state and
transition actions use qualified data names to refer to this symbol.

• In the default transition, the action uses the qualified data name a.aa.data to specify a path
from the chart to the top-level state a, to the substate aa, and finally to data.

• In state a, the entry action uses the qualified data name aa.data to specify a path from the
substate aa to data.

• In state b, the entry action uses the qualified data name a.aa.data to specify a path from the
chart to the state a, to the substate aa, and then to data.

Resolution of Qualified Data Names
During simulation, Stateflow resolves the qualified data name by performing a localized search of the
chart hierarchy for a matching data object. The search begins at the hierarchy level where the
qualified data name appears:

• For a state action, the starting point is the state containing the action.
• For a transition label, the starting point is the parent of the transition source.

The resolution process searches each level of the chart hierarchy for a path to the data. If a data
object matches the path, the process adds that data object to the list of possible matches. Then, the
process continues the search one level higher in the hierarchy. The resolution process stops after it
searches the chart level of the hierarchy. If a unique match exists, the qualified data name resolves to
the matching path. Otherwise, the resolution process fails. Simulation stops, and you see an error
message.

This flow chart illustrates the different stages in the process for resolving qualified data names.
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Best Practices for Using Dot Notation
Resolving qualified data names:

• Does not perform an exhaustive search of all data.
• Does not stop after finding the first match.

To improve the chances of finding a unique search result when resolving qualified data names:

• Use specific paths in qualified data names.
• Give states unique names.
• Use states and boxes as enclosures to limit the scope of the path resolution search.

Examples of Qualified Data Name Resolution
Search Produces No Matches

In this chart, the entry action in state b contains the qualified data name aa.data. If the symbol
data resides in state aa, then Stateflow cannot resolve the qualified data name.
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This table lists the different stages in the resolution process for the qualified data name aa.data.

Stage Description Result
1 Starting in state b, search for an object aa that contains

data.
No match found.

2 Move up to the next level of the hierarchy (the chart
level). Search for an object aa that contains data.

No match found.

The search ends at the chart level with no match found for aa.data, resulting in an error.

To avoid this error, in the entry action of state b, specify the data with the more specific qualified data
name a.aa.data.

Search Produces Multiple Matches

In this chart, the entry action in state a contains two instances of the qualified data name aa.data. If
both states named aa contain a data object named data, then Stateflow cannot resolve the qualified
data name.

This table lists the different stages in the resolution process for the qualified data name aa.data.

Stage Description Result
1 Starting in state a, search for an object aa that contains

data.
Match found.

2 Move up to the next level of the hierarchy (the chart
level). Search for an object aa that contains data.

Match found.

The search ends at the chart level with two matches found for aa.data, resulting in an error.

To avoid this error:

• Use a more specific qualified data name. For instance:

• To specify the data object in the substate of state a, use the qualified data name a.aa.data.
• To specify the data object in the top-level state aa, use the qualified data name /aa.data.

• Rename one of the states containing data.
• Enclose the top-level state aa in a box or in another state. Adding an enclosure prevents the

search process from detecting data in the top-level state.
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See Also

More About
• “States” on page 2-8
• “Transitions” on page 2-21
• “State Hierarchy” on page 2-17
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Resolve Data Properties from Simulink Signal Objects
Stateflow® local and output data in charts can explicitly inherit properties from Simulink.Signal
objects in the model workspace or base workspace. This process is called signal resolution and
requires that the resolved signal have the same name as the chart output or local data.

For information about Simulink® signal resolution, see “Symbol Resolution” (Simulink) and “Symbol
Resolution Process” (Simulink).

Inherited Properties

When Stateflow local or output data resolve to Simulink signal objects, they inherit these properties:

• Size
• Complexity
• Type
• Minimum value
• Maximum value
• Initial value
• Storage class

Storage class controls the appearance of chart data in the generated code. See “Organize Parameter
Data into a Structure by Using Struct Storage Class” (Embedded Coder).

Enable Signal Resolution

To enable explicit signal resolution, follow these steps:

1 Set Configuration Parameters > Diagnostics > Data Validity > Signal resolution to a value
other than None. For more information about the other options, see “Signal resolution”
(Simulink).

2 In the model workspace, base workspace, or data dictionary, define a Simulink.Signal object
with the properties you want your Stateflow data to inherit. For more information about creating
Simulink signals, see Simulink.Signal (Simulink).

3 Add output or local data to a chart.
4 Enter a name for your data that matches the name of the Simulink.Signal object.
5 In the data properties, select the Data must resolve to signal object check box. After you

select this check box, the dialog box removes or dims the properties that your data inherits from
the signal.

A Simple Example

This model shows how a chart resolves local and output data to Simulink.Signal objects.
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In the base workspace, there are three Simulink.Signal objects, each with a different set of
properties.

• y1 has these properties: Type = double, Dimensions = 1, and Storage Class = Model
default.

• y2 has these properties: Type = uint32, Dimensions = [2 2], and Storage Class = Auto.
• local has these properties: Type = single, Dimensions = 1, and Storage Class =

ExportedGlobal.

The chart contains three data objects — two outputs and a local variable — that resolve to a signal
with the same name.

When you build the model, each data object inherits the properties of the identically named signal.
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The generated code declares the data based on the storage class that the data inherits from the
associated Simulink signal. For example, the header file below declares local to be an exported global
variable:

/*
 * Exported States
 *
 * Note: Exported states are block states with an exported global
 * storage class designation.  Code generation will declare the memory for these
 * states and exports their symbols.
 *
 */
extern real32_T local;                  /* '<Root>/Signal Object Chart' */

See Also
Simulink.Signal

More About
• “Symbol Resolution” (Simulink)
• “Organize Parameter Data into a Structure by Using Struct Storage Class” (Embedded Coder)
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Active State Data

• “Monitor State Activity Through Active State Data” on page 13-2
• “Simplify Stateflow Charts by Incorporating Active State Output” on page 13-7
• “View State Activity by Using the Simulation Data Inspector” on page 13-12
• “View Stateflow States in the Logic Analyzer” on page 13-15
• “Check State Activity by Using the in Operator” on page 13-18
• “Model An Intersection Of One-Way Streets” on page 13-24
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Monitor State Activity Through Active State Data
Active state data can simplify the design of some Stateflow charts because you do not have to
maintain data that is highly correlated to the chart hierarchy. When you enable active state data,
Stateflow reports state activity through an output port to Simulink or as local data in your chart.
Using active state data, you can:

• Avoid manual data updates reflecting chart activity.
• View chart activity by using a scope, the Simulation Data Inspector, or the Logic Analyzer.
• Log chart activity for diagnostics.
• Drive other Simulink subsystems.

Types of Active State Data
When you enable active state data, Stateflow creates a Boolean or enumerated data object to match
the activity type.

Activity Type Active State Data Type Description
Self activity Boolean Is the state active?
Child activity Enumeration Which child is active?
Leaf state activity Enumeration Which leaf state is active?

For self-activity of a chart or state, the data value is true when active and false when inactive. For
child and leaf state activity, the data is an enumerated type. Stateflow can define the enumeration
class or you can create the definition manually. For more information, see “Define State Activity
Enumeration Type” on page 13-3.

You can enable active state data for a Stateflow chart, state, state transition table, or atomic
subchart. This table lists the activity types supported by each kind of Stateflow object.

Stateflow Object Self-Activity Child Activity Leaf State Activity
Charts Not supported Supported Supported
States with exclusive
(OR) decomposition

Supported Supported Supported

States with parallel
(AND) decomposition

Supported Not supported Not supported

Atomic subcharts Supported at the
container level

Supported inside the
subchart

Supported inside the
subchart

State transition tables Not supported Supported Supported

Enable Active State Data
You can enable active state data in either the Property Inspector or the Model Explorer.

• Property Inspector

1 To open the Property Inspector, in the Modeling tab, click Property Inspector.
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2 In the Stateflow Editor canvas, select the Stateflow object to monitor.
3 In the Monitoring section of the Property Inspector, select the Create output for

monitoring check box and edit the active state data properties.
• Model Explorer

1 To open the Model Explorer, in the Modeling tab, click Model Explorer.
2 In the Model Hierarchy pane, double-click the Stateflow object to monitor.
3 In the Stateflow object pane, select the Create output for monitoring check box and edit

the active state data properties.

Active State Data Properties
Activity Type

Type of state activity to monitor. Choose from these options:

• Self activity
• Child activity
• Leaf state activity

Data Name

Name of the active state data object. For more information, see “Guidelines for Naming Stateflow
Objects” on page 2-5.

Enum Name

Name of the enumerated data type for the active state data object. This property applies only to child
and leaf state activity.

Define Enumerated Type Manually

Specifies whether you define the enumerated data type manually. This property applies only to child
and leaf state activity. For more information, see “Define State Activity Enumeration Type” on page
13-3.

Set Scope for Active State Data
By default, active state data has a scope of Output. Stateflow creates an output port on the chart
block in the Simulink model.

To access active state data inside a Stateflow chart, change the scope to Local in the Symbols pane
or in the Model Explorer. For more information, see “Set Data Properties” on page 12-5.

You can specify information for code generation by binding the local active state data to a
Simulink.Signal object. Modify the properties of the object through the CoderInfo property. For
more information, see Simulink.CoderInfo.

Define State Activity Enumeration Type
By default, Stateflow defines the enumeration data type for child and leaf activity. If you select the
Define enumerated type manually check box and no enumeration data type definition exists, then
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Stateflow provides a link to create a definition. Clicking the Create enum definition from template
link generates a customizable definition.

The enumeration data type definition contains one enumerated value for each state name. The
definition also contains an enumerated value that serves as the default value for the enumeration
data type and indicates that no substate is active. For example, in the model sf_car, the state
gear_state contains four child states that correspond to the gears in a car: first, second, third,
fourth. The model specifies the child activity data type with this enumeration class definition:

classdef gearType < Simulink.IntEnumType 
   enumeration
        None(0),
        first(1),
        second(2),
        third(3),
        fourth(4)
   end
...
end

You can customize this definition by reordering the enumerated values or renaming the default value.
Do not rename the enumerated values that correspond to states or use the getDefaultValue
method to specify a different default value. For more information, see “Define Enumerated Data
Types” on page 23-5.

Tip The base storage type for automatically created enumerations defaults to Native Integer. For
a smaller memory footprint, in the Optimization pane of the Configuration Parameters dialog box,
change the value of the Base storage type for automatically created enumerations field. For
more information, see “Base storage type for automatically created enumerations” (Simulink Coder).
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State Activity and Parallel States
In states with parallel (AND) decomposition, child activity and leaf state activity are not available
because the parallel substates are active simultaneously.

When you enable leaf state activity in a chart or state, a substate with parallel (AND) decomposition
is treated as a leaf state. For example, suppose that you enable leaf state activity for this chart.
Because state B has parallel decomposition, its substates B1 and B2 are active simultaneously so B is
treated as a leaf state of the chart.

During simulation, a scope connected to the active state output data shows the enumerated values for
the leaf states A1, A2, and B.
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Limitations for Active State Data
• Enabling child activity output for states that have no children results in an error at compilation

and run time.
• You cannot enable child or leaf state activity in charts or states with parallel decomposition. To

check state activity in substates of parallel states, use the in operator. For more information, see
“Check State Activity by Using the in Operator” on page 13-18.

• Active state data is not supported in charts that use classic or Mealy semantics when the chart
property Initialize outputs every time chart wakes up is enabled. For more information, see
“Initialize outputs every time chart wakes up” on page 28-6.

See Also
Simulink.Signal (Simulink) | Simulink.CoderInfo (Simulink)

More About
• “Simplify Stateflow Charts by Incorporating Active State Output” on page 13-7
• “View State Activity by Using the Simulation Data Inspector” on page 13-12
• “Check State Activity by Using the in Operator” on page 13-18
• “Guidelines for Naming Stateflow Objects” on page 2-5
• “Define State Activity Enumeration Type” on page 13-3
• “Base storage type for automatically created enumerations” (Simulink Coder)
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Simplify Stateflow Charts by Incorporating Active State Output
Active state data can simplify the design of some Stateflow® charts because you do not have to
maintain data that is highly correlated to the chart hierarchy. When you enable active state data,
Stateflow reports state activity through an output port to Simulink® or as local data in your chart.
This example shows how to simplify the design of a Stateflow chart by adding active state output
data. For more information, see “Monitor State Activity Through Active State Data” on page 13-2.

In the legacy model old_sf_car, the Stateflow chart shift_logic tracks child state activity in
gear_state by updating the value of the output data gear.

By incorporating active state data, the model sf_car avoids manual data updates reflecting chart
activity. Instead, the chart outputs child state activity automatically through the active state output
gear.
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Modify the Model

To simplify the design of the old_sf_car model, eliminate data that is highly correlated to the chart
hierarchy and enable automatic monitoring of child state activity in gear_state.

Step 1: Eliminate Manual Tracking of State Activity

1 In the model old_sf_car, open the chart shift_logic.
2 Open the Symbols pane. In the Modeling tab, select Symbols Pane.
3 In each substate of gear_state, delete the entry action assigning a value to the output data

variable gear.
4 In the Symbols pane, right-click the output variable gear and select Delete.

Step 2: Enable Active State Output

1 Open the Property Inspector. In the Modeling tab, select Property Inspector.
2 In the Stateflow Editor, select the state gear_state.
3 In the Property Inspector, select the Create output for monitoring check box and choose

Child activity.
4 In the Data name field, enter the name gear of the active state data.
5 In the Enum name field, enter the name gearType of the enumeration data type for the active

state data.
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Step 3: Connect Signal to Simulink Blocks

1 In the Simulink model, add a Cast To Double block. This block converts the enumerated output
from the Stateflow chart to a signal of type double. For more information, see Data Type
Conversion (Simulink).

2 Connect the output signal gear from the shift_logic chart to the Cast To Double block.
3 Connect the output signal from the Cast To Double block to the Transmission subsystem.
4 Add a Memory (Simulink) block. This block prevents an algebraic loop between the Stateflow

chart and the Threshold Calculation subsystem.
5 Make a second connection from the output signal from the Cast To Double block to the Memory

block.
6 Connect the output of the Memory block to the Threshold Calculation subsystem.
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View Simulation Results

The output signal gear is an enumerated type managed by Stateflow. You can view the active state
output signal gear during simulation by connecting the chart to a Scope block. The names of the
enumerated values match the names of the substates in gear_state. The additional enumerated
value of None indicates time steps when no child is active.
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See Also
Data Type Conversion | Memory

More About
• “Monitor State Activity Through Active State Data” on page 13-2
• “View State Activity by Using the Simulation Data Inspector” on page 13-12
• “Manage Symbols in the Stateflow Editor” on page 34-2
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View State Activity by Using the Simulation Data Inspector
You can use the Simulation Data Inspector to log state activity and data for your Stateflow chart in a
Simulink model. With the Simulation Data Inspector, you can view and compare:

• Data from your chart
• Leaf chart activity
• Child chart activity
• Child state activity
• Self state activity
• Leaf state activity

Log to the Simulation Data Inspector from Stateflow
In this exercise, you use the Simulation Data Inspector to monitor the active state outputs for the
Stateflow chart in the model sf_car.

To log a signal with the Simulation Data Inspector, highlight the signal line that you want to log.
Right-click the gear signal and choose Log Selected Signals from the context menu. A logging
badge appears next to the gear signal, indicating that the data from that signal is logged when the
model is run.

The logging badge  marks logged signals in the model.

To log the active state data from gear_state:

1 Open the Stateflow chart.
2 To select gear_state, click gear_state.
3 On the Simulink Editor toolbar, in the Simulation tab, click Log Child Activity.
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After running one or more simulations with signals marked for logging, click Simulation Data

Inspector button  on the Simulink editor toolbar and view your data. Multiple runs show up in
the Inspect pane and can be viewed together. To choose which signals you want to plot, use the
check boxes next to the signal names.
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See Also

More About
• “Monitor State Activity Through Active State Data” on page 13-2
• “Simplify Stateflow Charts by Incorporating Active State Output” on page 13-7
• Simulation Data Inspector (Simulink)
• “Inspect Simulation Data” (Simulink)
• “Compare Simulation Data” (Simulink)
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View Stateflow States in the Logic Analyzer
Use the Logic Analyzer app to visualize and measure transitions and states over time. With the
Logic Analyzer, you can visualize:

• Leaf chart activity
• Child chart activity
• Child state activity
• Self state activity
• Leaf state activity

The Logic Analyzer allows you to measure the output over time and add triggers to identify the
output values at specified events.

Note To use the Logic Analyzer, you must have DSP System Toolbox™ or SoC Blockset™ license.

To follow along with this tutorial, open the sf_car model. In this model, you can visualize the
behavior of the engine, the gear state, and the vehicle speed.

Add Signals and States for Logging
To view a signal in the Logic Analyzer, you must mark the signal or state for logging.

1 Open the shift_logic chart.
2 Select the gear_logic state.
3 On the toolbar, in the Simulation tab, click Log Child Activity.
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You will see the logging badge  in the corner of the state.
4 Return to the Simulink canvas. Click on the vehicle speed signal, and in the signal tab, select

the Log Signals button

5 Repeat step 4 for the transmission speed and Engine RPM signals.

You will see the logging badge above these signals.

View Logged Output in Logic Analyzer
1 In Simulink, on the Simulation tab, open the Review Results app library and select the Logic

Analyzer. 
2 To run the simulation, in the Logic Analyzer window, select the Run button.

3 Drag the yellow cursor to different points in the output to see the different signal values. You can
see the reaction of the engine RPMs as the car gears change.
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See Also
Logic Analyzer

More About
• “Log Simulation Output for States and Data” on page 33-47
• “View State Activity by Using the Simulation Data Inspector” on page 13-12
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Check State Activity by Using the in Operator
In a Stateflow chart with parallel state decomposition, substates can be active at the same time. To
coordinate the behavior of different parallel states, one state can check the substate activity of
another state and react accordingly. For example, one state can keep its substates synchronized with
the substates of the other state.

The in Operator
To check if a state is active in a given time step, call the in operator in state and transition actions.
The in operator takes a qualified state name state_name and returns a Boolean output. If state
state_name is active, in returns a value of 1 (true). Otherwise, in returns a value of 0 (false).

in(state_name)

For example, in this chart, Fan and Heater are parallel (AND) states. Each state has a pair of
substates, On and Off. Every time the chart wakes up, the active substate of the state Fan alternates
between Fan.Off and Fan.On. In the state Heater, the conditions on the transitions check the
substate activity in Fan and keep the states synchronized. A change of active substate in Fan causes
a corresponding change of active substate in Heater.

Resolution of State Activity
Checking state activity is a two-part process. First, the Stateflow chart resolves the qualified state
name by performing a localized search of the chart hierarchy for a matching state. Then, the chart
determines if the matching state is active.

The search begins at the hierarchy level where the in operator is called with the qualified state
name:

• For a state action, the starting point is the state containing the action.
• For a transition label, the starting point is the parent of the transition source.

The resolution process searches each level of the chart hierarchy for a path to the state. If a state
matches the path, the process adds that state to the list of possible matches. Then, the process
continues the search one level higher in the hierarchy. The resolution process stops after it searches
the chart level of the hierarchy. If a unique match exists, the chart checks if the matching state is
active. Otherwise, the resolution process fails. Simulation stops with an error.
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This flow chart illustrates the different stages in the process for checking state activity.

Best Practices for Checking State Activity
To resolve the state activity, a Stateflow chart does not perform an exhaustive search for all states
and does not stop after finding the first match. To improve the chances of finding a unique search
result:

• Use specific paths in qualified data names.
• Give states unique names.
• Use states and boxes as enclosures to limit the scope of the path resolution search.
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Examples of State Activity Resolution
Search Finds Local Copy of Substate

This chart contains two parallel states, A and B. Each state has a pair of substates, A1 and A2. A1 has
substates X and Y, while A2 has substates P and Q. In A.A2 and in B.A2, the condition in(A1.Y)
guards the transition from P to Q.

The chart resolves each qualified state name as the local copy of the substate Y:

• In the state A, the condition in(A1.Y) checks the activity of state A.A1.Y.
• In the state B, the condition in(A1.Y) checks the activity of state B.A1.Y.

For example, this table lists the different stages in the resolution process for the transition condition
in state A.

Stage Description Result
1 Starting in state A.A2, the chart searches for the state

A.A2.A1.Y.
No match found.

2 Moving up to the next level of the hierarchy (state A),
the chart searches for the state A.A1.Y

Match found.

3 Moving up to the next level of the hierarchy (the chart
level), the chart searches for the state A1.Y

No match found.

The search ends with a single match found. Because the resolution algorithm localizes the scope of
the search, the in operator guarding the transition in A.A2 detects only the state A.A1.Y. The in
operator guarding the transition in B.A2 detects only the state B.A1.Y.

To check the state activity of the other copy of Y, use more specific qualified state names:

• In state A, use the expression in(B.A1.Y).
• In state B, use the expression in(A.A1.Y).

Search Produces No Matches

In this chart, the during action in state A.B contains the expression in(Q.R). Stateflow cannot
resolve the qualified state name Q.R.
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This table lists the different stages in the resolution process.

Stage Description Result
1 Starting in state A.B, the chart searches for the state

A.B.Q.R.
No match found.

2 Moving up to the next level of the hierarchy (state A),
the chart searches for the state A.Q.R.

No match found.

3 Moving up to the next level of the hierarchy (the chart
level), the chart searches for the state Q.R.

No match found.

The search ends at the chart level with no match found for Q.R, resulting in an error.

To avoid this error, use a more specific qualified state name. For instance, check state activity by
using the expression in(P.Q.R).

Search Finds the Wrong State

In this chart, the during action in state A.B contains the expression in(Q.R). When resolving the
qualified state name Q.R, Stateflow cannot detect the substate A.B.P.Q.R.

This table lists the different stages in the resolution process.

Stage Description Result
1 Starting in state A.B, the chart searches for the state

A.B.Q.R.
No match found

2 Moving up to the next level of the hierarchy (state A),
the chart searches for the state A.Q.R.

No match found.

3 Moving up to the next level of the hierarchy (the chart
level), the chart searches for the state Q.R.

Match found.
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The search ends with a single match found. The in operator detects only the substate R of the top-
level state Q.

To check the state activity of A.B.P.Q.R, use a more specific qualified state name. For instance, use
the expression in(P.Q.R).

Search Produces Multiple Matches

In this chart, the during action in state A.B contains the expression in(P.Q.R). Stateflow cannot
resolve the qualified state name P.Q.R.

This table lists the different stages in the resolution process.

Stage Description Result
1 Starting in state A.B, search for the state A.B.P.Q.R. Match found
2 Moving up to the next level of the hierarchy (state A),

the chart searches for the state A.P.Q.R.
No match found.

3 Moving up to the next level of the hierarchy (the chart
level), the chart searches for the state P.Q.R.

Match found.

The search ends at the chart level with two matches found for P.Q.R, resulting in an error.

To avoid this error:

• Use a more specific qualified state name. For example, to check the substate activity inside B, use
the expression in(B.P.Q.R).

• Rename one of the matching states.
• Enclose the top-level state P in a box or another state. Adding an enclosure prevents the search

process from detecting substates in the top-level state.
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See Also
in | after

More About
• “State Hierarchy” on page 2-17
• “Monitor State Activity Through Active State Data” on page 13-2
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Model An Intersection Of One-Way Streets
This example models an intersection of one-way roads controlled by a Stateflow® traffic light system.
The Stateflow chart tracks the state of each traffic light by using active state output. The behavior of
the traffic lights is controlled by parameters on the Stateflow mask.

Intersection Model

The phase of the animated traffic lights is determined by the output data from the Stateflow chart.
The value of the output data corresponds to the active child of the substates Light1Controller and
Light2Controller, respectively.

Traffic Controller

The Stateflow chart Traffic Controller manages two traffic controllers in parallel. Each controller
determines the phase of the downstream traffic light based on traffic congestion at the intersection,
an input from Simulink®, and parameters on the chart's mask. For more information, see “Create a
Mask to Share Parameters with Simulink” on page 28-13.

13 Active State Data

13-24



Active State Output

The child activity of both Light1Controller and Light2Controller is output to Simulink
through a data of enumerated type. Stateflow manages this data automatically. For more information,
see “Monitor State Activity Through Active State Data” on page 13-2.

• Open one of the Light controllers (for instance, Light1Controller).
• Right click and select Properties.
• Notice that the Create output for monitoring option is selected and set to Child activity.
• The field Data name corresponds to the name of the output data on the linked instance.
• This output is mapped to a chart level output called Light1.
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Simulation

Simulate the model to see the traffic light blocks animate.

See Also

More About
• “Monitor Chart Activity by Using Active State Data”
• “Monitor State Activity Through Active State Data” on page 13-2
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• “Model a Distributed Traffic Control System by Using Messages” on page 15-20
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• “Set Properties for an Event” on page 14-5
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• “Activate a Simulink Block by Sending Output Events” on page 14-14
• “Broadcast Local Events to Synchronize Parallel States” on page 14-23
• “Control Chart Behavior by Using Implicit Events” on page 14-26
• “Yo-Yo Control of Satellites” on page 14-29
• “Model a Security System” on page 14-32
• “Server Queueing System” on page 14-35
• “Tic-Tac-Flow: Model of a Hand-held Game” on page 14-36

14



Synchronize Model Components by Broadcasting Events
An event is a Stateflow object that can trigger actions in one of these objects:

• A parallel state in a Stateflow chart
• Another Stateflow chart
• A Simulink triggered or function-call subsystem

For simulation purposes, there is no limit to the number of events in a Stateflow chart. However, for
code generation, the underlying C compiler enforces a theoretical limit of 231-1 events.

Types of Events
An implicit event is a built-in event that is broadcast during chart execution. These events are implicit
because you do not define or trigger them explicitly. For more information, see “Control Chart
Behavior by Using Implicit Events” on page 14-26.

An explicit event is an event that you define explicitly. Explicit events can have one of these types.

Type Description
Input Event Event that is broadcast to a Stateflow chart from outside the chart. For

more information, see “Activate a Stateflow Chart by Sending Input
Events” on page 14-7 and “Design Human-Machine Interface Logic by
Using Stateflow Charts” on page 35-24.

Local Event Event that can occur anywhere in a Stateflow chart but is visible only in
the parent object and its descendants. Local events are not supported in
standalone Stateflow charts in MATLAB. For more information, see
“Broadcast Local Events to Synchronize Parallel States” on page 14-23.

Output Event Event that occurs in a Stateflow chart but is broadcast to a Simulink block.
Output events are not supported in standalone Stateflow charts in
MATLAB. For more information, see “Activate a Simulink Block by Sending
Output Events” on page 14-14.

You can define local events at these levels of the Stateflow hierarchy.

Level of Hierarchy Visibility
Chart Local event is visible to the chart and all its states and substates.
Subchart Local event is visible to the subchart and all its states and substates.
State Local event is visible to the state and all its substates.

Define Events in a Chart
You can add events to a Stateflow chart by using the Symbols pane, the Stateflow Editor menu, or the
Model Explorer.

Add Events Through the Symbols Pane

1 In the Modeling tab, under Design Data, select Symbols Pane.
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2
Click the Create Event icon .

3 In the row for the new event, under TYPE, click the icon and choose:

• Input Event
• Local Event
• Output Event

4 Edit the name of the event.
5 For input and output events, click the PORT field and choose a port number.
6 To specify properties for the event, open the Property Inspector. In the Symbols pane, right-click

the row for the event and select Explore. For more information, see “Set Properties for an
Event” on page 14-5.

Add Events by Using the Stateflow Editor Menu

1 In a Stateflow chart in a Simulink model, select the menu option corresponding to the type of the
event that you want to add.

Type Menu Option
Input Event In the Modeling tab, under Design Data, click Event Input.
Output Event In the Modeling tab, under Design Data, click Event Output.
Local Event In the Modeling tab, under Design Data, click Local Event.

2 In the Event dialog box, specify data properties. For more information, see “Set Properties for an
Event” on page 14-5.

Add Events Through the Model Explorer

1 In the Modeling tab, under Design Data, select Model Explorer.
2 In the Model Hierarchy pane, select the object in the Stateflow hierarchy where you want to

make the new event visible. The object that you select becomes the parent of the new event.
3 In the Model Explorer menu, select Add > Event. The new event with a default definition

appears in the Contents pane of the Model Explorer.
4 In the Event pane, specify the properties of the event. For more information, see “Set Properties

for an Event” on page 14-5.

Access Event Information from a Stateflow Chart
You can display the properties of an input or local event, or open the destination of an output event
directly from a Stateflow chart. Right-click the state or transition that contains the event of interest
and select Explore. A context menu lists the names and scopes of all resolved symbols in the state or
transition. Selecting an input or local event from the context menu displays its properties in the
Model Explorer. Selecting an output event from the context menu opens the Simulink subsystem or
Stateflow chart associated with the event.
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Best Practices for Using Events in Stateflow Charts
Use the send Command to Broadcast Explicit Events in Actions

To broadcast local or output events in state or transition actions, use the send operator. For example,
to broadcast an output event when a transition is valid, avoid using the name of the event as a
condition action.

{output_event;}

Instead, call the send operator.

{send(output_event);}

Although both actions are valid, using the send operator enhances readability of a chart and ensures
that explicit events are not mistaken for data.

Avoid Using Explicit Events to Trigger Conditional Actions

Use conditions on transitions instead of events when you want to:

• Represent conditional statements, for example, [x < 1] or [x == 0].
• Represent a change of data value, for example, [hasChanged(x)].

Avoid Using the Implicit Event enter to Check State Activity

To check state activity, use the in operator instead of the implicit event enter. For more information,
see “Check State Activity by Using the in Operator” on page 13-18.

Do Not Mix Edge-Triggered and Function-Call Input Events in a Chart

Mixing input events that use edge triggers and function calls results in a compile-time error.

See Also
enter | in | send

More About
• “Set Properties for an Event” on page 14-5
• “Broadcast Local Events to Synchronize Parallel States” on page 14-23
• “Activate a Stateflow Chart by Sending Input Events” on page 14-7
• “Activate a Simulink Block by Sending Output Events” on page 14-14
• “Guidelines for Naming Stateflow Objects” on page 2-5
• “Identify Data by Using Dot Notation” on page 12-38
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Set Properties for an Event
An event is a Stateflow object that can trigger actions in a parallel state, another Stateflow chart, or a
Simulink triggered or function-call subsystem. For more information, see “Synchronize Model
Components by Broadcasting Events” on page 14-2.

When you create Stateflow charts in Simulink models, you can specify event properties in either the
Property Inspector or the Model Explorer.

• To use the Property Inspector:

1 In the Modeling tab, under Design Data, select Symbols Pane and Property Inspector.
2 In the Symbols pane, select the event.
3 In the Property Inspector pane, edit the event properties.

• To use the Model Explorer:

1 In the Modeling tab, under Design Data, select Model Explorer.
2 In the Contents pane, select the event.
3 In the Message pane, edit the event properties.

You can also specify event properties programmatically by using Stateflow.Event objects. For
more information about the Stateflow programmatic interface, see “Overview of the Stateflow API”.

Stateflow Event Properties
Name

Name of the event. Actions reference events by their names. Names must begin with an alphabetic
character, cannot include spaces, and cannot be shared by sibling events. For more information, see
“Guidelines for Naming Stateflow Objects” on page 2-5.

Scope

Scope of the event. The scope specifies where the event occurs relative to the parent object.

Scope Description
Local Event that can occur anywhere in a Stateflow machine but is visible only

in the parent object and its descendants. For more information, see
“Broadcast Local Events” on page 14-23.

Input from Simulink Event that occurs in a Simulink block but is broadcast to a Stateflow
chart. For more information, see “Activate a Stateflow Chart by Sending
Input Events” on page 14-7.

Output to Simulink Event that occurs in a Stateflow chart but is broadcast to a Simulink
block. For more information, see “Activate a Simulink Block by Sending
Output Events” on page 14-14.

Port

Index of the port associated with the event. This property applies only to input and output events.
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• For input events, port is the index of the input signal that triggers the event. For more
information, see “Association of Input Events with Control Signals” on page 14-9.

• For output events, port is the index of the signal that outputs this event. For more information, see
“Association of Output Events with Output Ports” on page 14-22.

Trigger

Type of signal that triggers an input or output event. For more information, see “Activate a Stateflow
Chart by Sending Input Events” on page 14-7 and “Activate a Simulink Block by Sending Output
Events” on page 14-14.

Debugger Breakpoints

Option for setting debugger breakpoints at the start or end of an event broadcast. Available
breakpoints depend on the type of the event.

Type of Event Start of Broadcast End of Broadcast
Local Event Available Available
Input Event Available Not available
Output Event Not available Not available

For more information, see “Set Breakpoints to Debug Charts” on page 33-3.

Description

Description of the event. You can enter brief descriptions of events in the hierarchy.

Document Link

Link to online documentation for the event. You can enter a web URL address or a MATLAB command
that displays documentation in a suitable online format, such as an HTML file or text in the MATLAB
Command Window. When you click the Document link hyperlink, Stateflow displays the
documentation.

See Also

More About
• “Synchronize Model Components by Broadcasting Events” on page 14-2
• “Broadcast Local Events” on page 14-23
• “Activate a Stateflow Chart by Sending Input Events” on page 14-7
• “Activate a Simulink Block by Sending Output Events” on page 14-14
• “Guidelines for Naming Stateflow Objects” on page 2-5
• “Identify Data by Using Dot Notation” on page 12-38
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Activate a Stateflow Chart by Sending Input Events
An input event occurs outside a Stateflow chart but is visible only in that chart. This type of event
enables other Simulink blocks, including other Stateflow charts, to notify a specific chart of events
that occur outside it. To define an input event:

1 Add an event to the Stateflow chart, as described in “Define Events in a Chart” on page 14-2.
2 Set the Scope property for the event to Input from Simulink. A single trigger port appears

at the top of the Stateflow block in the Simulink model.
3 An input event can activate a Stateflow chart through a change in a control signal (an edge

trigger) or a function call from a Simulink block.

• To specify an edge-triggered input event, set the Trigger property to one of these options:

• Rising
• Falling
• Either

• To specify a function-call input event, set the Trigger property to Function call.

You cannot mix edge-triggered and function-call input events in the same Stateflow chart. Mixing
these input events results in a compile-time error.

For more information, see “Synchronize Model Components by Broadcasting Events” on page 14-2.

Activate a Stateflow Chart by Using Edge Triggers
An edge-triggered input event causes a Stateflow chart to execute during the current time step of
simulation. With this type of input event, a change in a control signal acts as a trigger.

Edge Trigger Type Description
Rising Rising edge trigger. Chart is activated when the control signal changes

from either zero or a negative value to a positive value.
Falling Falling edge trigger. Chart is activated when the control signal changes

from a positive value to either zero or a negative value.
Either Either rising or falling edge trigger. Chart is activated when the control

signal crosses zero as it changes in either direction.

In all cases, the value of the control signal must cross zero to be a valid edge trigger. For example, a
signal that changes from -1 to 1 is a valid rising edge trigger. A signal that changes from 1 to 2 is not
a valid rising edge trigger.

When to Use Edge-Triggered Input Events

Use an edge-triggered input event to activate a chart when your model requires regular or periodic
chart execution. For example, in this model, an edge-triggered input event activates the Edge to
Function chart at regular intervals. For more information, see “Schedule a Subsystem Multiple Times
in a Single Step” on page 30-6.
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Behavior of Multiple Edge-Triggered Input Events

At any given time step, input events are checked in ascending order based on their port numbers. The
chart awakens once for each valid event. For edge-triggered input events, multiple edges can occur in
the same time step, waking the chart more than once in that time step. In this situation, the events
wake the chart in ascending order based on their port numbers.

Activate a Stateflow Chart by Using Function Calls
A function-call input event causes a Stateflow chart to execute during the current time step of
simulation. With this type of input event, you must also define a function-call output event for the
block that calls the Stateflow chart.

When to Use Function-Call Input Events

Use a function-call input event to activate a chart when your model requires access to output data
from the chart in the same time step as the function call. For example, in this model, a function-call
input event activates the Looping Scheduler chart. For more information, see “Schedule a Subsystem
Multiple Times in a Single Step” on page 30-6.
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Behavior of Multiple Function-Call Input Events

For function-call input events, only one trigger event exists. The caller of the event explicitly calls and
executes the chart. Only one function call is valid in a single time step.

Association of Input Events with Control Signals
When you define one or more input events in a chart, a single trigger port appears on the top side of
the chart block. Multiple external Simulink blocks can trigger the input events through a vector of
signals connected to the trigger port. The Port property of an input event specifies the index into the
control signal vector that connects to the trigger port.

By default, Port values appear in the order that you add input events. You can change these
assignments by modifying the Port property of the events. When you change the Port property for an
input event, the Port values for the remaining input events automatically renumber.

Data Types Allowed for Input Events
For multiple input events to a trigger port, all signals must have the same data type. Using signals of
different data types as input events results in an error during simulation. For example, you can mux
two input signals of type double to use as input events to a chart.
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You cannot mux two input signals of different data types, such as boolean and double.

See Also

More About
• “Synchronize Model Components by Broadcasting Events” on page 14-2
• “Set Properties for an Event” on page 14-5
• “Control States in Charts Enabled by Function-Call Input Events” on page 14-11
• “Schedule a Subsystem Multiple Times in a Single Step” on page 30-6
• “View Differences Between Stateflow Messages, Events, and Data” on page 15-14
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Control States in Charts Enabled by Function-Call Input Events
In a Simulink® model, when a Stateflow® chart is enabled by a function-call input event, you can
control the state of the chart by setting the States When Enabling chart property. This property
determines the values of states and data when the input event reenables the chart:

• Held — Maintain most recent values of the states and data.
• Reset — Revert to the initial values of the states and data.

For new charts, the default setting is Held. For more information, see “Activate a Stateflow Chart by
Sending Input Events” on page 14-7.

Example of a Chart Enabled by a Function-Call Input Event

In this model, the Caller chart uses the event E to wake up and execute the Callee chart.

The Caller chart contains two states, A and B. When you bind the output event E in state A:

• Entering A enables the Callee chart.
• Exiting A disables the Callee chart.
• Reentering A reenables the Callee chart.

The temporal logic operator after changes the active state every ten time steps, so the Callee chart
is repeatedly enabled and disabled.

The Callee chart contains two states, C and D. Each time that the chart executes, the output data y
increments by one. The state C is initially active. After one time step, the value of y is positive and the
chart takes the transition to state D.
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Chart Simulation When Property Is Held

In the Callee chart, the States When Enabling property is set to Held. During simulation, when
the function-call input event reenables the chart at times  and , state D stays active and
output y maintains its most recent value.

Chart Simulation When Property is Reset

In the Callee chart, change the States When Enabling property to Reset. During simulation,
when the function-call input event reenables the chart at times  and , state C becomes
active and output y reverts to its initial value of zero.
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See Also

More About
• “Synchronize Model Components by Broadcasting Events” on page 14-2
• “Activate a Stateflow Chart by Sending Input Events” on page 14-7
• “Model References” (Simulink)
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Activate a Simulink Block by Sending Output Events
An output event is an event that occurs in a Stateflow chart but is visible in Simulink blocks outside
the chart. This type of event enables a chart to notify other blocks in a model about events that occur
in the chart. To define an output event:

1 Add an event to the Stateflow chart, as described in “Define Events in a Chart” on page 14-2.
2 Set the Scope property for the event to Output to Simulink. For each output event that you

define, an output port appears on the Stateflow block.
3 An output event can activate other blocks in the model through a change in a control signal (an

edge trigger) or a function call to a Simulink block.

• To specify an edge-triggered output event, set the Trigger property to Either Edge.
• To specify a function-call output event, set the Trigger property to Function call.

For more information, see “Synchronize Model Components by Broadcasting Events” on page 14-2.

Broadcast Output Events
To broadcast output events from one chart to another, use the operator send. The format of an output
event broadcast is

send(event_name)

where event_name is an output event.

Activate a Simulink Block by Using Edge Triggers
An edge-triggered output event activates a Simulink block to execute during the current time step of
simulation. With this type of output event, a change in a control signal acts as a trigger. For more
information, see “Using Triggered Subsystems” (Simulink).

When to Use Edge-Triggered Output Events

To activate a Simulink subsystem when your model requires regular or periodic subsystem execution,
use an edge-triggered output event. For example, this model uses an edge-triggered output event to
activate two triggered subsystems at regular intervals.
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The chart contains the edge-triggered output event e1 which alternates between 0 and 1 during
simulation.

In a Stateflow chart, the Trigger property of an edge-triggered output event is always Either Edge.
Simulink triggered subsystems can have a Rising, Falling, or Either edge trigger. The model
shows the difference between triggering an Either edge subsystem from a Rising edge subsystem:

• The output event triggers the Either edge subsystem on every broadcast. The trigger occurs
when the event signal switches from 0 to 1 or from 1 to 0.

• The output event triggers the Rising edge subsystem on every other broadcast. The trigger
occurs only when the event signal switches from 0 to 1.
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Queuing Behavior of Multiple Edge-Triggered Output Events

A chart dispatches only one broadcast of an edge-triggered output event for each time step. When
there are multiple broadcasts in a single time step, the chart dispatches one broadcast and queues up
the remaining broadcasts for dispatch in successive time steps. For example, in this model, the Caller
chart uses the edge-triggered output event output_cmd to activate the Callee chart.

The Caller chart tries to broadcast the same edge-triggered output event four times in a single time
step.
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Each time the Callee chart is activated, the output data y increments by one.

When you simulate the model, at time t = 1, the Caller chart dispatches one of the four output events.
The Callee chart executes once during that time step. The Caller chart queues up the other three
event broadcasts for future dispatch at a time t = 2, t = 3, and t = 4. As a result, the value of y grows
in increments of one at time t = 1, t = 2, t = 3, and t = 4.

Activate a Simulink Block by Using Function Calls
A function-call output event activates a Simulink block to execute during the current time step of
simulation. This type of output event works only on blocks that you can trigger with a function call.
For more information, see “Using Function-Call Subsystems” (Simulink).

When to Use Function-Call Output Events

Use a function-call output event to activate a Simulink block when your model requires access to
output data from the block in the same time step as the function call. For example, this model
contains two function-call output events:

• In the Edge to Function chart, the output event call activates the Looping Scheduler chart.
• In the Looping Scheduler chart, the output event A1 activates a Simulink subsystem.

For more information, see “Schedule a Subsystem Multiple Times in a Single Step” on page 30-6.
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Interleaving Behavior of Multiple Function-Call Output Events

When there are multiple broadcasts of a function-call output event in a single time step, the chart
dispatches all the broadcasts in that time step. Execution of function-call subsystems is interleaved
with the execution of the chart, so that output from the function-call subsystem is available
immediately in the chart. For example, in this model, the Caller chart uses the function-call output
event output_cmd to activate the Callee chart.

The Caller chart tries to broadcast the same function-call output event four times in a single time
step.
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Each time the Callee chart is activated, the output data y increments by one.

When you simulate the model, the Caller chart dispatches all four output events at time t = 1. The
Callee chart executes four times during that time step. Execution of the Callee chart is interleaved
with execution of the Caller chart so that output from the Callee chart is immediately available. As a
result, the value of | y | increases from 0 to 4 at time t = 1.

Approximate a Function Call by Using Edge-Triggered Events
If you cannot use a function-call output event, such as for HDL code generation, you can approximate
a function call by using:

• An edge-triggered output event
• An enabled subsystem
• Two consecutive event broadcasts
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The queuing behavior of consecutive edge-triggered output events enables you to approximate a
function call with an enabled subsystem.

For example, in this model, the edge-triggered output event output_cmd activates the enabled
subsystem.

The Caller chart broadcasts the edge-triggered output event by using the send operator.

When simulation starts, the value of the trigger signal is 0. At time t = 20, the chart dispatches
output_cmd, changing the value of the trigger signal to 1. The enabled subsystem becomes active
and executes during that time step. Because no other event broadcasts occur, the enabled subsystem
continues to execute at every time step until simulation ends at t= 40. The Display block shows a final
value of 40.
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To approximate a function call, add a second event broadcast in the same action.

When simulation starts, the value of the trigger signal is 0. At time t = 20, the chart dispatches
output_cmd, changing the value of the trigger signal to 1. The enabled subsystem becomes active
and executes during that time step. The chart queues up the second event for dispatch at the next
time step. At time t= 21, the chart dispatches the second output event, which changes the value of
the trigger signal back to 0. The enabled subsystem stops executing and the Display block shows a
final value of 20.
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Although you can approximate a function call, there is a subtle difference in execution behavior.
Execution of a function-call subsystem occurs during execution of the chart action that provides the
trigger. Execution of an enabled subsystem occurs after execution of the chart action is complete.

Association of Output Events with Output Ports
When you define an output event in a chart, an output event port appears on the right side of a chart
block. Output events must be scalar, but you can define multiple output events in a chart. The Port
property of an output event specifies the position of the output port.

By default, Port values appear in the order in which you add output events. You can change these
assignments by modifying the Port property of the events. When you change the Port property for an
output event, the Port values for the remaining output events automatically renumber.

See Also
send

More About
• “Synchronize Model Components by Broadcasting Events” on page 14-2
• “Set Properties for an Event” on page 14-5
• “Schedule a Subsystem Multiple Times in a Single Step” on page 30-6
• “View Differences Between Stateflow Messages, Events, and Data” on page 15-14
• “Using Triggered Subsystems” (Simulink)
• “Using Function-Call Subsystems” (Simulink)
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Broadcast Local Events to Synchronize Parallel States
A local event is an event that occurs in a Stateflow chart and is visible only in the chart. This type of
event enables parallel (AND) states in the same chart to synchronize with one another, so that actions
in one state trigger actions in the other state. An action in one chart cannot broadcast local events to
states in another chart. To define a local event:

1 Add an event to the Stateflow chart, as described in “Define Events in a Chart” on page 14-2.
2 Set the Scope property for the event to Local.

Local events are not supported in standalone Stateflow charts in MATLAB. For more information, see
“Synchronize Model Components by Broadcasting Events” on page 14-2.

Broadcast Local Events
A directed event broadcast sends a local event directly from one state to another by using the
operator send:

send(event_name,state_name)

event_name is a local event and state_name is a receiving state. The local event is broadcast
directly to the receiving state and any of its substates. The local event must be visible to both the
sending state and the receiving state. The receiving state must be active during the event broadcast.

For example, this chart contains two parallel (AND) states, A and B. The local event E_one belongs to
the chart and is visible to both states. In state A, the transition from substate A1 to substate A2 uses a
directed event broadcast of the form send(E_one,B) to send the local event E_one to state B. In B,
the event triggers the transition from substate B1 to substate B2. Therefore, the active substates in A
and B are synchronized. For more information on the semantics of this example, see “Directed Event
Broadcast Using Send” on page A-39.

The state_name argument can include a full hierarchy path to the state. For example, if the state A
contains the state A1, you can send an event E to state A1 with this broadcast:

send(E,A.A1)

Tip Do not include the chart name in the full hierarchy path to a state.
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Use Qualified Event Names in Event Broadcasts
To broadcast a local event that is not visible to the sending state, use the operator send with a
qualified event name:

send(state_name.event_name)

event_name is a local event that is owned by the receiving state state_name. The local event is
broadcast directly to the receiving state and any of its substates. The local event is visible to the
receiving state, but not to the sending state. The receiving state must be active during the event
broadcast.

For example, this chart contains two parallel (AND) states, A and B. The local event E_one belongs to
state B and is visible only to that state. In state A, the transition from substate A1 to substate A2 uses
a directed event broadcast of the form send(B.E_one) to send the local event E_one to state B. In
B, the event triggers the transition from substate B1 to substate B2. Therefore, the active substates in
A and B are synchronized. For more information on the semantics of this example, see “Directed
Event Broadcast Using Qualified Event Name” on page A-40.

The state_name argument can include a full hierarchy path to the receiving state. Do not use the
chart name in the full path name of the state. For example, suppose that the state A contains the state
A1, and that A1 owns the local event E. You can send event E to state A1 with this broadcast:

send(A.A1.E)

Undirected Event Broadcasts
An undirected event broadcast sends a local event to all states in which it is visible by using the name
of the event as a condition action:

event_name;

or by calling the operator send without specifying a receiving state:

send(event_name)

event_name is a local event that is visible to the sending state.
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When possible, use directed event broadcasts instead of undirected event broadcasts. Directed event
broadcasts prevent unwanted recursion during simulation and improve the efficiency of generated
code. For more information, see “Avoid Unwanted Recursion in a Chart” on page 33-41.

Diagnostic for Detecting Undirected Local Event Broadcasts

During simulation, Stateflow charts can detect undirected local event broadcasts. To control the level
of diagnostic action, open the Configuration Parameters dialog box. In the Diagnostics > Stateflow
pane, for the Undirected event broadcasts diagnostic, you can select none, warning, or error.
The default setting is warning. For more information, see “Undirected event broadcasts” (Simulink).

See Also
send

More About
• “Synchronize Model Components by Broadcasting Events” on page 14-2
• “Set Properties for an Event” on page 14-5
• “Broadcast Local Events in Parallel States” on page A-39
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Control Chart Behavior by Using Implicit Events
Implicit events are built-in events that occur during chart execution when:

• The chart wakes up.
• The chart enters a state and the state becomes active.
• The chart exits a state and the state becomes inactive.
• The chart assigns a value to an internal data object.

These events are implicit because you do not define or trigger them explicitly. Implicit events are
children of the chart in which they occur and are visible only in the parent chart.

Implicit Events Based on Chart Execution
The keyword tick specifies the implicit event generated when a chart wakes up in a discrete-time
simulation.

For example, in this chart, Fan and Heater are parallel (AND) states. Each state has a pair of
substates, On and Off. Initially, the substates Fan.Off and Heater.Off are active. Each time the
chart wakes up, it generates a tick event. The third tick triggers the transition from Heater.Off
to Heater.On. Similarly, the fourth tick triggers the transition from Fan.Off to Fan.On. On the
eighth tick, the chart transitions back to Fan.Off and Heater.Off.

For information about the temporal logic operator after, see “Control Chart Execution by Using
Temporal Logic” on page 16-34.

Note The tick event refers to the chart containing the action being evaluated. The event cannot
refer to a different chart.

Implicit Events Based on Data and States
In Stateflow charts in Simulink models, these operators generate implicit events when a chart sets
the value of a variable or when a chart enters or exits a state.
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Operator Syntax Description Example
change change(data_name

)

chg(data_name)

Generates an implicit local
event when the chart sets the
value of the variable
data_name. The variable
data_name cannot be machine-
parented data. This implicit
event works only with data that
is at the chart level or lower in
the hierarchy. For machine-
parented data, use change
detection operators to
determine when the data value
changes. For more information,
see “Detect Changes in Data
and Expression Values” on page
16-62.

Define an implicit local event
when a state or transition action
writes a value to the variable
Engine.rpm.

change(Engine.rpm)

enter enter(state_name
)

en(state_name)

Generates an implicit local
event when the specified state
state_name becomes active.

Define an implicit local event
when the chart execution enters
the state Fan.On.

enter(Fan.On)

exit exit(state_name)

ex(state_name)

Generates an implicit local
event when the specified state
state_name becomes inactive.

Define an implicit local event
when the chart execution exits
the state Fan.Off.

exit(Fan.Off)

If more than one state or data object has the same name, use dot notation to qualify the name of the
state. For more information, see “Identify Data by Using Dot Notation” on page 12-38.

For example, in this chart, Fan and Heater are parallel (AND) states. Each state has a pair of
substates, On and Off. Initially, the substates Fan.Off and Heater.Off are active. When the chart
wakes up, it generates a tick event that triggers the transition from Fan.Off to Fan.On. When the
Fan.Off becomes inactive, the chart generates another implicit event that triggers the transition
from Heater.Off to Heater.On. When the chart execution ends, the substates Fan.On and
Heater.On are active.
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Note If the same implicit event triggers multiple transitions in parallel states, the order in which the
transitions execute does not necessarily match the execution order of the parallel states. To avoid
unexpected behavior and ensure that the transitions execute in the order specified for the parallel
states, do not use implicit events. Instead, use transition conditions that call operators such as in or
hasChanged. For more information, see “Check State Activity by Using the in Operator” on page 13-
18 and “Detect Changes in Data and Expression Values” on page 16-62.

See Also
after | change | enter | exit | hasChanged | in

More About
• “Use Events to Execute Charts” on page 3-54
• “Detect Changes in Data and Expression Values” on page 16-62
• “Check State Activity by Using the in Operator” on page 13-18
• “Control Chart Execution by Using Temporal Logic” on page 16-34
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Yo-Yo Control of Satellites
This example shows how to model the control system in a tethered satellite system. The satellite
system consists of a small satellite attached by a long tether to an orbiting platform. When the
tethered satellite oscillates, it behaves like a pendulum that exhibits too much libration. To stabilize
the pendulum, the control system changes the length of the tether by reeling it out to its maximum
length when the satellite is in the middle of its arc (which decreases its angular acceleration) and by
reeling it in when the satellite has an angular velocity equal to zero.

Stateflow® is used to control when the tether is reeled in or reeled out using input events from
Simulink®.
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When the satellite is in the middle of its swing ( ), the state ReelOut becomes active. When the
satellite has been reeled out as far as it can, the state ReelStop becomes active. When the angular
velocity of the satellite reaches zero, the ReelIn state becomes active. When the tether is as short as
possible, the ReelStop state becomes active once again. Finally, if the total energy of the satellite is
too low, the system is deactivated by entering the Inactive state.
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Reference

Dabney, James B. and Harman, Thomas L. Mastering Simulink, 2003.

See Also

More About
• “Synchronize Model Components by Broadcasting Events” on page 14-2
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Model a Security System
This example shows how to model a home alarm system that has multiple intrusion-detection sensors.
When the system detects an intrusion, it gives you a short amount of time to disable the alarm. If you
do not disable the alarm within the allotted time, the system calls the police.

This model shows how to use:

• Local event broadcasts to coordinate between parallel states.
• Output events to drive external blocks.
• Input events to simulate periodic triggering of a system.

The chart models the logic of the security system. It consists of four parallel states: one for each type
of anti-intrusion sensor (window, door, and motion detector), and a fourth state that controls the
alarm. In each time step, the parallel states are evaluated in sequence as indicated by the numbers in
the top right corners of the states.

Inputs to the system include a signal that controls whether the alarm is enabled and, for each sensor,
an on/off control and an intrusion signal. The chart outputs signals to sound an alert and to call the
police.

For additional implementation details, see the chart annotations.

14 Define Events

14-32



See Also

More About
• “Synchronize Parallel States by Broadcasting Events”
• “Synchronize Model Components by Broadcasting Events” on page 14-2
• “Broadcast Local Events to Synchronize Parallel States” on page 14-23
• “Activate a Simulink Block by Sending Output Events” on page 14-14
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• “Activate a Stateflow Chart by Sending Input Events” on page 14-7
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Server Queueing System
This example shows the simulation of a queueing system for a server processing tasks. There are four
Stateflow® charts involved in the process:

1 The Source produces tasks that are weighted 1 to 5. Tasks take an amount of time proportional to
their weight.

2 The Transmitter takes a signal from the source and sends it to the Queue. It shows the weight of
the task on the left of the display in blue. It waits for either an ACCEPT or REJECT notification
from the Queue. It releases the task to the Queue upon an ACCEPT. It marks the task as dropped
(red) upon a REJECT.

3 The Queue receives tasks from the Transmitter. If there is room in the Queue, it queues the task
for the Server. If there is no room, the Queue overflows, and it rejects the task. The tasks in the
Queue are shown in the black boxes in the display.

4 The Server polls the Queue for tasks. If the Queue has a task waiting, the Server takes the task
and processes it. The task that is processing is shown in black on the right of the display. The
Server remains busy for the amount of time the task takes, and then goes back to polling the
Queue.

See Also

More About
• “Synchronize Model Components by Broadcasting Events” on page 14-2
• “Export Stateflow Functions for Reuse” on page 8-15
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Tic-Tac-Flow: Model of a Hand-held Game
This model shows a variation of the classic tic-tac-toe game with an interesting twist. Only the last
three moves of each player count. Thus the user needs to also account for the order in which the
opponent has played the last few moves. This adds a nontrivial twist to the gameplay.

The model shows several Stateflow® charts interacting with each other. It exhibits how heavily event-
based logic can be captured naturally in Stateflow. It also describes Stateflow semantics such as
parallel substates, graphical functions and MATLAB® handle graphics from Stateflow. The model is
divided into several subsystems which naturally separate the game control from the I/O. This allows
for the Stateflow code generated from the game control chart to be reused in a hardware component.
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The UI is implemented as a MATLAB figure which interacts with the Stateflow simulation. The button
callback functions drive the inputs to the Stateflow chart.

See Also

More About
• “State Decomposition” on page 2-19
• “Reuse Logic Patterns by Defining Graphical Functions” on page 8-10
• “Graphics Objects”
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Messages

• “Communicate with Stateflow Charts by Sending Messages” on page 15-2
• “Set Properties for a Message” on page 15-5
• “Control Message Activity in Stateflow Charts” on page 15-9
• “View Differences Between Stateflow Messages, Events, and Data” on page 15-14
• “Model a Distributed Traffic Control System by Using Messages” on page 15-20
• “Use the Sequence Viewer to Visualize Messages, Events, and Entities” on page 15-24
• “Build a Shared Communication Channel with Multiple Senders and Receivers” on page 15-33
• “Model Wireless Message Communication with Packet Loss and Channel Failure” on page 15-39
• “Model an Ethernet Communication Network with CSMA/CD Protocol” on page 15-49
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Communicate with Stateflow Charts by Sending Messages
To communicate within and between Stateflow charts in a Simulink model, use messages. A message
is a Stateflow object that communicates data locally or between charts. From a sender chart, you can
send or forward a message containing data. In the receiving chart, a queue receives the message and
holds it until the chart can evaluate it.

Messages combine some of the functionality of data and events. Like data, messages can transmit
numeric and textual information. Like events, messages can trigger transition and state actions.
However:

• Messages do not trigger charts to wake up. Instead, messages are queued until the chart wakes
up. When the chart wakes up, it can respond to the messages in the queue.

• Messages are not lost if the receiver chart cannot respond immediately.

For more information, see “View Differences Between Stateflow Messages, Events, and Data” on page
15-14.

When a chart transition or state action evaluates a message, the chart determines if the queue
contains any messages. If it does, the chart removes the message from the queue. The message
remains valid until the end of the time step or until the chart forwards or discards it. While the
message is valid, other transitions or actions can access the message data and the chart does not
remove another message from the queue. The chart destroys all valid messages at the end of the
current time step.

Define Messages in a Chart
You can add messages to a Stateflow chart by using the Symbols pane, the Stateflow Editor menu, or
the Model Explorer.

Add Messages Through the Symbols Pane

1 In the Modeling tab, under Design Data, select Symbols Pane.
2

Click the Create Message icon .
3 In the row for the new message, under TYPE, click the icon and choose:

• Input Message
• Local Message
• Output Message

4 Edit the name of the message.
5 For input and output messages, click the PORT field and choose a port number.
6 To specify properties for the message, open the Property Inspector. In the Symbols pane, right-

click the row for the message and select Explore. For more information, see “Set Properties for a
Message” on page 15-5.
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Add Messages by Using the Stateflow Editor Menu

1 In the Stateflow Editor, select the option corresponding to the scope of the message that you
want to add.

Scope Option
Input In the Modeling tab, under Design Data, select Message Input.
Output In the Modeling tab, under Design Data, select Message Output.
Local In the Modeling tab, under Design Data, select Message.

2 In the Message dialog box, specify data properties. For more information, see “Set Properties for
a Message” on page 15-5.

Add Messages Through the Model Explorer

1 In the Modeling tab, under Design Data, select Model Explorer.
2 In the Model Hierarchy pane, select the object in the Stateflow hierarchy where you want to

make the new message visible. The object that you select becomes the parent of the new
message.

3 In the Model Explorer menu, select Add > Message. The new message with a default definition
appears in the Contents pane of the Model Explorer.

4 In the Message pane, specify the properties of the message. For more information, see “Set
Properties for a Message” on page 15-5.

Lifetime of a Stateflow Message
A Stateflow message has a finite lifetime. The lifetime begins when you send a message to a receiving
queue with the send operator. The message remains in the queue until a transition or state on action
evaluates it or the chart receives it by using the receive operator.

A message becomes valid when a chart evaluates or receives it. The message remains valid until:

• The end of the current time step, when the chart destroys any remaining valid messages.
• The chart forwards the message to another queue by using the forward operator. The message

continues its lifetime in the new queue.
• The chart discards the message by using the discard.

While a message is valid, other transitions and actions can evaluate the message and access its data.
To check if a message is valid, use the isvalid operator.

To view the interchange of messages during simulation, add a Sequence Viewer block to your
Simulink model. The Sequence Viewer block displays:

• Sent messages
• Received messages
• Forwarded messages
• Dropped messages
• Destroyed messages
• Discarded messages
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For more information, see “Use the Sequence Viewer to Visualize Messages, Events, and Entities” on
page 15-24.

Limitations for Messages
You cannot use messages in:

• Moore charts
• Atomic subcharts
• Breakpoint condition expressions

In charts that use C as the action language, messages do not support multiword fixed-point data.

See Also
discard | forward | isvalid | receive | send | Queue | Sequence Viewer

More About
• “Set Properties for a Message” on page 15-5
• “Control Message Activity in Stateflow Charts” on page 15-9
• “Send Messages with String Data” on page 24-9
• “Use the Sequence Viewer to Visualize Messages, Events, and Entities” on page 15-24
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Set Properties for a Message
A message is a Stateflow object that communicates data locally or between charts in a Simulink
model. For more information, see “Communicate with Stateflow Charts by Sending Messages” on
page 15-2.

When you create Stateflow charts in Simulink models, you can specify message properties in either
the Property Inspector or the Model Explorer.

• To use the Property Inspector:

1 In the Modeling tab, under Design Data, select Symbols Pane and Property Inspector.
2 In the Symbols pane, select the message.
3 In the Property Inspector pane, edit the message properties.

• To use the Model Explorer:

1 In the Modeling tab, under Design Data, select Model Explorer.
2 In the Contents pane, select the message.
3 In the Message pane, edit the message properties.

You can also specify message properties programmatically by using Stateflow.Message objects.
For more information about the Stateflow programmatic interface, see “Overview of the Stateflow
API”.

Stateflow Message Properties
Name

Name of the message. For more information, see “Guidelines for Naming Stateflow Objects” on page
2-5.

Scope

Scope of the message. The scope specifies where the message occurs relative to the parent object.

Scope Description
Input Message that is received from another block in the Simulink model. Each

input message can use an internal receiving queue that is maintained by
the Stateflow chart or an external receiving queue that is managed by a
Queue block.

Output Message that is sent through an output port to another block in the
Simulink model.

Local Message that is local to the Stateflow chart. The Stateflow chart maintains
an internal receiving queue for each local message. When you send a local
message, it is visible by state and transition actions in the same chart. You
cannot send a local message outside the chart.

Port

Index of the port associated with the message. This property applies only to input and output
messages.
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Size

Size of the message data field. For more information, see “Specify Size of Stateflow Data” on page 12-
33.

Complexity

Specifies whether the message data field accepts complex values.

Complexity Setting Description
Off Data field does not accept complex values.
On Data field accepts complex values.
Inherited Data field inherits the complexity setting from a Simulink block.

The default value is Off. For more information, see “Complex Data in Stateflow Charts” on page 27-
2.

Type

Type of the message data field. To specify the data type:

• From the Type drop-down list, select a built-in type.
• In the Type field, enter an expression that evaluates to a data type.

Additionally, in the Model Explorer, you can open the Data Type Assistant by clicking the Show data
type assistant button . Specify a data Mode, and then specify the data type based on that
mode. For more information, see “Specify Type of Stateflow Data” on page 12-27.

Note In charts that use C as the action language, messages do not support multiword fixed-point
data.

Initial Value

Initial value of the message data. Enter an expression or parameter defined in the Stateflow
hierarchy, MATLAB base workspace, or Simulink masked subsystem. This property applies only to
local and output messages.

If you do not specify a value, the default value for numeric data is 0. For enumerated data, the default
value typically is the first one listed in the enumeration section of the definition. You can specify a
different default enumerated value in the methods section of the definition. For more information,
see “Define Enumerated Data Types” on page 23-5.

Priority

Priority for the message. If two distinct messages occur at the same time, this property determines
which message is processed first. A smaller numeric value indicates a higher priority. This property is
visible only for local and output messages in discrete-event charts. For more information, see “Create
Custom Queuing Systems Using Discrete-Event Stateflow Charts” (SimEvents).
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Add to Watch Window

Enables watching the message queue and data field in the Stateflow Breakpoints and Watch window.
For more information, see “View Data in the Breakpoints and Watch Window” on page 33-11.

Message Queue Properties
These properties define the behavior of receiving queues and apply only to input and local messages.

Use Internal Queue

Specifies that the Stateflow chart maintains an internal receiving queue for the input message. By
default, this property is enabled. When you disable this property, you can connect the message input
port to:

• A Queue block that manages an external queue in your Simulink model
• A root-level Inport block that enables messages to cross the model boundary

For more information on external message queues, see “Messages” (Simulink).

Queue Capacity

Specifies the maximum number of messages held in an internal receiving queue. If a chart sends a
message when the queue is full, a queue overflow occurs. To avoid dropped messages, set the queue
capacity high enough that incoming messages do not cause the queue to overflow. The maximum
queue capacity is 216–1.

Queue Overflow Diagnostic

Specifies the level of diagnostic action when the number of incoming messages exceeds the queue
capacity. The default option is Error.

Diagnostic Setting Description
Error When the queue overflows, the simulation stops with an error.
Warning When the queue overflows, the queue drops the last message and

simulation continues with a warning.
None When the queue overflows, the queue drops the last message and

simulation continues without issuing a warning.

Queue Type

Specifies the order in which messages are removed from the receiving queue. The default option is
FIFO.

Queue Type Setting Description
FIFO First in, first out
LIFO Last in, first out
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Queue Type Setting Description
Priority Remove messages according to the value in the data field. Choosing this

setting exposes the Priority order field, which has these options:

• Ascending － The messages are removed in ascending order of the
message data value.

• Descending － The messages are removed in descending order of the
message data value.

See Also
Queue

More About
• “Communicate with Stateflow Charts by Sending Messages” on page 15-2
• “Guidelines for Naming Stateflow Objects” on page 2-5
• “Specify Size of Stateflow Data” on page 12-33
• “Specify Type of Stateflow Data” on page 12-27
• “Complex Data in Stateflow Charts” on page 27-2
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Control Message Activity in Stateflow Charts
A message is a Stateflow object that communicates data locally or between charts in a Simulink
model. From a sender chart, you can send or forward a message. In the receiving chart, a queue
receives the message and holds it until the chart can evaluate it.

Using Stateflow operators, you can access message data, and send, receive, discard, or forward a
message. You can also determine whether a message is valid and find the number of messages in a
queue. For more information, see “Communicate with Stateflow Charts by Sending Messages” on
page 15-2.

Access Message Data
Stateflow messages have a data field. To read or write to the message data field of a valid message,
use dot notation syntax:

message_name.data

If you send a message without first assigning a value to the message data, the default value for
numeric data is 0. For enumerated data, the default is the first value listed in the enumeration
section of the definition, unless you specify otherwise in the methods section of the definition.

You cannot access message data for messages that are still in the queue or that have already been
discarded.

Send a Message
To send an output or local message, use the send operator:

send(message_name)

For example, in this chart, the entry action in state A sends a message M with a data value of 3. If the
message scope is Local, then the message goes in the local receiving queue. If the message scope is
Output, then the chart sends the message through the output port to another block in the Simulink
model.

In a single time step, you can send multiple messages through an output port or to a local receiving
queue.
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If a chart sends a message that exceeds the capacity of the receiving queue, a queue overflow occurs.
The result of the queue overflow depends on the type of receiving queue.

• When an overflow occurs in an internal queue, the Stateflow chart drops the new message. You
can control the level of diagnostic action by setting the Queue Overflow Diagnostic property for
the message. See “Queue Overflow Diagnostic” on page 15-7.

• When an overflow occurs in an external queue, the Queue block either drops the new message or
overwrites the oldest message in the queue, depending on the configuration of the block. See
“Overwrite the oldest element if queue is full” (Simulink). An overflow in an external queue always
results in a warning.

Guard Transitions and Actions
Messages can guard transitions or state actions of type on. During a time step, when the guarding
message is evaluated for the first time, the chart removes the message from the queue and makes the
message valid. While the message is valid, other transitions or actions can access the message data
but they do not remove another message from the queue.

Guard a Transition with a Message

In this chart, a message M guards the transition from state A to state B. The transition occurs when
both of these conditions are true:

• A message is present in the queue.
• The data value of the message is equal to 3.

If a message is not present or if the data value is not equal to 3, then the transition does not occur. If
a message is present, it is removed from the queue regardless of whether the transition occurs.

Guard a State on Action with a Message

In this chart, a message M guards the on action in state A. When state A becomes active, it increments
the value of x if both of these conditions are true:

• A message is present in the queue.
• The data value of the message is equal to 3.

If a message is not present or if the data value is not equal to 3, then the value of x does not change.
If a message is present, it is removed from the queue regardless of whether x is modified.
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Receive a Message
To extract an input or local message from its receiving queue, use the receive operator:

receive(message_name)

If a valid message M exists, receive(M) returns true. If a valid message does not exist but there is a
message in the queue, then the chart removes the message from the queue and receive(M) returns
true. If a valid message does not exist and there are no messages in the queue, receive(M) returns
false.

For example, in this chart, the during action in state A checks the queue for message M and
increments the value of x if both of these conditions are true:

• A message is present in the queue.
• The data value of the message is equal to 3.

If a message is not present or if the data value is not equal to 3, then the value of x does not change.
If a message is present, the chart removes it from the queue regardless of the data value.

Discard a Message
To discard a valid input or local message, use the discard operator:

discard(message_name)

After a chart discards a message, it can remove another message from the queue in the same time
step. A chart cannot access the data of a discarded message.

For example, in this chart, the during action in state A checks the queue for message M. If a message
is present, the chart removes it from the queue. If the message has a data value equal to 3, the chart
discards the message.
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Forward a Message
To forward a valid input or local message to a local queue or an output port, use the forward
operator:

forward(message_in_name,message_out_name)

After a chart forwards a message, it can remove another message from the queue in the same time
step.

Forward an Input Message

In this chart, state A checks the input queue for message M_in. If a message is present, the chart
removes the message from the queue and forwards it to the output port M_out. After the chart
forwards the message, the message is no longer valid in state A.

Forward a Local Message

In this chart, the transition between state A and state B checks the local queue for message M_local.
If a message is present, the transition removes the message from the M_local message queue and
forwards it to the output port M_out.

Determine if a Message Is Valid
To check if an input or local message is valid, use the isvalid operator:

isvalid(message_name)

A message is valid if the chart has removed it from the receiving queue and has not forwarded or
discarded it.

For example, this chart first executes state A, as described in “Discard a Message” on page 15-11.
When the chart executes state B, the during action checks that the message M is valid. If the
message is valid and has a data value equal to 6, the chart discards the message.
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Determine the Length of the Queue
To check the number of messages in an internal receiving queue of an input or local message, use the
length operator:

length(message_name)

For example, in this chart, the during action in state A checks the queue for message M. If a message
is present, the chart removes it from the queue. If exactly seven messages remain in the queue, the
chart increments the value of x.

The length operator is not supported for input messages that use external receiving queues
managed by a Queue block.

See Also
discard | forward | isvalid | length | receive | send | Queue

More About
• “Communicate with Stateflow Charts by Sending Messages” on page 15-2
• “Set Properties for a Message” on page 15-5
• “Use the Sequence Viewer to Visualize Messages, Events, and Entities” on page 15-24
• “View Differences Between Stateflow Messages, Events, and Data” on page 15-14
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View Differences Between Stateflow Messages, Events, and
Data

This example compares the behavior of messages, events, and data in Stateflow®.

Sender Charts

This model has three sender charts: DataSender, EventSender, and MessageSender. Each sender
chart has one state. In the entry action of the state, the charts assign a value to data, send a function-
call event, or send a message.

Receiver Charts

For each of the sender charts, there is a corresponding receiver chart. Each receiver chart has a state
diagram with states A0, A1, A2, and A3. The implicit event after(3,sec) triggers the transition
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from A0 to A1. The data, event, or message from the corresponding sender chart guards the
transitions between A1, A2, and A3.

Scope Output

Each receiver chart has active state output enabled and connected to a scope. The scope shows which
states are active in each time step. This output highlights the difference in behavior between output
data, events, and messages.

 View Differences Between Stateflow Messages, Events, and Data
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Behavior of Data

The DataSender chart assigns a value of 1 to the output data M, which connects as an input to the
DataReceiver chart.

The DataReceiver chart executes once at every time step. At the start of simulation, state A0 is
active. At time t=3, the transition from A0 to A1 occurs. At time t=4, the chart tests whether M equals
1. This condition is true, so the chart transitions from A1 to A2. At time t=5, M still equals 1, so the
chart transitions from A2 to A3. On the scope, you see that DataReceiver changes states three
times.
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After data is assigned a value, it holds its value throughout the simulation. Therefore, each time that
the DataReceiver evaluates the condition [M == 1], it transitions to a new state.

Behavior of Event

The EventSender chart uses the command send(M) to send a function-call output event to wake up
the EventReceiver chart.

The EventReceiver chart executes only when the input event M wakes up the chart. At the start of
simulation, state A0 is active. The transition from A0 to A1 is based on absolute-time temporal logic
and is not valid at time t=0. A0 remains active and the chart goes back to sleep. Because
EventSender sends the event M only once, EventReceiver does not wake up again. On the scope,
you see that EventReceiver never transitions out of A0.

Events do not remain valid across time steps, so the receiving chart has only one chance to respond
to the event. When EventSender sends the event, EventReceiver is not ready to respond to it. The
opportunity for EventReceiver to transition in response to the event is lost.
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Behavior of Message

The MessageSender chart uses the syntax send(M) to send a message through the output message
port. The message goes into the input message queue of the MessageReceiver chart. The message
waits in the queue until MessageReceiver evaluates it.

The MessageReceiver chart executes once at every time step. At the start of simulation, state A0 is
active. At time t=3, the transition from A0 to A1 occurs. At time t=4, the chart determines that M is
present in the queue, so it takes the transition to A2. At the end of the time step, the chart removes M
from the queue. At time t=5, there is no message present in the queue, so the chart does not
transition to A3. A2 remains the active state. On the scope, you see that MessageReceiver changes
state only two times.

Unlike events, messages are queued. The receiving chart can choose to respond to a message
anytime after it was sent. Unlike data, the message does not remain valid indefinitely. The message is
destroyed at the end of the time step.
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See Also

More About
• “Share Data with Simulink and the MATLAB Workspace” on page 12-19
• “Synchronize Model Components by Broadcasting Events” on page 14-2
• “Communicate with Stateflow Charts by Sending Messages” on page 15-2
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Model a Distributed Traffic Control System by Using Messages
This example shows how to model a distributed control system for an intersection of one-way roads.
To coordinate the state of the traffic lights, the two charts communicate with each other by using
messages. The design of the two charts is identical.

You can interact with the traffic signals through a MATLAB® UI. To request a pedestrian crossing,
click one of the dark gray request buttons at the bottom of the traffic signal.
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The controller for each road is implemented by the traffic light controller subsystems Traffic Light 1
and Traffic Light 2.

In each subsystem, the Controller chart describes the main logic of the traffic controller through the
various states of the traffic signal.
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This model takes advantage of these semantic features of messages:

• Messages are not discarded if they are not acted upon immediately. For example, in this model,
pedestrian requests are queued up until the controller can react to a request when the traffic light
turns red.

• You can set up message loops between different components. These loops do not result in
algebraic loops in your model.

• Normally, input messages are destroyed at the end of the time step in which they are evaluated.
However, you can preserve these input messages for use at a later time by temporarily forwarding
them to a local "holding" queue. For example, when the Controller chart exits the Go state, it uses
the local queue pedRequestLocal to store pedestrian requests made on the other road. The
chart checks for those requests later, when it exits the PrepareToStop state.

15 Messages

15-22



To change the speed of the simulation, in the Simulation tab, select Run > Simulation Pacing. In
the Simulation Pacing Options dialog box, adjust the slider setting. For more information, see
“Simulation Pacing” (Simulink).

See Also

More About
• “Communicate with Stateflow Charts by Sending Messages” on page 15-2
• “Use the Sequence Viewer to Visualize Messages, Events, and Entities” on page 15-24
• “View Differences Between Stateflow Messages, Events, and Data” on page 15-14
• “Simulation Pacing” (Simulink)

 Model a Distributed Traffic Control System by Using Messages

15-23



Use the Sequence Viewer to Visualize Messages, Events, and
Entities

To see the interchange of messages and events between the blocks from the Simulink Messages &
Events library, Stateflow charts in Simulink models, and SimEvents blocks, you can:

• Use the Sequence Viewer (Simulink) tool from the Simulink toolstrip.
• Add a Sequence Viewer block to your Simulink model.

The Sequence Viewer allows you to visualize message transition events and the data that the
messages carry. In the Sequence Viewer, you can view event data related to Stateflow chart execution
and the exchange of messages between Stateflow charts. The Sequence Viewer window shows
messages as they are created, sent, forwarded, received, and destroyed at different times during
model execution. The Sequence Viewer window also displays state activity, transitions, and function
calls to Stateflow graphical functions, Simulink functions, and MATLAB functions.

With the Sequence Viewer, you can also visualize the movement of entities between blocks when
simulating SimEvents models. All SimEvents blocks that can store entities appear as lifelines in the
Sequence Viewer window. Entities moving between these blocks appear as lines with arrows. You can
view calls to Simulink Function blocks and to MATLAB Function blocks.

You can add a Sequence Viewer block to the top level of a model or any subsystem. If you place a
Sequence Viewer block in a subsystem that does not have messages, events, or state activity, the
Sequence Viewer window informs you that there is nothing to display.

For instance, suppose that you simulate the Stateflow example sf_msg_traffic_light.

This model has three Simulink subsystems: Traffic Light 1, Traffic Light 2, and GUI. The Stateflow
charts in these subsystems exchange data by sending messages. As messages pass through the
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system, you can view them in the Sequence Viewer window. The Sequence Viewer window represents
each block in the model as a vertical lifeline with simulation time progressing downward.

Components of the Sequence Viewer Window
Navigation Toolbar

At the top of the Sequence Viewer window, a navigation toolbar displays the model hierarchy path.
Using the toolbar buttons, you can:

•
 Show or hide the Property Inspector.

•  Select an automatic or manual layout.
•  Show or hide inactive lifelines.
•

 Save Sequence Viewer settings.
•

 Restore Sequence Viewer settings.
•  Configure Sequence Viewer parameters.
•  Access the Sequence Viewer documentation.

Property Inspector

In the Property Inspector, you can choose filters to show or hide:
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• Events
• Messages
• Function Calls
• State Changes and Transitions

Header Pane

The header pane below the Sequence Viewer toolbar shows lifeline headers containing the names of
the corresponding blocks in a model.

• Gray rectangular headers correspond to subsystems.
• White rectangular headers correspond to masked subsystems.
• Yellow headers with rounded corners correspond to Stateflow charts.

To open a block in the model, click the name in the corresponding lifeline header. To show or hide a
lifeline, double-click the corresponding header. To resize a lifeline header, click and drag its right-
hand side. To fit all lifeline headers in the Sequence Viewer window, press the space bar.

Message Pane

Below the header pane is the message pane. The message pane displays messages, events, and
function calls between lifelines as arrows from the sender to the receiver. To display sender, receiver,
and payload information in the Property Inspector, click the arrow corresponding to the message,
event, or function call.
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Navigate the Lifeline Hierarchy
In the Sequence Viewer window, the hierarchy of lifelines corresponds to the model hierarchy. When
you pause or stop the model, you can expand or contract lifelines and change the root of focus for the
viewer.

Expand a Parent Lifeline

In the message pane, a thick, gray lifeline indicates that you can expand the lifeline to see its
children. To show the children of a lifeline, click the expander icon  below the header or double-
click the parent lifeline.

For example, expanding the lifeline for the Traffic Light 1 block reveals two new lifelines
corresponding to the Stateflow charts Ped Button Sensor and Controller.
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Expand a Masked Subsystem Lifeline

The Sequence Viewer window displays masked subsystems as white blocks. To show the children of a
masked subsystem, point over the bottom left corner of the lifeline header and click the arrow.

For example, the GUI subsystem contains four masked subsystems: Traffic Lamp 1,Traffic Lamp 2,
Ped Lamp 1, and Ped Lamp 2.

You can display the child lifelines in these masked subsystems by clicking the arrow in the parent
lifeline header.
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Change Root of Focus

To make a lifeline the root of focus for the viewer, point over the bottom left corner of the lifeline
header and click the arrow. Alternatively, you can use the navigation toolbar at the top of the
Sequence Viewer window to move the current root up and down the lifeline hierarchy. To move the
current root up one level, press the Esc key.

The Sequence Viewer window displays the current root lifeline path and shows its child lifelines. Any
external events and messages are displayed as entering or exiting through vertical slots in the
diagram gutter. When you point to a slot in the diagram gutter, a tooltip displays the name of the
sending or receiving block.

View State Activity and Transitions
To see state activity and transitions in the Sequence Viewer window, expand the state hierarchy until
you have reached the lowest child state. Vertical yellow bars show which state is active. Blue
horizontal arrows denote the transitions between states.
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In this example, you can see a transition from Go to PrepareToStop followed, after 1 second, by a
transition to Stop.

To display the start state, end state, and full transition label in the Property Inspector, click the arrow
corresponding to the transition.

To display information about the interactions that occur while a state is active, click the yellow bar
corresponding to the state. In the Property Inspector, use the Search Up and Search Down buttons
to move through the transitions, messages, events, and function calls that take place while the state
is active.

View Function Calls
The Sequence Viewer displays function calls and replies. This table lists the type of support for each
type of function call.

Function Call Type Support
Calls to Simulink
Function blocks

Fully supported
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Function Call Type Support
Calls to Stateflow
graphical or Stateflow
MATLAB functions

• Scoped — Select the Export chart level functions chart option. Use
the chartName.functionName dot notation.

• Global — Select the Treat exported functions as globally visible
chart option. You do not need the dot notation.

Calls to function-call
subsystems

Not displayed in the Sequence Viewer window

The Sequence Viewer window displays function calls as solid arrows labeled with the format
function_name(argument_list). Replies to function calls are displayed as dashed arrows labeled
with the format [argument_list]=function_name.

For example, in the model slexPrinterExample, a subsystem calls the Simulink Function block
addPrinterJob. The function block replies with an output value of false.

Simulation Time in the Sequence Viewer Window
The Sequence Viewer window shows events vertically, ordered in time. Multiple events in Simulink
can happen at the same time. Conversely, there can be long periods of time during simulation with no
events. As a consequence, the Sequence Viewer window shows time by using a combination of linear
and nonlinear displays. The time ruler shows linear simulation time. The time grid shows time in a
nonlinear fashion. Each time grid row, bordered by two blue lines, contains events that occur at the
same simulation time. The time strip provides the times of the events in that grid row.
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To show events in a specific simulation time range, use the scroll wheel or drag the time slider up and
down the time ruler. To navigate to the beginning or end of the simulation, click the Go to first event
or Go to last event buttons. To see the entire simulation duration on the time ruler, click the Fit to
view button .

When using a variable step solver, you can adjust the precision of the time ruler. In the Model
Explorer, on the Main tab of the Sequence Viewer Block Parameters pane, adjust the value of the
Time Precision for Variable Step field.

Redisplay of Information in the Sequence Viewer Window
The Sequence Viewer saves the order and states of lifelines between simulation runs. When you close
and reopen the Sequence Viewer window, it preserves the last open lifeline state. To save a particular

viewer state, click the Save Settings button  in the toolbar. Saving the model then saves that

state information across sessions. To load the saved settings, click the Restore Settings button .

You can modify the Time Precision for Variable Step and History parameters only between
simulations. You can access the buttons in the toolbar before simulation or when the simulation is
paused. During a simulation, the buttons in the toolbar are disabled.

See Also
Sequence Viewer

More About
• “Synchronize Model Components by Broadcasting Events” on page 14-2
• “Communicate with Stateflow Charts by Sending Messages” on page 15-2
• “Model a Distributed Traffic Control System by Using Messages” on page 15-20

15 Messages

15-32



Build a Shared Communication Channel with Multiple Senders
and Receivers

This example shows how to model communication through a shared channel with multiple senders
and receivers by using Simulink® messages, SimEvents®, and Stateflow®.

For an overview about messages, see “Simulink Messages Overview” (Simulink).

In this model, there are two software components that send messages and two components that
receive messages. The shared channel transmits messages with an added delay. SimEvents® blocks
are used to create custom communication behavior by merging the message lines, and copying and
delaying messages. A Stateflow chart is used in a send component to send messages based on a
decision logic.

Create Components to Send Messages

In the model, there are two software components that output messages, Send and StateflowSend.

In the Send component, the Sine Wave block is the signal source. The block generates a sine wave
signal with an amplitude of 1. The block's sample time is 0.1. The Send block converts the signal to a
message that carries the signal value as data. The Send component sends messages to Send Buffer 1.

In the StateflowSend component, another Sine Wave block generates a sine wave signal and a Noise
block injects noise into the signal. The Noise block outputs a signal whose values are generated from
a Gaussian distribution with mean of 0 and variance of 1. The sample time of the block is 0.1.
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The Stateflow chart represents a simple logic that filters the signal and decides whether to send
messages. If the value of the signal is greater than 0.5 for a duration greater than 0.1, then the
chart sends a message that carries the signal value. If the signal value is below 0, then the chart
transitions to the ReceiveSignal state. The StateflowSend component sends messages to Send
Buffer 2.

For more information about creating message interfaces, see “Establish Message Send and Receive
Interfaces Between Software Components” (Simulink).

Create Components to Receive Messages

In the model, there are two software components that receive messages, Receive and Listener.

In the Receive component, a Receive block receives messages and converts the message data to
signal values.

In the Listener component, there is a Simulink Function block. The block displays the function,
onOneMessage(data), on the block face.
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When a message arrives at Receive Buffer 2, the Listener block is notified and it takes the argument
data, which is the value from the message data, as the input signal. In the block, data values are
multiplied by 2. The block outputs the new data value.

Routing Messages using SimEvents®

In the shared channel, the message paths originating from the two message-sending components are
merged to represent a shared communication channel.

A SimEvents® Entity Input Switch block merges the message lines. In the block:

• Number of input ports specifies the number of message lines to be merged. The parameter
value is 2 for two message paths.

• Active port selection specifies how to select the active port for message departure. If you select
All, all of the messages arriving at the block are able to depart the block from the output port. If
you select Switch, you can specify the logic that selects the active port for message departure.
For this example, the parameter is set to All.

A SimEvents® Entity Server block is used to represent message transmission delay in the shared
channel. In the block:

• Capacity is set to 1, which specifies how many messages can be processed at a time.
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• Service time value is set to 1, which specifies how long it takes to process a message

A SimEvents® Entity Replicator block is used to generate identical copies of messages. In the block:

• Replicas depart from specifies if the copies leave the block from separate output ports or the
same output port as the original messages. The parameter is set to Separate output ports.

• Number of replicas is set to 1, which specifies the number of copies generated for each
message.

• Hold original entity until all replicas depart holds the original message in the block until all of
its copies depart the block.

A SimEvents® Entity Terminator block is used to model Receive Buffer 2. In the block:

• Under the Event actions tab, in the Entry action field, you can specify MATLAB code that
performs calculations or Simulink® function calls that are invoked when the message enters the
block. In this example, onOneMessage(entity) is used to notify the Simulink Function block in
the Listener component. To visualize the function call, under Debug tab, select Information
Overlays and then Function Connectors.

Simulate the Model and Review Results

Simulate the model. Observe that the animation highlights the messages flowing through the model.
You can turn off the animation by right-clicking on the model canvas and setting Animation Speed to
None.

When you pause the animation, a magnifying glass appears on the blocks that store messages. If you
point to the magnifying glass, you see the number of messages stored in the block.
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To observe which messages are stored in the block, click the magnifying glass to open the Storage
Inspector. For instance, the graphic below illustrates the messages stored in Send Buffer 1.

Turn the animation off and open the Sequence Viewer block to observe the Simulink Function calls
and the flow of messages in the model.

For instance, observe the simulation time 0, during which a message carrying value 0 is sent from the
Send component to Send Buffer 1. From simulation time 0.1 to 0.5, the Send component keeps
sending messages to Send Buffer 1 with different data values. At time 0.5, the StateflowSend
component sends a message to Send Buffer 2. For more information about using the Sequence Viewer
block, see “Use the Sequence Viewer to Visualize Messages, Events, and Entities” (Simulink).

 Build a Shared Communication Channel with Multiple Senders and Receivers

15-37



See Also
Sine Wave | Send | Receive | Queue | Entity Input Switch (SimEvents) | Entity Server (SimEvents) |
Entity Replicator (SimEvents) | Entity Terminator (SimEvents)

More About
• “Simulink Messages Overview” (Simulink)
• “Discrete-Event Simulation in Simulink Models” (SimEvents)
• “Model Wireless Message Communication with Packet Loss and Channel Failure” (Simulink)
• “Model an Ethernet Communication Network with CSMA/CD Protocol” (Simulink)
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Model Wireless Message Communication with Packet Loss and
Channel Failure

This example shows how to model wireless message communication with packet loss and channel
failure by using Simulink® messages, Stateflow®, and SimEvents®.

In this model, there are two components that send messages and two components that receive
messages. The messages are transmitted using a shared wireless channel with a transmission delay. A
Stateflow® chart models message-sending logic in a wireless component and SimEvents® blocks
model wireless message transmission, channel failure, and packet loss.

For an overview about messages, see “Simulink Messages Overview” (Simulink).

Create Components to Send and Receive Messages

In the model, there are two software components that output messages, WirelessSend and
WirelessStateflowSend.

In the WirelessSend component, the Sine Wave block is the signal source. The Sine Wave block
generates a sine wave with an amplitude of 1. The block Sample time is set to 0.1. The Send block
converts the signal to a message that carries the data of the signal value. The
WirelessSendComponent is connected to Send Buffer 1.

In the WirelessStateflowSend component, another Sine Wave block generates a sine wave signal and
a Noise block is used to inject noise into the signal. The Noise block outputs a signal whose values
are generated from a Gaussian distribution with mean of 0 and variance of 1. The Stateflow® chart
represents a simple logic that filters a signal and decides whether to send messages. The
StateflowSend component sends messages to Send Buffer 2.

In the model, there are two software components that receive messages, WirelessReceive and
WirelessListener.
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In the WirelessReceive component, a Receive block receives messages and converts message data to
signal values. The component is connected to Receive Buffer 1.

In the WirelessListener component, there is a Simulink Function block that runs the
onOneMessage(data) function. When a message arrives at Receive Buffer 3, the Simulink Function
block takes the argument data, which is the value from message data, as the input signal. In the
block, the data values are multiplied by 2. The block outputs the new data value.

To learn more about creating these components, see “Build a Shared Communication Channel with
Multiple Senders and Receivers” (Simulink).

Model Wireless Message Communication Using Multicasting

The WirelessSend and WirelessStateflowSend components send messages to Send Buffer 1 and Send
Buffer 2, which are SimEvents® Entity Multicast blocks that can wirelessly transmit messages. The
Transmission Buffer block is a SimEvents® multicast receive queue that can receive messages sent
by Send Buffer 1 and Send Buffer 2.

To achieve this wireless communication between Send Buffer 1, Send Buffer 2, and the Transmission
Buffer block that is inside the Wireless Channel block:

1 In the Send Buffer 1 and Send Buffer 2 blocks, set the Multicast tag parameter to A.
2 In the Transmission Buffer block, set the Multicast tag parameter to A.

The Multicast tag parameter defines from which Entity Multicast blocks the messages are received.
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Model Channel Failure

A SimEvents® Entity Gate block is used to model channel failure. The block has two input ports. One
input port is for incoming messages from Transmission Buffer. The second input port is a control port
to decide when to open the gate.

Set the Gate block's Operating mode parameter to Enable gate. In this mode:

• The block opens the gate and permits messages to advance when it receives an entity carrying a
value that is greater than 0 from its control port. This represents an operational channel.

• The block closes the gate and blocks messages passing if an entity carries data whose value is less
than or equal to 0. This represents a channel failure.

To control the Gate block, you can use the SimEvents® Entity Generator block, which is labeled
Control Gate in this example, to generate entities carrying different data values.

In the Control Gate block, in Event actions, in the Generate action field, the code below is used to
generate entities to open and close the Gate block. Initially, entity data is 1 and the gate is open and
the channel is in operational state. When a new entity is generated, its value changes to 0, which
closes the gate. Every generated entity changes the gate's status, from open to closed or from closed
to open.
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In the Control Gate block, in the Intergeneration time action field, the code below is used to
represent the operational and failed state of the channel. The code initializes the channel as
operational. dt is the entity intergeneration time and is used to change the status of channel because
each generated entity changes the status of the Gate block.
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In the code, the repair time is generated from a uniform distribution that takes values between 0 and
10. The time interval between the failures is generated from another uniform distribution that takes
values between 0 and 50.

Model Packet Loss

To model the packet loss, a SimEvents® Entity Output Switch block is used.

The block has two input ports. One input port accepts messages. The other input port accepts entities
that determine the output port selection. If the entity is set to 1, the block selects output port 1 to
forward messages to the Wirelessly Share Messages block. If the entity is set to 2, the block selects
output port 2, which is connected to an Entity Terminator block that represents packet loss.

 Model Wireless Message Communication with Packet Loss and Channel Failure

15-43



In the Output Switch block:

• The Number of output ports is set to 2.

• To determine which output is selected, the Switching criterion is set to From control port
and Initial port selection is set to 1.

To model a 0.1 probability of packet loss, in the Probabilistic Packet Loss block, select the Event
actions tab, and in the Generate action field includes this code:

persistent rngInit;
if isempty(rngInit)
    seed = 12345;
    rng(seed);
    rngInit = true;
end

% Pattern: Uniform distribution
% m: Minimum, M: Maximum
m = 0; M = 1;
x = m + (M - m) * rand;

% x is generated from uniform distribution and
% takes values between |0| and |1|.
if x > 0.1
   % Entity carries data |1| and this forces Output switch to select
   % output |1| to forward entities to receive components.
   entity  = 1;
else
   % Entity carries data |2| and this forces Output switch to select
   % output |2| and this represents a packet loss.
    entity = 1;
end

This means that entities entering the control port have a 0.9 probability of being set to 1, which
makes the block output messages to the Wirelessly Share Messages block.

Simulate the Model and Review results

Simulate the model.
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• Open the Scope block connected top the Transmission Buffer block. The block displays the total
number of messages transmitted through the shared channel.

4255 messages are transmitted through the channel.

The plot also displays the channel failures. For example, zoom into the first 100 seconds. Observer
that the channel failure occurs between 40 and 49 during which message transmission is blocked.

 Model Wireless Message Communication with Packet Loss and Channel Failure

15-45



Open the Data Inspector to visualize the entities that control the Gate. Entity data changes from 1 to
0 for each generated entity.
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To see the number of lost messages, open the Scope block connected to the Packet Loss block.

409 messages are lost during transmission. This is 9.6 percent of the messages.
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See Also
Sine Wave | Send | Receive | Queue | Entity Terminator (SimEvents) | Entity Output Switch
(SimEvents) | Entity Gate (SimEvents) | Entity Multicast (SimEvents)

More About
• “Simulink Messages Overview” (Simulink)
• “Discrete-Event Simulation in Simulink Models” (SimEvents)
• “Build a Shared Communication Channel with Multiple Senders and Receivers” (Simulink)
• “Model an Ethernet Communication Network with CSMA/CD Protocol” (Simulink)
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Model an Ethernet Communication Network with CSMA/CD
Protocol

This example shows how to model an Ethernet communication network with CSMA/CD protocol using
Simulink® messages and SimEvents®. In the example, there are three computers that communicate
through an Ethernet communication network. Each computer has a software component that
generates data and an Ethernet interface for communication. Each computer attempts to send the
data to another computer with a unique MAC address. An Ethernet interface controls a computer's
interaction with the network by using a CSMA/CD communication protocol. The protocol is used to
respond to collisions that occur when multiple computers send data simultaneously. The Ethernet
component represents the network and the connection between the computers.

Software Components

In the model, each software component generates data (payload) and combines the data, its size, and
its destination into a message. Then, the message is sent to the Ethernet interface for
communication.

In each Software Component subsystem:

• A MATLAB Function block generates data with a size between 46 and 1500 bytes [ 1 ].

• A Constant block assigns destination addresses to data.

• A Bus Creator block converts the Data, PayloadSize, and DestAddress signals to a nonvirtual
bus object called dataPacket.

• A Send block converts dataPacket to a message.

• An Outport block sends the message to the Ethernet interface for communication.
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Each computer generates data with a different rate. You can change the data generation rate from
the MATLAB Function block's sample time.

To learn the basics of creating message send and receive interfaces, see “Establish Message Send
and Receive Interfaces Between Software Components” (Simulink).

Ethernet Interface

Double-click Ethernet Interface 1. Observe that you can specify the Station ID and Transmission
buffer capacity.

The Ethernet Interface subsystems have three main parts:

1 Assemble Ethernet Frame — Converts an incoming message to an Ethernet (MAC) frame.
2 Transmission Buffer — Stores Ethernet frames for transmission.
3 Medium Access Control — Implements a CSMA/CD protocol for packet transmission [ 2 ].
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Assemble Ethernet Frame

The Assemble Ethernet Frame blocks convert messages to Ethernet frames by attaching Ethernet-
specific attributes to the message [ 1 ].

In the packet assembly process:

• A SimEvents® Entity Replicator block labeled Copy Message copies an incoming message. The
original message is forwarded to a SimEvents® Entity Generator block labeled Assemble MAC
Frame. Because the Entity Generator block Generation method parameter is set to Event-
based, it immediately produces an entity when the original message arrives at the block. A copy
of the message is forwarded to a Simulink Function block with the initPacket() function. The
terms message and entity are used interchangeably between Simulink® and SimEvents®.

• The Simulink Function block transfers the data, its size, and its destination address to the
Assemble MAC Frame block for frame assembly.

• The Assemble MAC Frame block generates the Ethernet frames that carry both Ethernet-specific
attributes and values transferred from the Simulink Function block.

Assemble MAC Frame block calls the initPacket() function as an action that is invoked by each
frame generation event.
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These are the attributes of the generated Ethernet frame:

• entity.TxAddress is StationID.

• entity.RxAddress, entity.Data, and entity.PayloadSize are assigned the values from
the Simulink Function block.

• entity.TxDelay is the transmission delay. It is defined by the payload size and the bitrate. The
Bitrate parameter is specified by an initialization function in the Model Properties.

• entity.CRC is the cyclic redundancy check for error detection.

Transmission Buffer

The transmission buffer stores entities before transmission by using a first-in-first-out (FIFO) policy.
The buffer is modeled by a Queue block.

The capacity of the queue is determined by the Transmission buffer capacity parameter.

Medium Access Control

The Medium Access Control blocks are modeled by using six SimEvents® blocks.

• An Entity Gate block labeled Admit 1 Frame is configured as an enabled gate with two input ports.
One input port allows frames from the Transmission Buffer block. The other input port is called
the control port, which accepts messages from the CSMA/CD block. The block allows one frame to
advance when it receives a message with a positive value from CSMA/CD block.

• An Entity Input Switch block labeled Merge merges two paths. One input port accepts new frames
admitted by the Admit 1 frame block and the other input port accepts frames for retransmission
that are sent by the CSMA/CD block.

• An Entity Server block labeled Wait for Channel models the back off time of a frame before its
retransmission through the channel.
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• Another Entity Gate block labeled Send to Channel opens the gate to accept frames when the
channel is idle. The channel status is communicated by the CSMA/CD chart.

• An Entity Replicator block labeled Copy Transmitted Frame generates a copy of the frame. One
frame is forwarded to the Ethernet network, and the other is forwarded to the CSMA/CD chart.

• A Discrete-Event Chart block labeled CSMA/CD represents the state machine that models the
CSMA/CD protocol.

CSMA/CD Protocol

The CSMA/CD protocol [ 2 ] is modeled by a Discrete-Event Chart block that has two inputs:

• TxIn — Copy of the transmitted frame.

• RxIn — Received frame from the Ethernet network.

The chart has five outputs:

• IsIdle — Opens the Send to Channel gate to accept frames when the value is 1, and closes the
gate when the value is 0.

• TxRe — Retransmitted frame that is forwarded to the Merge block if there is a collision detected
during its transmission.

• TxNext — Opens the Admit 1 Frame gate to accept new frames when the value is 1.

• DataOut — Received data.

• Size — Size of the received data.
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Transmitting and Receiving Messages

The block is initially in the Standby state and the channel is idle.

If the block is transmitting, after a delay, the block attempts to transmit the message and Isle.data
is set to 0 to declare that the channel is in use.

If the transmission is successful, the block sets TxNext.data to 1 to allow a new message into the
channel and resets to the Standby state.

If there is a collision, the block resends the message after delaying it for a random back off time. n is
the counter for retransmissions. The block retransmits a message a maximum of 16 times. If all of the
retransmission attempts are unsuccessful, then the block terminates the message and allows the
entry of a new message. Then it resets to StandBy.

Similarly, the block can receive messages from other computers. If there is no error, the messages are
successfully received and the block outputs the received data and its size.

Ethernet Hub

The Ethernet component represents the communication network and the cabled connections of the
computers to the network.
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Double-click the Ethernet block to see its parameters.

• Connected stations — These values are assigned to Stations, which is a vector with the station
IDs as elements.

• Length of cables (m) — These values are assigned to CableLength and represent the length of
the cables, in meters, for each computer connected to the hub.

• Packet error rate (PER) — These values are assigned to PER and represent the rate of error in
message transmission for each computer.

• Processing time (s) — These values are assigned to ProcessingTime and it represents the
channel transmission delay.

Three SimEvents® blocks are used to model the Ethernet network. The three computer connections
are merged by using an Entity Input Switch block. An Entity Server block is used to model the
channel transmission delay based on the cable length. An Entity Replicator block copies the
transmitted message and forwards it to the three computers.

 Model an Ethernet Communication Network with CSMA/CD Protocol

15-55



Simulate the Model and Review the Results

Simulate the model and open the Scope block that displays the average channel utilization. The
channel utilization converges to approximately 0.12.

Open Software Component 1 as a top model and change the data generation rate by setting the
Sample time of the Generate Data 1 block to 0.01. Run the simulation again and observe that the
channel utilization increases to 0.2.
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Connect New Computers to the Network

You can connect more computers to the network.

To add a new computer to the network:

• Copy an existing computer and assign a new ID by double-clicking the Ethernet Interface block. In
this example, new computer has ID 4.
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• Double-click the Ethernet block and add a station ID, cable length, and packet error rate for the
new computer.

References

1 Ethernet frame - Wikipedia (https://en.wikipedia.org/wiki/Ethernet_frame)
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Eliminate Redundant Code by Combining State Actions
You can combine entry, during, and exit actions that execute the same tasks in a state.

By combining state actions that execute the same tasks, you eliminate redundant code. For example:

Separate Actions Equivalent Combined Actions
entry:
  y = 0;
  y=y+1;
during: y=y+1;

entry: y = 0;
entry, during: y=y+1;

en: 
  fcn1();
  fcn2();
du: fcn1();
ex: fcn1();

en, du, ex: fcn1();
en: fcn2();

Combining state actions this way produces the same chart execution behavior (semantics) and
generates the same code as the equivalent separate actions.

How to Combine State Actions
Combine a set of entry, during, and/or exit actions that perform the same task as a comma-
separated list in a state. Here is the syntax:

entry, during, exit: task1; task2;...taskN;

You can also use the equivalent abbreviations:

en, du, ex: task1; task2;...taskN;

Valid Combinations

You can use any combination of the three actions. For example, the following combinations are valid:

• en, du:
• en, ex:
• du, ex:
• en, du, ex:

You can combine actions in any order in the comma-separated list. For example, en, du: gives the
same result as du, en:.

Invalid Combinations

You cannot combine two or more actions of the same type. For example, the following combinations
are invalid:

• en, en:
• ex, en, ex:
• du, du, ex:
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If you combine multiple actions of the same type, you receive a warning that the chart executes the
action only once.

Order of Execution of Combined Actions
States execute combined actions in the same order as they execute separate actions:

1 Entry actions first, from top to bottom in the order they appear in the state
2 During actions second, from top to bottom
3 Exit actions last, from top to bottom

The order in which you combine actions does not affect state execution behavior. For example:

Combined Actions Order of Exectution
1 en: y = 0;
2 en: y = y+1;
3 du: y = y+1;
1 en: y = y+1;
2 en: y = 0;
3 du: y = y+1;
1 en: y = y+1;
2 en: y = 0;
3 du: y = y+1;
1 en: y = y+1;
2 en: y = 10;
3 du: y = y+1;
4 ex: y = 10;

Rules for Combining State Actions
• Do not combine multiple actions of the same type.
• Do not create data, events, or messages that have the same name as the action keywords: entry,

en, during, du, exit, ex.

See Also

More About
• “States” on page 2-8
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Supported Operations for Chart Data
Stateflow charts in Simulink models have an action language property that defines the operations
that you can use in state and transition actions. The language properties are:

•
 MATLAB as the action language.

•
 C as the action language.

For more information, see “Differences Between MATLAB and C as Action Language Syntax” on page
17-5.

Binary Operations
This table summarizes the interpretation of all binary operations in Stateflow charts according to
their order of precedence (0 = highest, 10 = lowest). Binary operations are left associative so that, in
any expression, operators with the same precedence are evaluated from left to right. The order of
evaluation for other operations is unspecified. For example, in this assignment

A = f() > g();

the order of evaluation of f() and g() is unspecified. For more predictable results, it is good coding
practice to split expressions that depend on the order of evaluation into multiple statements.

Operation Precedenc
e

MATLAB as the Action Language C as the Action Language

a ^ b 0 Power. Power. This operation is equivalent to
the C library function pow. Operands
are first cast to floating-point
numbers. For more information, see
“Call C Library Functions” on page
16-14.

Enable this operation by clearing the
Enable C-bit operations chart
property. For more information, see
“Enable C-bit operations” on page
28-5.

a * b 1 Multiplication. Multiplication.
a / b 1 Division. Division.
a %% b 1 Not supported. Use the rem or mod

function.
Remainder. Noninteger operands are
first cast to integers.

a + b 2 Addition. Addition.
a - b 2 Subtraction. Subtraction.
a >> b 3 Not supported. Use the bitshift

function.
Shift a to the right by b bits. For
more information, see “Bitwise
Operations” on page 16-8.

16 Use Actions in Charts

16-4



Operation Precedenc
e

MATLAB as the Action Language C as the Action Language

a << b 3 Not supported. Use the bitshift
function.

Shift a to the left by b bits. For more
information, see “Bitwise Operations”
on page 16-8.

a > b 4 Comparison, greater than. Comparison, greater than.
a < b 4 Comparison, less than. Comparison, less than.
a >= b 4 Comparison, greater than or equal to. Comparison, greater than or equal to.
a <= b 4 Comparison, less than or equal to. Comparison, less than or equal to.
a == b 5 Comparison, equal to. Comparison, equal to.
a ~= b 5 Comparison, not equal to. Comparison, not equal to.
a != b 5 Not supported. Use the operation a

~= b.
Comparison, not equal to.

a <> b 5 Not supported. Use the operation a
~= b.

Comparison, not equal to.

a & b 6 Logical AND. For bitwise AND, use
the bitand function.

• Bitwise AND (default). Enable this
operation by selecting the Enable
C-bit operations chart property.

• Logical AND. Enable this
operation by clearing the Enable
C-bit operations chart property.

For more information, see “Bitwise
Operations” on page 16-8 and
“Enable C-bit operations” on page
28-5.

a ^ b 7 Not supported. For bitwise XOR, use
the bitxor function.

Bitwise XOR (default). Enable this
operation by selecting the Enable C-
bit operations chart property. For
more information, see “Bitwise
Operations” on page 16-8 and
“Enable C-bit operations” on page
28-5.

a | b 8 Logical OR. For bitwise OR, use the
bitor function.

• Bitwise OR (default). Enable this
operation by selecting the Enable
C-bit operations chart property.

• Logical OR. Enable this operation
by clearing the Enable C-bit
operations chart property.

For more information, see “Bitwise
Operations” on page 16-8 and
“Enable C-bit operations” on page
28-5.

a && b 9 Logical AND. Logical AND.
a || b 10 Logical OR. Logical OR.
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Unary Operations and Actions
This table summarizes the interpretation of all unary operations and actions in Stateflow charts.
Unary operations:

• Have higher precedence than the binary operators.
• Are right associative so that, in any expression, they are evaluated from right to left.

Operation MATLAB as the Action Language C as the Action Language
~a Logical NOT. For bitwise NOT, use the

bitcmp function.
• Bitwise NOT (default). Enable this

operation by selecting the Enable C-
bit operations chart property.

• Logical NOT. Enable this operation by
clearing the Enable C-bit operations
chart property.

For more information, see “Bitwise
Operations” on page 16-8 and “Enable
C-bit operations” on page 28-5.

!a Not supported. Use the operation ~a. Logical NOT.
-a Negative. Negative.
a++ Not supported. Use the expression a = a

+1.
Increment. Equivalent to a = a+1.

a-- Not supported. Use the expression a =
a-1.

Decrement. Equivalent to a = a-1.

Assignment Operations
This table summarizes the interpretation of assignment operations in Stateflow charts.

Operation MATLAB as the Action Language C as the Action Language
a = b Simple assignment. Simple assignment.
a := b Not supported. Use type cast operations to

override fixed-point promotion rules. See
“Type Cast Operations” on page 16-7.

Assignment of fixed-point numbers. See
“Override Fixed-Point Promotion in C
Charts” on page 26-15.

a += b Not supported. Use the expression a = a
+b.

Equivalent to a = a+b.

a -= b Not supported. Use the expression a =
a-b.

Equivalent to a = a-b.

a *= b Not supported. Use the expression a =
a*b.

Equivalent to a = a*b.

a /= b Not supported. Use the expression a =
a/b.

Equivalent to a = a/b.
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Operation MATLAB as the Action Language C as the Action Language
a &= b Not supported. Use the expression a =

bitand(a,b).
Equivalent to a = a&b (bitwise AND).
Enable this operation by selecting the
Enable C-bit operations chart property.
For more information, see “Bitwise
Operations” on page 16-8 and “Enable
C-bit operations” on page 28-5.

a ^= b Not supported. Use the expression a =
bitxor(a,b).

Equivalent to a = a^b (bitwise XOR).
Enable this operation by selecting the
Enable C-bit operations chart property.
For more information, see “Bitwise
Operations” on page 16-8 and “Enable
C-bit operations” on page 28-5.

a |= b Not supported. Use the expression a =
bitor(a,b).

Equivalent to a = a|b (bitwise OR).
Enable this operation by selecting the
Enable C-bit operations chart property.
For more information, see “Bitwise
Operations” on page 16-8 and “Enable
C-bit operations” on page 28-5.

Type Cast Operations
To convert a value of one type to a value of another type, use type cast operations. You can cast data
to an explicit type or to the type of another variable.

Cast to Explicit Data Type

To cast a numeric expression to an explicit data type, use a MATLAB type conversion function of the
form:

<type_fun>(expression)

<type_fun> is a type conversion function that can be double, single, int32, int16, int8,
uint32, uint16, uint8, or fi. <type_fun> can also be boolean, int64, or uint64. For example,
this statement casts the expression x+3 to a 16-bit unsigned integer and assigns its value to the data
y:

y = uint16(x+3)

Alternatively, in charts that use MATLAB as the action language, you can use the cast function with
a type keyword <type_key>:

cast(expression,<type_key>)

Type keywords include 'double', 'single', 'int32', 'int16', 'int8', 'uint32', 'uint16',
and 'uint8'. For instance, as in the preceding example, this statement casts the expression x+3 to a
16-bit unsigned integer and assigns it to y:

y = cast(x+3,'uint16')
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Cast Type Based on Other Data

To make type casting easier, you can convert the type of a numeric expression based on the types of
other data.

In charts that use MATLAB as the action language, call the cast function with the keyword 'like'.
For example, this statement converts the value of x+3 to the same type as that of data z and assigns
it to y:

y = cast(x+3,'like',z)

In this case, the data z can have any acceptable Stateflow type.

In charts that use C as the action language, the type operator returns the type of an existing
Stateflow data. Use this return value in place of an explicit type in a cast operation. For example,
this statement converts the value of x+3 to the same type as that of data z and assigns it to y:

cast(x+3,type(z))

Bitwise Operations
This table summarizes the interpretation of all bitwise operations in Stateflow charts that use C as
the action language.

Operation Description
a & b Bitwise AND.
a | b Bitwise OR.
a ^ b Bitwise XOR.
~a Bitwise NOT.
a >> b Shift a to the right by b bits.
a << b Shift a to the left by b bits.

Except for the bit shift operations a >> b and a << b, you must enable all bitwise operations by
selecting the Enable C-bit operations chart property. See “Enable C-bit operations” on page 28-
5.

Bitwise operations work on integers at the binary level. Noninteger operands are first cast to
integers. Integer operands follow C promotion rules to determine the intermediate value of the result.
This intermediate value is then cast to the type that you specify for the result of the operation.

Note Bitwise operations are not supported in charts that use MATLAB as the action language.
Instead, use the functions bitand, bitor, bitxor, bitnot, or bitshift.

Bitwise Operations and Integer Overflows

The implicit cast used to assign the intermediate value of a bitwise operation can result in an
overflow. To preserve the rightmost bits of the result and avoid unexpected behavior, disable the chart
property Saturate on Integer Overflows.

For example, both charts in this model compute the bitwise operation y = ~u. The charts compute
the intermediate value for this operation by using the target integer size of 32 bits, so the 24 leftmost
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bits in this value are all ones. When the charts assign the intermediate value to y, the cast to uint8
causes an integer overflow. The output from each chart depends on how the chart handles integer
overflows.

• If Saturate on Integer Overflow is enabled, the chart saturates the result of the bitwise
operation and outputs a value of zero.

• If Saturate on Integer Overflow is disabled, the chart wraps the result of the bitwise operation
and outputs its eight rightmost bits.

For more information, see “Saturate on integer overflow” on page 28-7.

Pointer and Address Operations
This table summarizes the interpretation of pointer and address operations in Stateflow charts that
use C as the action language.

Operation Description
&a Address operation. Use with custom code and Stateflow variables.
*a Pointer operation. Use only with custom code variables.

For example, the model sf_bus_demo contains a custom C function that takes pointers as
arguments. When the chart calls the custom code function, it uses the & operation to pass the
Stateflow data by address. For more information, see “Integrate Custom Structures in Stateflow
Charts” on page 29-11.

Pointer and address operations are not supported in charts that use MATLAB as the action language.
Pointers to structures should only be used in read-only mode and are only valid during the call in
which they are passed.

Replace Operations with Application Implementations
If you have Embedded Coder or Simulink Coder, you can configure the code generator to apply a
code replacement library (CRL) during code generation. The code generator changes the code that it
generates for operations to meet application requirements. With Embedded Coder, you can develop
and apply custom code replacement libraries.

Operation entries of the code replacement library can specify integral or fixed-point operand and
result patterns. You can use operation entries for these operations:
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• Addition +
• Subtraction -
• Multiplication *
• Division /

For example, in this expression, you can replace the addition operator + with a target-specific
implementation if u1, u2, and y have types that permit a match with an addition entry in the code
replacement library:

y = u1+u2

C chart semantics limit operator entry matching because the chart uses the target integer size as its
intermediate type in arithmetic expressions. For example, this arithmetic expression computes the
intermediate addition into a target integer:

y = (u1 + u2) % 3

If the target integer size is 32 bits, then you cannot replace this expression with an addition operator
from the code replacement library and produce a signed 16-bit result without a loss of precision.

For more information about using code replacement libraries that MathWorks® provides, see “What
Is Code Replacement?” (Simulink Coder) and “Code Replacement Libraries” (Simulink Coder). For
information about developing custom code replacement libraries, see “What Is Code Replacement
Customization?” (Embedded Coder) and “Code You Can Replace From Simulink Models” (Embedded
Coder).

See Also

More About
• “Differences Between MATLAB and C as Action Language Syntax” on page 17-5
• “Specify Properties for Stateflow Charts” on page 28-2
• “Supported Operations for Fixed-Point Data” on page 26-12
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Supported Symbols in Actions

Boolean Symbols, true and false
Use the symbols true and false to represent Boolean constants. You can use these symbols as
scalars in expressions. Examples include:

cooling_fan = true;
heating_fan = false;

Tip These symbols are case-sensitive. Therefore, TRUE and FALSE are not Boolean symbols.

Do not use true and false in the following cases. Otherwise, error messages appear.

• Left-hand side of assignment statements

• true++;
• false += 3;
• [true, false] = my_function(x);

• Argument of the change implicit event (see “Control Chart Behavior by Using Implicit Events” on
page 14-26)

• change(true);
• chg(false);

• Indexing into a vector or matrix (see “Supported Operations for Vectors and Matrices” on page 21-
4)

• x = true[1];
• y = false[1][1];

Note If you define true and false as Stateflow data objects, your custom definitions of true and
false override the built-in Boolean constants.

Comment Symbols, %, //, /*
Use the symbols %, //, and /* to represent comments as shown in these examples:

% MATLAB comment line
// C++ comment line
/* C comment line */

You can also include comments in generated code for an embedded target (see “Model Configuration
Parameters: Comments” (Simulink Coder). C chart comments in generated code use multibyte
character code. Therefore, you can have code comments with characters for non-English alphabets,
such as Japanese Kanji characters.
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Hexadecimal Notation Symbols, 0xFF
C charts support C style hexadecimal notation, for example, 0xFF. You can use hexadecimal values
wherever you can use decimal values.

Infinity Symbol, inf
Use the MATLAB symbol inf to represent infinity in C charts. Calculations like n/0, where n is any
nonzero real value, result in inf.

Note If you define inf as a Stateflow data object, your custom definition of inf overrides the built-in
value.

Line Continuation Symbol, ...
Use the characters ... at the end of a line to indicate that the expression continues on the next line.
For example, you can use the line continuation symbol in a state action:

entry: total1 = 0, total2 = 0, ...
  total3 = 0;

Literal Code Symbol, $
Use $ characters to mark actions that you want the Stateflow parser to ignore but you want to appear
in the generated code. For example, the parser does not process any text between these $ characters:

$
ptr -> field = 1.0;
$

Note Avoid frequent use of literal symbols.

MATLAB Display Symbol, ;
Omitting the semicolon after an expression displays the results of the expression in the Diagnostic
Viewer. If you use a semicolon, the results do not appear.

Single-Precision Floating-Point Number Symbol, F
Use a trailing F to specify single-precision floating-point numbers in C charts. For example, you can
use the action statement x = 4.56F; to specify a single-precision constant with the value 4.56. If a
trailing F does not appear with a number, double precision applies.

Time Symbol, t
Use the letter t to represent absolute time that the chart inherits from a Simulink signal in simulation
targets. For example, the condition [t - On_time > Duration] specifies that the condition is true
if the difference between the simulation time t and On_time is greater than the value of Duration.
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The letter t has no meaning for nonsimulation targets, since t depends on the specific application
and target hardware.

Note If you define t as a Stateflow data object, your custom definition of t overrides the built-in
value.
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Call C Library Functions in C Charts
Stateflow charts in Simulink models have an action language property that defines the syntax for
state and transition actions. An icon in the lower-left corner of the chart canvas indicates the action
language for the chart.

•
 MATLAB as the action language.

•
 C as the action language.

Call C Library Functions
You can call this subset of the C Math Library functions:

abs* ** acos** asin** atan** atan2** ceil**

cos** cosh** exp** fabs floor** fmod**

labs ldexp** log** log10** pow** rand
sin** sinh** sqrt** tan** tanh**  
* The Stateflow abs function goes beyond that of its standard C counterpart with its own built-in
functionality. For more information, see “Call the abs Function” on page 16-14.
** You can also replace calls to the C Math Library with application-specific implementations for this
subset of functions. For more information, see “Replacement of Math Library Functions with
Application Implementations” on page 16-15.

When you call these functions, double precision applies unless all the input arguments are explicitly
single precision. When a type mismatch occurs, a cast of the input arguments to the expected type
replace the original arguments. For example, if you call the sin function with an integer argument, a
cast of the input argument to a floating-point number of type double replaces the original argument.

Note Because the input arguments to the C library functions are first cast to floating-point numbers,
function calls with arguments of type int64 or uint64 can result in loss of precision.

If you call other C library functions not listed above, include the appropriate #include... statement
in the Simulation Target pane of the Configuration Parameters.

Call the abs Function
Interpretation of the Stateflow abs function goes beyond the standard C version to include integer
and floating-point arguments of all types as follows:

• If x is an integer of type int32 or int64, the standard C function abs applies to x, or abs(x).
• If x is an integer of type int16 or int8, the standard C abs function applies to a cast of x as an

integer of type int32, or abs((int32)x).
• If x is a floating-point number of type double, the standard C function fabs applies to x, or

fabs(x).
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• If x is a floating-point number of type single, the standard C function fabs applies to a cast of x
as a double, or fabs((double)x).

• If x is a fixed-point number, the standard C function fabs applies to a cast of the fixed-point
number as a double, or fabs((double) Vx), where Vx is the real-world value of x.

If you want to use the abs function in the strict sense of standard C, cast its argument or return
values to integer types. See “Type Cast Operations” on page 16-7.

Note If you declare x in custom code, the standard C abs function applies in all cases. For
instructions on inserting custom code into charts, see “Reuse Custom Code in Stateflow Charts” on
page 31-2.

Call min and max Functions
You can call min and max by emitting the following macros automatically at the top of generated
code.

#define min(x1,x2) ((x1) > (x2) ? (x2):(x1))
#define max(x1,x2) ((x1) > (x2) ? (x1):(x2))

To allow compatibility with user graphical functions named min() or max(), generated code uses a
mangled name of the following form: <prefix>_min. However, if you export min() or max()
graphical functions to other charts in your model, the name of these functions can no longer be
emitted with mangled names in generated code and conflict occurs. To avoid this conflict, rename the
min() and max() graphical functions.

Replacement of Math Library Functions with Application
Implementations
You can configure the code generator to change the code that it generates for math library functions
such that the code meets application requirements. To do this you configure the code generator to
apply a code replacement library (CRL) during code generation. If you have an Embedded Coder
license, you can develop and apply custom code replacement libraries.

For more information about replacing code, using code replacement libraries that MathWorks
provides, see “What Is Code Replacement?” (Simulink Coder) and “Code Replacement Libraries”
(Simulink Coder). For information about developing custom code replacement libraries, see “What Is
Code Replacement Customization?” (Embedded Coder) and “Code You Can Replace From Simulink
Models” (Embedded Coder).

Call Custom C Code Functions
You can specify custom code functions for use in C charts for simulation and C code generation.

Specify Custom C Functions for Simulation

To specify custom C functions for simulation:

1 Open the Model Configuration Parameters dialog box.
2 Select Simulation Target.
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3 Specify your custom C files, as described in “Reuse Custom Code in Stateflow Charts” on page
31-2.

Specify Custom C Functions for Code Generation

To specify custom C functions for code generation:

1 Open the Model Configuration Parameters dialog box.
2 Select Code Generation > Custom Code.
3 Specify your custom C files, as described in “Integrate External Code for All Charts” (Simulink

Coder).

Guidelines for Calling Custom C Functions in Your Chart

• Define a function by its name, any arguments in parentheses, and an optional semicolon.
• Pass parameters to user-written functions using single quotation marks. For example,

func('string').
• An action can nest function calls.
• An action can invoke functions that return a scalar value (of type double in the case of MATLAB

functions and of any type in the case of C user-written functions).

Guidelines for Writing Custom C Functions That Access Input Vectors

• Use the sizeof function to determine the length of an input vector.

For example, your custom function can include a for-loop that uses sizeof as follows:

for(i=0; i < sizeof(input); i++) {
......
}

• If your custom function uses the value of the input vector length multiple times, include an input
to your function that specifies the input vector length.

For example, you can use input_length as the second input to a sum function as follows:

int sum(double *input, double input_length)

Your sum function can include a for-loop that iterates over all elements of the input vector:

for(i=0; i < input_length; i++) {
......
}

Function Call in Transition Action

Example formats of function calls using transition action notation appear in the following chart.
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A function call to fcn1 occurs with arg1, arg2, and arg3 if the following are true:

• S1 is active.
• Event e occurs.
• Condition c is true.
• The transition destination S2 is valid.

The transition action in the transition from S2 to S3 shows a function call nested within another
function call.

Function Call in State Action

Example formats of function calls using state action notation appear in the following chart.

Chart execution occurs as follows:

1 When the default transition into S1 occurs, S1 becomes active.
2 The entry action, a function call to fcn1 with the specified arguments, executes.
3 After 5 seconds of simulation time, S1 becomes inactive and S2 becomes active.
4 The during action, a function call to fcn2 with the specified arguments, executes.
5 After 10 seconds of simulation time, S2 becomes inactive and S1 becomes active again.
6 Steps 2 through 5 repeat until the simulation ends.

Pass Arguments by Reference

A Stateflow action can pass arguments to a user-written function by reference rather than by value.
In particular, an action can pass a pointer to a value rather than the value itself. For example, an
action could contain the following call:

f(&x);

where f is a custom-code C function that expects a pointer to x as an argument.

If x is the name of a data item defined in the Stateflow hierarchy, the following rules apply:

• Do not use pointers to pass data items input from a Simulink model.

If you need to pass an input item by reference, for example, an array, assign the item to a local
data item and pass the local item by reference.

• If x is a Simulink output data item having a data type other than double, the chart property Use
Strong Data Typing with Simulink I/O must be on (see “Specify Properties for Stateflow
Charts” on page 28-2).

• If the data type of x is boolean, you must turn off the coder option Use bitsets for storing state
configuration.
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• If x is an array with its first index property set to 0 (see “Set Data Properties” on page 12-5), then
you must call the function as follows.

f(&(x[0]));

This passes a pointer to the first element of x to the function.
• If x is an array with its first index property set to a nonzero number (for example, 1), the function

must be called in the following way:

f(&(x[1]));

This passes a pointer to the first element of x to the function.
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Access MATLAB Functions and Workspace Data in C Charts
Stateflow charts in Simulink models have an action language property that defines the syntax for
state and transition actions. An icon in the lower-left corner of the chart canvas indicates the action
language for the chart.

•
 MATLAB as the action language.

•
 C as the action language.

In charts that use C as the action language, you can call built-in MATLAB functions and access
MATLAB workspace variables by using the ml namespace operator or the ml function.

Caution Because MATLAB functions are not available in a target environment, do not use the ml
namespace operator and the ml function if you plan to build a code generation target.

ml Namespace Operator
For C charts, the ml namespace operator uses standard dot (.) notation to reference MATLAB
variables and functions. For example, the statement a = ml.x returns the value of the MATLAB
workspace variable x to the Stateflow data a.

For functions, the syntax is as follows:

[return_val1, return_val2,...] = ml.matfunc(arg1, arg2,...)

For example, the statement [a, b, c] = ml.matfunc(x, y) passes the return values from the
MATLAB function matfunc to the Stateflow data a, b, and c.

If the MATLAB function you call does not require arguments, you must still include the parentheses.
If you omit the parentheses, Stateflow software interprets the function name as a workspace variable,
which, when not found, generates a run-time error during simulation.

Examples

In these examples, x, y, and z are workspace variables and d1 and d2 are Stateflow data:

• a = ml.sin(ml.x)

In this example, the MATLAB function sin evaluates the sine of x, which is then assigned to
Stateflow data variable a. However, because x is a workspace variable, you must use the
namespace operator to access it. Hence, ml.x is used instead of just x.

• a = ml.sin(d1)

In this example, the MATLAB function sin evaluates the sine of d1, which is assigned to Stateflow
data variable a. Because d1 is Stateflow data, you can access it directly.

• ml.x = d1*d2/ml.y

The result of the expression is assigned to x. If x does not exist prior to simulation, it is
automatically created in the MATLAB workspace.
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• ml.v[5][6][7] = ml.matfunc(ml.x[1][3], ml.y[3], d1, d2, 'string')

The workspace variables x and y are arrays. x[1][3] is the (1,3) element of the two-
dimensional array variable x. y[3] is the third element of the one-dimensional array variable y.
The last argument, 'string', is a character vector.

The return from the call to matfunc is assigned to element (5,6,7) of the workspace array, v. If
v does not exist prior to simulation, it is automatically created in the MATLAB workspace.

ml Function
For C charts, you can use the ml function to specify calls to MATLAB functions. The format for the ml
function call uses this notation:

ml(evalString, arg1, arg2,...);

evalString is an expression that is evaluated in the MATLAB workspace. It contains a MATLAB
command (or a set of commands, each separated by a semicolon) to execute along with format
specifiers (%g, %f, %d, etc.) that provide formatted substitution of the other arguments (arg1, arg2,
etc.) into evalString.

The format specifiers used in ml functions are the same as those used in the C functions printf and
sprintf. The ml function call is equivalent to calling the MATLAB eval function with the ml
namespace operator if the arguments arg1, arg2,... are restricted to scalars or literals in the
following command:

ml.eval(ml.sprintf(evalString, arg1, arg2,...))

Format specifiers used in the ml function must either match the data types of the arguments or the
arguments must be of types that can be promoted to the type represented by the format specifier.

Stateflow software assumes scalar return values from ml namespace operator and ml function calls
when they are used as arguments in this context. See “How Charts Infer the Return Size for ml
Expressions” on page 16-24.

Examples

In these examples, x is a MATLAB workspace variable, and d1 and d2 are Stateflow data:

• a = ml('sin(x)')

In this example, the ml function calls the MATLAB function sin to evaluate the sine of x in the
MATLAB workspace. The result is then assigned to Stateflow data variable a. Because x is a
workspace variable, and sin(x) is evaluated in the MATLAB workspace, you enter it directly in
the evalString argument ('sin(x)').

• a = ml('sin(%f)', d1)

In this example, the MATLAB function sin evaluates the sine of d1 in the MATLAB workspace and
assigns the result to Stateflow data variable a. Because d1 is Stateflow data, its value is inserted
in the evalString argument ('sin(%f)') using the format expression %f. This means that if d1
= 1.5, the expression evaluated in the MATLAB workspace is sin(1.5).

• a = ml('matfunc(%g, ''abcdefg'', x, %f)', d1, d2)

In this example, the expression 'matfunc(%g, ''abcdefg'', x, %f)' is the evalString
shown in the preceding format statement. Stateflow data d1 and d2 are inserted into that
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expression with the format specifiers %g and %f, respectively. ''abcdefg'' is a literal enclosed
with two single pairs of quotation marks because it is part of the evaluation expression, which is
already enclosed in single quotation marks.

• sfmat_44 = ml('rand(4)')

In this example, a square 4-by-4 matrix of random numbers between 0 and 1 is returned and
assigned to the Stateflow data sf_mat44. Stateflow data sf_mat44 must be defined as a 4-by-4
array before simulation. If its size is different, a size mismatch error is generated during run-time.

ml Expressions
For C charts, you can mix ml namespace operator and ml function expressions along with Stateflow
data in larger expressions. The following example squares the sine and cosine of an angle in
workspace variable X and adds them:

ml.power(ml.sin(ml.X),2) + ml('power(cos(X),2)')

The first operand uses the ml namespace operator to call the sin function. Its argument is ml.X,
since X is in the MATLAB workspace. The second operand uses the ml function. Because X is in the
workspace, it appears in the evalString expression as X. The squaring of each operand is
performed with the MATLAB power function, which takes two arguments: the value to square, and
the power value, 2.

Expressions using the ml namespace operator and the ml function can be used as arguments for ml
namespace operator and ml function expressions. The following example nests ml expressions at
three different levels:

a = ml.power(ml.sin(ml.X + ml('cos(Y)')),2)

In composing your ml expressions, follow the levels of precedence set out in “Binary Operations” on
page 16-4. Use parentheses around power expressions with the ^ operator when you use them in
conjunction with other arithmetic operators.

Stateflow software checks expressions for data size mismatches in your actions when you update or
simulate the model. Because the return values for ml expressions are not known until run time,
Stateflow software must infer the size of their return values. See “How Charts Infer the Return Size
for ml Expressions” on page 16-24.

Which ml Should I Use?
In most cases, the notation of the ml namespace operator is more straightforward. However, using
the ml function call does offer a few advantages:

• Use the ml function to dynamically construct workspace variables.

The following flow chart creates four new MATLAB matrices:
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The for loop creates four new matrix variables in the MATLAB workspace. The default transition
initializes the Stateflow counter i to 0, while the transition segment between the top two junctions
increments it by 1. If i is less than 5, the transition segment back to the top junction evaluates the
ml function call ml('A%d = rand(%d)',i,i) for the current value of i. When i is greater than
or equal to 5, the transition segment between the bottom two junctions occurs and execution
stops.

The transition executes the following MATLAB commands, which create a workspace scalar (A1)
and three matrices (A2, A3, A4):

A1 = rand(1)
A2 = rand(2)
A3 = rand(3)
A4 = rand(4)

• Use the ml function with full MATLAB notation.

You cannot use full MATLAB notation with the ml namespace operator, as the following example
shows:

ml.A = ml.magic(4)
B = ml('A + A''')

This example sets the workspace variable A to a magic 4-by-4 matrix using the ml namespace
operator. Stateflow data B is then set to the addition of A and its transpose matrix, A', which
produces a symmetric matrix. Because the ml namespace operator cannot evaluate the expression
A', the ml function is used instead. However, you can call the MATLAB function transpose with
the ml namespace operator in the following equivalent expression:

B = ml.A + ml.transpose(ml.A)

As another example, you cannot use arguments with cell arrays or subscript expressions involving
colons with the ml namespace operator. However, these can be included in an ml function call.

ml Data Type
Stateflow data of type ml is typed internally with the MATLAB type mxArray for C charts. You can
assign (store) any type of data available in the Stateflow hierarchy to a data of type ml. These types
include any data type defined in the Stateflow hierarchy or returned from the MATLAB workspace
with the ml namespace operator or ml function.
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Rules for Using ml Data Type

These rules apply to Stateflow data of type ml:

• You can initialize ml data from the MATLAB workspace just like other data in the Stateflow
hierarchy (see “Initialize Data from the MATLAB Base Workspace” on page 12-19).

• Any numerical scalar or array of ml data in the Stateflow hierarchy can participate in any kind of
unary operation and any kind of binary operation with any other data in the hierarchy.

If ml data participates in any numerical operation with other data, the size of the ml data must be
inferred from the context in which it is used, just as return data from the ml namespace operator
and ml function are. See “How Charts Infer the Return Size for ml Expressions” on page 16-24.

• You cannot define ml data with the scope Constant.

This option is disabled in the Data properties dialog box and in the Model Explorer for Stateflow
data of type ml.

• You can use ml data to build a simulation target but not to build an embeddable code generation
target.

• If data of type ml contains an array, you can access the elements of the array via indexing with
these rules:

a You can index only arrays with numerical elements.
b You can index numerical arrays only by their dimension.

In other words, you can access only one-dimensional arrays by a single index value. You
cannot access a multidimensional array with a single index value.

c The first index value for each dimension of an array is 1, and not 0, as in C language arrays.

In the examples that follow, mldata is a Stateflow data of type ml, ws_num_array is a 2-by-2
MATLAB workspace array with numerical values, and ws_str_array is a 2-by-2 MATLAB
workspace array with character vector values.

mldata = ml.ws_num_array; /* OK */
n21 = mldata[2][1]; /* OK for numerical data of type ml */
n21 = mldata[3]; /* NOT OK for 2-by-2 array data */
mldata = ml.ws_str_array; /* OK */
s21 = mldata[2][1]; /* NOT OK for character vector data of type ml*/

• ml data cannot have a scope outside a C chart; that is, you cannot define the scope of ml data as
Input from Simulink or Output to Simulink.

Place Holder for Workspace Data

Both the ml namespace operator and the ml function can access data directly in the MATLAB
workspace and return it to a C chart. However, maintaining data in the MATLAB workspace can
present Stateflow users with conflicts with other data already resident in the workspace.
Consequently, with the ml data type, you can maintain ml data in a chart and use it for MATLAB
computations in C charts.

As an example, in the following statements, mldata1 and mldata2 are Stateflow data of type ml:

mldata1 = ml.rand(3);
mldata2 = ml.transpose(mldata1);
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In the first line of this example, mldata1 receives the return value of the MATLAB function rand,
which, in this case, returns a 3-by-3 array of random numbers. Note that mldata1 is not specified as
an array or sized in any way. It can receive any MATLAB workspace data or the return of any
MATLAB function because it is defined as a Stateflow data of type ml.

In the second line of the example, mldata2, also of Stateflow data type ml, receives the transpose
matrix of the matrix in mldata1. It is assigned the return value of the MATLAB function transpose
in which mldata1 is the argument.

Note the differences in notation if the preceding example were to use MATLAB workspace data
(wsdata1 and wsdata2) instead of Stateflow ml data to hold the generated matrices:

ml.wsdata1 = ml.rand(3);
ml.wsdata2 = ml.transpose(ml.wsdata1);

In this case, each workspace data must be accessed through the ml namespace operator.

How Charts Infer the Return Size for ml Expressions
In C charts, Stateflow expressions using the ml namespace operator and the ml function evaluate in
the MATLAB workspace at run time. The actual size of the data returned from the following
expression types is known only at run time:

• MATLAB workspace data or functions using the ml namespace operator or the ml function call

For example, the size of the return values from the expressions ml.var, ml.func(), or
ml(evalString, arg1, arg2,...), where var is a MATLAB workspace variable and func is
a MATLAB function, cannot be known until run-time.

• Stateflow data of type ml
• Graphical functions that return Stateflow data of type ml

When these expressions appear in actions, Stateflow code generation creates temporary data to hold
intermediate returns for evaluation of the full expression of which they are a part. Because the size of
these return values is unknown until run time, Stateflow software must employ context rules to infer
the sizes for creation of the temporary data.

During run time, if the actual returned value from one of these commands differs from the inferred
size of the temporary variable that stores it, a size mismatch error appears. To prevent run-time
errors, use the following guidelines to write actions with MATLAB commands or ml data:

Guideline Example
Return sizes of MATLAB commands or data in an expression
must match return sizes of peer expressions.

In the expression ml.func() * (x +
ml.y), if x is a 3-by-2 matrix, then
ml.func() and ml.y are also assumed to
evaluate to 3-by-2 matrices. If either returns a
value of different size (other than a scalar), an
error results during run-time.
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Guideline Example
Expressions that return a scalar never produce an error.

You can combine matrices and scalars in larger expressions
because MATLAB commands use scalar expansion.

In the expression ml.x + y, if y is a 3-by-2
matrix and ml.x returns a scalar, the
resulting value is the result of adding the
scalar value of ml.x to every member of y to
produce a matrix with the size of y, that is, a
3-by-2 matrix.

The same rule applies to subtraction (-),
multiplication (*), division (/), and any other
binary operations.

MATLAB commands or Stateflow
data of type ml can be members of
these independent levels of
expression, for which resolution of
return size is necessary:

Arguments

The expression for each
function argument is a
larger expression for
which the return size of
MATLAB commands or
Stateflow data of type ml
must be determined.

In the expression z + func(x + ml.y), the
size of ml.y is independent of the size of z,
because ml.y is used at the function
argument level. However, the return size for
func(x + ml.y) must match the size of z,
because they are both at the same expression
level.

Array indices

The expression for an
array index is an
independent level of
expression that must be
scalar in size.

In the expression x + array[y], the size of
y is independent of the size of x because y
and x are at different levels of expression.
Also, y must be a scalar.

The return size for an indexed array element access must be a
scalar.

The expression x[1][1], where x is a 3-by-2
array, must evaluate to a scalar.

MATLAB command or data elements used in an expression for
the input argument of a MATLAB function called through the ml
namespace operator are resolved for size. This resolution uses
the rule for peer expressions (preceding rule 1) for the
expression itself, because no size definition prototype is
available.

In the function call ml.func(x + ml.y), if
x is a 3-by-2 array, ml.y must return a 3-by-2
array or a scalar.

MATLAB command or data elements used for the input
argument for a graphical function in an expression are resolved
for size by the function prototype.

If the graphical function gfunc has the
prototype gfunc(arg1), where arg1 is a 2-
by-3 Stateflow data array, the calling
expression, gfunc(ml.y + x), requires that
both ml.y and x evaluate to 2-by-3 arrays (or
scalars) during run-time.

ml function calls can take only scalar or character vector literal
arguments. Any MATLAB command or data that specifies an
argument for the ml function must return a scalar value.

In the expression a = ml('sin(x)'), the
ml function calls the MATLAB function sin to
evaluate the sine of x in the MATLAB
workspace. Stateflow data variable a stores
that result.
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Guideline Example
In an assignment, the size of the right-hand expression must
match the size of the left-hand expression, with one exception.
If the left-hand expression is a single MATLAB variable, such as
ml.x, or Stateflow data of type ml, the right-hand expression
determines the sizes of both expressions.

In the expression s = ml.func(x), where x
is a 3-by-2 matrix and s is scalar Stateflow
data, ml.func(x) must return a scalar to
match the left-hand expression, s. However,
in the expression ml.y = x + s, where x is
a 3-by-2 data array and s is scalar, the left-
hand expression, workspace variable y, is
assigned the size of a 3-by-2 array to match
the size of the right-hand expression, x+s, a
3-by-2 array.

In an assignment, Stateflow column vectors on the left-hand
side are compatible with MATLAB row or column vectors of the
same size on the right-hand side.

A matrix you define with a row dimension of 1 is considered a
row vector. A matrix you define with one dimension or with a
column dimension of 1 is considered a column vector.

In the expression s = ml.func(), where
ml.func() returns a 1-by-3 matrix, if s is a
vector of size 3, the assignment is valid.

If you cannot resolve the return size of MATLAB command or
data elements in a larger expression by any of the preceding
rules, they are assumed to return scalar values.

In the expression ml.x = ml.y + ml.z,
none of the preceding rules can be used to
infer a common size among ml.x, ml.y, and
ml.z. In this case, both ml.y and ml.z are
assumed to return scalar values. Even if ml.y
and ml.z return matching sizes at run-time,
if they return nonscalar values, a size
mismatch error results.

The preceding rules for resolving the size of member MATLAB
commands or Stateflow data of type ml in a larger expression
apply only to cases in which numeric values are expected for
that member. For nonnumeric returns, a run-time error results.

Note Member MATLAB commands or data of type ml in a
larger expression are limited to numeric values (scalar or array)
only if they participate in numeric expressions.

The expression x + ml.str, where ml.str
is a character vector workspace variable,
produces a run-time error stating that
ml.str is not a numeric type.

Special cases exist, in which no size checking occurs to resolve the size of MATLAB command or data
expressions that are part of larger expressions. Use of the following expressions does not require
enforcement of size checking at run-time:

• ml.var
• ml.func()
• ml(evalString, arg1, arg2,...)
• Stateflow data of type ml
• Graphical function returning a Stateflow data of type ml

In these cases, assignment of a return to the left-hand side of an assignment statement or a function
argument occurs without checking for a size mismatch between the two:

• An assignment in which the left-hand side is a MATLAB workspace variable
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For example, in the expression ml.x = ml.y, ml.y is a MATLAB workspace variable of any size
and type (structure, cell array, character vector, and so on).

• An assignment in which the left-hand side is a data of type ml

For example, in the expression m_x = ml.func(), m_x is a Stateflow data of type ml.
• Input arguments of a MATLAB function

For example, in the expression ml.func(m_x, ml.x, gfunc()), m_x is a Stateflow data of type
ml, ml.x is a MATLAB workspace variable of any size and type, and gfunc() is a Stateflow
graphical function that returns a Stateflow data of type ml. Although size checking does not occur
for the input type, if the passed-in data is not of the expected type, an error results from the
function call ml.func().

• Arguments for a graphical function that are specified as Stateflow data of type ml in its prototype
statement

Note If you replace the inputs in the preceding cases with non-MATLAB numeric Stateflow data,
conversion to an ml type occurs.
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Control Function-Call Subsystems by Using bind Actions
You can bind specified data and events to a state by using bind actions. Events bound to a state can
be broadcast only by the actions in that state or its children. You can also bind a function-call event to
a state to enable or disable the function-call subsystem that the event triggers. The function-call
subsystem enables when the state with the bound event is entered and disables when that state is
exited. Execution of the function-call subsystem is fully bound to the activity of the state that calls it.

Bind a Function-Call Subsystem to a State
By default, a function-call subsystem is controlled by the chart in which the associated function call
output event is defined. This association means that the function-call subsystem is enabled when the
chart wakes up and remains active until the chart goes to sleep. To achieve a finer level of control,
you can bind a function-call subsystem to a state within the chart hierarchy by using a bind action
(see “bind Actions” on page 2-14).

You can bind function-call output events to a state. When you create this type of binding, the function-
call subsystem that is called by the event is also bound to the state. In this situation, the function-call
subsystem is enabled when the state is entered and disabled when the state is exited.

When you bind a function-call subsystem to a state, you can fine-tune the behavior of the subsystem
when it is enabled and disabled, as described in the following sections:

• “Handle Outputs When the Subsystem is Disabled” on page 16-28
• “Control Behavior of States When the Subsystem is Enabled” on page 16-29

Handle Outputs When the Subsystem is Disabled

Although function-call subsystems do not execute while disabled, their output signals are available to
other blocks in the model. If a function-call subsystem is bound to a state, you can hold its outputs at
their values from the previous time step or reset the outputs to their initial values when the
subsystem is disabled. Follow these steps:

1 Double-click the Outport block of the subsystem to open the Block Parameters dialog box.

2 Select an option for Output when disabled:
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Select: To:
held Maintain most recent output value
reset Reset output to its initial value

3 Click OK to record the settings.

Note Setting Output when disabled is meaningful only when the function-call subsystem is
bound to a state, as described in “Bind a Function-Call Subsystem to a State” on page 16-28.

Control Behavior of States When the Subsystem is Enabled

If a function-call subsystem is bound to a state, you can hold the subsystem state variables at their
values from the previous time step or reset the state variables to their initial conditions when the
subsystem executes. In this way, the binding state gains full control of state variables for the function-
call subsystem. Follow these steps:

1 Double-click the trigger port of the subsystem to open the Block Parameters dialog box.

2 Select an option for States when enabling:

Select: To:
held Maintain most recent values of the states of the subsystem that

contains the trigger port
reset Revert to the initial conditions of the states of the subsystem that

contains this trigger port
inherit Inherit this setting from the function-call initiator's parent

subsystem. If the parent of the initiator is the model root, the
inherited setting is held. If the trigger has multiple initiators, the
parents of all initiators must have the same setting: either all held
or all reset.

3 Click OK to record the settings.

Note Setting States when enabling is meaningful only when the function-call subsystem is
bound to a state, as described in “Bind a Function-Call Subsystem to a State” on page 16-28.
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Bind a Function-Call Subsystem to a State
This model triggers a function-call subsystem with a trigger event E that binds to a state of a chart. In
the Solver pane of the Model Configuration Parameters dialog box, the model specifies a fixed-step
solver with a fixed-step size of 1.

The chart contains two states. Event E binds to state A with the action

  bind:E

Event E is defined for the chart with a scope of Output to Simulink and a trigger type of
function-call.

The function-call subsystem contains a trigger port block, an input port, an output port, and a simple
block diagram. The block diagram increments a counter by 1 at each time step, using a Unit Delay
block.

The Block Parameters dialog box for the trigger port contains these settings:

• Trigger type: function-call.
• States when enabling: reset. This setting resets the state values for the function-call

subsystem to zero when it is enabled.
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• Sample time type: triggered. This setting sets the function-call subsystem to execute only
when it is triggered by a calling event while it is enabled.

Setting Sample time type to periodic enables the Sample time field below it, which defaults to 1.
These settings force the function-call subsystem to execute for each time step specified in the
Sample time field while it is enabled. To accomplish this, the state that binds the calling event for
the function-call subsystem must send an event for the time step coinciding with the specified
sampling rate in the Sample time field. States can send events with entry or during actions at the
simulation sample rate.

• For fixed-step sampling, the Sample time value must be an integer multiple of the fixed-step size.
• For variable-step sampling, the Sample time value has no limitations.

To see how a state controls a bound function-call subsystem, begin simulating the model.

• At time t = 0, the default transition to state A occurs. State A executes its bind and entry actions.
The binding action binds event E to state A, enabling the function-call subsystem and resetting its
state variables to 0. The entry action triggers the function-call subsystem and executes its block
diagram. The block diagram increments a counter by 1 using a Unit Delay block. The Unit Delay
block outputs a value of 0 and holds the new value of 1 until the next call to the subsystem.

• At time t = 1, the next update event from the model tests state A for an outgoing transition. The
transition to state B does not occur because the temporal operator after(10,tick) allows the
transition to be taken only after ten update events are received. State A remains active and its
during action triggers the function-call subsystem. The Unit Delay block outputs its held value of
1. The subsystem also increments its counter to produce the value of 2, which the Unit Delay
block holds until the next triggered execution.

• The next eight update events increment the subsystem output by one at each time step.
• At time t = 10, the transition from state A to state B occurs. Because the binding to state A is no

longer active, the function-call subsystem is disabled, and its output drops back to 0.
• At time t = 11, the transition from state B to state A occurs. Again, the binding action enables the

function-call subsystem. Subsequent update events increment the subsystem output by one at
each time step until the next transition to state B occurs at time t = 21.
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Avoid Muxed Trigger Events with Binding
Binding events gives control of a function-call subsystem to a single state in a chart. This control does
not work when you allow other events to trigger the function-call subsystem through a mux. For
example, this model defines two function-call events to trigger a function-call subsystem using a Mux
block.

In the chart, E1 binds to state A, but E2 does not. State B sends the triggering event E2 in its entry
action.
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When you simulate this model, the output does not reset when the transition from state A to state B
occurs.

Binding is not recommended when you provide multiple trigger events to a function-call subsystem
through a mux. Muxed trigger events can interfere with event binding and cause undefined behavior.
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Control Chart Execution by Using Temporal Logic
Temporal logic controls the execution of a chart in terms of time. In state actions and transitions, you
can use two types of temporal logic:

• Event-based temporal logic tracks recurring events. You can use any explicit or implicit event as a
base event.

• Absolute-time temporal logic tracks the elapsed time since a state became active. The timing for
absolute-time temporal logic operators depends on the type of Stateflow chart:

• Charts in a Simulink model define absolute-time temporal logic in terms of simulation time.
• Standalone charts in MATLAB define absolute-time temporal logic in terms of wall-clock time,

which is limited to 1 millisecond precision.

Temporal Logic Operators
To define the behavior of a Stateflow chart based on temporal logic, use the operators listed in this
table. These operators can appear in:

• State on actions
• Actions on transition paths that originate from a state

Each temporal logic operator has an associated state, which is the state in which the action appears
or from which the transition path originates. The Stateflow chart resets the counter used by each
operator every time that the associated state reactivates.

Operator Syntax Description Example
after after(n,E)

n is a positive integer
or an expression that
evaluates to a positive
integer value.

E is the base event for
the operator.

Returns true if the event E has
occurred at least n times since the
associated state became active.
Otherwise, the operator returns
false.

Display a status message when the
chart processes a broadcast of the
event E, starting on the third
broadcast of E after the state
became active.

on after(3,E):
   disp('ON');

Transition out of the associated
state when the chart processes a
broadcast of the event E, starting on
the fifth broadcast of E after the
state became active.

after(5,E)
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Operator Syntax Description Example
after(n,tick)

n is a positive integer
or an expression that
evaluates to a positive
integer value.

Returns true if the chart has
woken up at least n times since the
associated state became active.
Otherwise, the operator returns
false.

The implicit event tick is not
supported when a Stateflow chart in
a Simulink model has input events.
For more information, see “Control
Chart Behavior by Using Implicit
Events” on page 14-26.

Transition out of the associated
state when the chart wakes up for
at least the seventh time since the
state became active, but only if the
variable temp is greater than 98.6.

after(7,tick)[temp > 98.6]

after(n,sec)

after(n,msec)

after(n,usec)

n is a positive real
number or an
expression that
evaluates to a positive
real value.

Returns true if at least n units of
time have elapsed since the
associated state became active.
Otherwise, the operator returns
false.

In charts in a Simulink model,
specify time in seconds (sec),
milliseconds (msec), or
microseconds (usec).

In standalone charts in MATLAB,
specify time in seconds (sec). The
operator creates a MATLAB timer
object that generates an implicit
event to wake up the chart.
MATLAB timer objects are limited
to 1 millisecond precision. For more
information, see “Events in
Standalone Charts” on page 3-56.

Set the temp variable to LOW every
time that the chart wakes up,
starting when the associated state
is active for at least 12.3 seconds.

on after(12.3,sec):
   temp = LOW;

at at(n,E)

n is a positive integer
or an expression that
evaluates to a positive
integer value.

E is the base event for
the operator.

Returns true if the event E has
occurred exactly n times since the
associated state became active.
Otherwise, the operator returns
false.

Display a status message when the
chart processes the third broadcast
of the event E after the state
became active.

on at(3,E):
   disp('ON');

Transition out of the associated
state when the chart processes the
fifth broadcast of the event E after
the state became active.

at(5,E)
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Operator Syntax Description Example
at(n,tick)

n is a positive integer
or an expression that
evaluates to a positive
integer value.

Returns true if the chart has
woken up exactly n times since the
associated state became active.
Otherwise, the operator returns
false.

The implicit event tick is not
supported when a Stateflow chart in
a Simulink model has input events.
For more information, see “Control
Chart Behavior by Using Implicit
Events” on page 14-26.

Transition out of the associated
state when the chart wakes up for
the seventh time since the state
became active, but only if the
variable temp is greater than 98.6.

at(7,tick)[temp > 98.6]

at(n,sec)

n is a positive real
number or an
expression that
evaluates to a positive
real value.

Returns true if exactly n seconds
have elapsed since the associated
state became active. Otherwise, the
operator returns false.

Using at as an absolute-time
temporal logic operator is
supported only in standalone charts
in MATLAB. The operator creates a
MATLAB timer object that
generates an implicit event to wake
up the chart. MATLAB timer
objects are limited to 1 millisecond
precision. For more information, see
“Events in Standalone Charts” on
page 3-56.

Set the temp variable to HIGH if the
state has been active for exactly
12.3 seconds.

on at(12.3,sec):
   temp = HIGH;

before before(n,E)

n is a positive integer
or an expression that
evaluates to a positive
integer value.

E is the base event for
the operator.

Returns true if the event E has
occurred fewer than n times since
the associated state became active.
Otherwise, the operator returns
false.

The temporal logic operator before
is supported only in Stateflow
charts in Simulink models.

Display a status message when the
chart processes the first and second
broadcasts of the event E after the
state became active.

on before(3,E):
   disp('ON');

Transition out of the associated
state when the chart processes a
broadcast of the event E, but only if
the state has been active for fewer
than five broadcasts of E.

before(5,E)
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Operator Syntax Description Example
before(n,tick)

n is a positive integer
or an expression that
evaluates to a positive
integer value.

Returns true if the chart has
woken up fewer than n times since
the associated state became active.
Otherwise, the operator returns
false.

The implicit event tick is not
supported when a Stateflow chart in
a Simulink model has input events.
For more information, see “Control
Chart Behavior by Using Implicit
Events” on page 14-26.

The temporal logic operator before
is supported only in Stateflow
charts in Simulink models.

Transition out of the associated
state when the chart wakes up, but
only if the variable temp is greater
than 98.6 and the chart has woken
up fewer than seven times since the
state became active.

before(7,tick)[temp > 98.6]

before(n,sec)

before(n,msec)

before(n,usec)

n is a positive real
number or an
expression that
evaluates to a positive
real value.

Returns true if fewer than n units
of time have elapsed since the
associated state became active.
Otherwise, the operator returns
false.

Specify time in seconds (sec),
milliseconds (msec), or
microseconds (usec).

The temporal logic operator before
is supported only in Stateflow
charts in Simulink models.

Set the temp variable to MED every
time that the chart wakes up, but
only if the associated state has been
active for fewer 12.3 seconds.

on before(12.3,sec):
   temp = MED;

every every(n,E)

n is a positive integer
or an expression that
evaluates to a positive
integer value.

E is the base event for
the operator.

Returns true at every nth

occurrence of the event E since the
associated state became active.
Otherwise, the operator returns
false.

Display a status message when the
chart processes every third
broadcast of the event E after the
state became active.

on every(3,E):
   disp('ON');

Transition out of the associated
state when the chart processes
every fifth broadcast of the event E
after the state became active.

every(5,E)
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Operator Syntax Description Example
every(n,tick)

n is a positive integer
or an expression that
evaluates to a positive
integer value.

Returns true at every nth time that
the chart wakes up since the
associated state became active.
Otherwise, the operator returns
false.

The implicit event tick is not
supported when a Stateflow chart in
a Simulink model has input events.
For more information, see “Control
Chart Behavior by Using Implicit
Events” on page 14-26.

Transition out of the associated
state every seventh tick event
since the state became active, but
only if the variable temp is greater
than 98.6.

every(7,tick)[temp > 98.6]

every(n,sec)

n is a positive real
number or an
expression that
evaluates to a positive
real value.

Returns true every n seconds since
the associated state became active.
Otherwise, the operator returns
false.

Using every as an absolute-time
temporal logic operator is
supported only in standalone charts
in MATLAB. The operator creates a
MATLAB timer object that
generates an implicit event to wake
up the chart. MATLAB timer
objects are limited to 1 millisecond
precision. For more information, see
“Events in Standalone Charts” on
page 3-56.

Increment the temp variable by 5
every 12.3 seconds that the state is
active.

on every(12.3,sec):
   temp = temp+5;

temporal
Count

temporalCount(E)

E is the base event for
the operator.

Returns the number of occurrences
of the event E since the associated
state became active.

Using temporalCount as an event-
based temporal logic operator is
supported only in Stateflow charts
in Simulink models.

Access successive elements of the
array M each time that the chart
processes a broadcast of the event
E.

on E:
   y = M(temporalCount(E));

temporalCount(tick
)

Returns the number of times that
the chart has woken up since the
associated state became active.

The implicit event tick is not
supported when a Stateflow chart in
a Simulink model has input events.

Using temporalCount as an event-
based temporal logic operator is
supported only in Stateflow charts
in Simulink models.

Store the value of the input data u
in successive elements of the array
M.

en,du:
   M(temporalCount(tick)+1) = u;
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Operator Syntax Description Example
temporalCount(sec)

temporalCount(msec
)

temporalCount(usec
)

Returns the length of time that has
elapsed since the associated state
became active.

Specify time in seconds (sec),
milliseconds (msec), or
microseconds (usec).

Store the number of milliseconds
since the state became active.

en,du:
   y = temporalCount(msec);

elapsed elapsed(sec) Returns the length of time that has
elapsed since the associated state
became active.

Equivalent to
temporalCount(sec).

Store the number of seconds since
the state became active.

en,du:
   y = elapsed(sec);

et An alternative way to execute
elapsed(sec).

When the chart processes a
broadcast of the event E, transition
out of the associated state and
display the elapsed time since the
state became active.

E{disp(et);}

count count(C)

C is an expression that
evaluates to true or
false.

Returns the number of times that
the chart has woken up since the
conditional expression C became
true and the associated state
became active.

The Stateflow chart resets the value
of the count operator if the
conditional expression C becomes
false or if the associated state
becomes inactive.

In charts in a Simulink model, the
value of count may depend on the
step size. Changing the solver or
step size for the model affects the
results produced by the count
operator.

Transition out of the associated
state when the variable x has been
greater than or equal to 2 for longer
than five chart executions.

[count(x>=2) > 5]

Store the number of chart
executions since the variable x
became greater than 5.

en,du:
   y = count(x>5);

duration duration(C)

duration(C,sec)

duration(C,msec)

duration(C,usec)

• C is an expression
that evaluates to
true or false.

Returns the length of time that has
elapsed since the conditional
expression C became true and the
associated state became active.

Specify time in seconds (sec),
milliseconds (msec), or
microseconds (usec). The default
unit is seconds.

The Stateflow chart resets the value
of the duration operator if the

Transition out of the state when the
variable x has been greater than or
equal to 0 for longer than 0.1
seconds.

[duration(x>=0) > 0.1]
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Operator Syntax Description Example
conditional expression C becomes
false or if the associated state
becomes inactive.

The temporal logic operator
duration is not supported in
standalone charts in MATLAB.

Store the number of milliseconds
since the variable x became greater
than 5 and the state became active.

en,du:
   y = duration(x>5,msec);

You can use quotation marks to enclose the keywords 'tick', 'sec', 'msec', and 'usec'. For
example, after(5,'tick') is equivalent to after(5,tick).

Note The temporal logic operators after, at, before, and every compare the threshold n to an
internal counter of integer type. If n is a fixed-point number defined by either a slope that is not an
integer power of two or a nonzero bias, then the comparison can yield unexpected results due to
rounding. For more information, see “Relational Operations for Fixed-Point Data” on page 26-19.

Examples of Temporal Logic
Define Time Delays

This example shows how to define two absolute time delays in a continuous-time chart.

The execution of the chart follows these steps:

1 When the chart awakens, the state Input activates first.
2 After 5.33 milliseconds of simulation time, the transition from Input to Output occurs.
3 The state Input becomes inactive and the state Output becomes active.
4 After 10.5 seconds of simulation time, the transition from Output to Input occurs.
5 The state Output becomes inactive and the state Input becomes active.

Steps 2 through 5 are repeated until the simulation ends.

If a chart has a discrete sample time, any action in the chart occurs at integer multiples of this
sample time. For example, suppose that you change the configuration parameters so that the
Simulink® solver uses a fixed step of size 0.1 seconds. Then the first transition from state Input to
state Output occurs at t = 0.1 seconds. This behavior applies because the solver does not wake the
chart at exactly t = 5.33 milliseconds. Instead, the solver wakes the chart at integer multiples of 0.1
seconds, such as t = 0.0 and 0.1 seconds.

Detect Elapsed Time

In this example, a Step (Simulink) block provides a unit step input to a Stateflow chart.

16 Use Actions in Charts

16-40



The chart determines when the input u equals 1:

• If the input equals 1 before t = 2 seconds, a transition occurs from Start to Fast.
• If the input equals 1 between t = 2 and t = 5 seconds, a transition occurs from Start to Medium.
• If the input equals 1 after t = 5 seconds, a transition occurs from Start to Slow.

Use Absolute-Time Temporal Logic in an Enabled Subsystem

You can use absolute-time temporal logic in a chart that resides in a conditionally executed
subsystem. When the subsystem is disabled, the chart becomes inactive and the temporal logic
operator pauses while the chart is asleep. The operator does not continue to count simulation time
until the subsystem is reenabled and the chart is awake.

This model has an enabled subsystem with the States when enabling parameter set to held.

The subsystem contains a chart that uses the after operator to trigger a transition.

The Signal Editor (Simulink) block provides an input signal with these characteristics:

• The signal enables the subsystem at t = 0.
• The signal disables the subsystem at t = 2.
• The signal reenables the subsystem at t = 6.
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This graph shows the total time elapsed in the chart. When the input signal enables the subsystem at
time t = 0, state A becomes active. While the system is enabled, the elapsed time increases. When the
subsystem is disabled at t = 2, the chart goes to sleep and the elapsed time stops increasing. For 2 <
t < 6, the elapsed time stays frozen at 2 seconds because the system is disabled. When the chart
wakes up at t = 6, elapsed time starts to increase again.
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The transition from state A to state B depends on the elapsed time while state A is active, not on the
simulation time. Therefore, the transition occurs at t = 9, when the elapsed time in state A equals 5
seconds. When the transition occurs, the output value y changes from 0 to 1.
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This model behavior applies only to subsystems where you set the Enable block parameter States
when enabling to held. If you set the parameter to reset, the chart reinitializes completely when
the subsystem is reenabled. Default transitions execute and any temporal logic counters reset to 0.

Notation for Event-Based Temporal Logic in Transitions
In Stateflow charts in Simulink models, the operators after, at, and before support two distinct
notations to express event-based temporal logic in a transition.

• Trigger notation defines a transition that depends only on the base event for the temporal logic
operator. Trigger notation follows this syntax:

temporalLogicOperator(n,E)[C]

where:

• temporalLogicOperator is a Boolean temporal logic operator.
• n is the occurrence count of the operator.
• E is the base event of the operator.
• C is an optional condition expression.

When you use trigger notation, the transition can occur only when the chart processes a broadcast
of the base event E.

• Conditional notation defines a transition that depends on base and nonbase events. Conditional
notation follows this syntax:
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F[temporalLogicOperator(n,E) && C]

where:

• temporalLogicOperator is a Boolean temporal logic operator.
• n is the occurrence count of the operator.
• E is the base event of the operator.
• F is an optional nonbase event.
• C is an optional condition expression.

When you use conditional notation with a nonbase event F, the transition can occur only when the
chart processes a broadcast of F. If you omit the nonbase event, the transition can occur when the
chart is processing any explicit or implicit event.

Conditional notation for temporal logic operators is not supported in standalone charts in
MATLAB.

For example, this transition label uses trigger notation to indicate a transition out of the associated
state when the chart processes a broadcast of the base event E, starting on the fifth broadcast of E
after the state became active.

after(5,E)

In contrast, this transition label uses conditional notation to indicate a transition out of the associated
state when the state has been active for at least five broadcasts of the base event E, even if the chart
is not processing a broadcast of E.

[after(5,E)]

Note The operator every supports trigger and conditional notations. However, both notations are
equivalent for this operator. The transition labels every(5,E) and [every(5,E)] indicate a
transition out of the associated state when the chart processes the kth broadcast of the base event E
after the state became active, where k is a multiple of five.

Best Practices for Temporal Logic
Do Not Use Temporal Logic on Transition Paths Without A Source State

The value of a temporal logic operator depends on when its associated state became active. To ensure
that every temporal logic operator has a unique associated state, only use these operators in:

• State on actions
• Actions on transition paths that originate from a state

Do not use temporal logic operators on default transitions or on transitions in graphical functions
because these transitions do not originate from a state.

Use Absolute-time Temporal Logic Instead of tick in Charts in Simulink Models

In charts in a Simulink model, the value of delay expressions that use absolute-time temporal logic
are semantically independent of the sample time of the model. In contrast, delay expressions that use
temporal logic based on the implicit event tick depend on the step size used by the Simulink solver.
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Additionally, absolute-time temporal logic is supported in charts that have input events. The implicit
event tick is not supported when a Stateflow chart in a Simulink model has input events.

Do Not Use at for Absolute-Time Temporal Logic in Charts in Simulink Models

In charts in a Simulink model, using at as an absolute-time temporal logic operator is not supported.
Instead, use the after operator. For example, suppose that you want to define a time delay using the
expression at(5.33,sec).

To prevent a run-time error, change the transition label to after(5.33,sec).

Do Not Use every for Absolute-Time Temporal Logic in Charts in Simulink Models

In charts in a Simulink model, using every as an absolute-time temporal logic operator is not
supported. Instead, use an outer self-loop transition with the after operator. For example, suppose
that you want to print a status message for an active state every 2.5 seconds during chart execution.

To prevent a run-time error, replace the state action with an outer self-loop transition.
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Add a history junction in the state so the chart remembers the state settings prior to each self-loop
transition. See “Record State Activity by Using History Junctions” on page 2-46.

Do Not Use Temporal Logic in Transition Paths with Multiple Sources in Standalone Charts
in MATLAB

Standalone charts in MATLAB do not support the use of temporal logic operators on transition paths
that have more than one source state. For example, this standalone chart produces a run-time error
because the temporal logic expression after(10,sec) triggers a transition path that has more than
one source state.

To resolve the issue, use temporal logic expressions on separate transition paths, each with a single
source state.
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Avoid Mixing Absolute-time Temporal Logic and Conditions in Transition Paths of
Standalone Charts in MATLAB

In standalone charts in MATLAB, the operators after, at, and every create MATLAB timer objects
that generate implicit events to wake up the chart. Combining these operators with conditions on the
same transition path can result in unintended behavior:

• If a condition on the transition path is false when the timer wakes up the chart, the chart
performs the during and on actions of the active state.

• The chart does not reset the timer object associated with the operators after and at. If the
condition on the transition path becomes true at a later time, the transition does not take place
until another explicit or implicit event wakes up the chart.

For example, in this chart, the transition path from state A to state B combines the absolute-time
temporal logic trigger after(1,sec) and the condition [guard]. The transition from state A to
state C has the absolute-time temporal logic trigger after(5,sec). Each transition is associated
with a timer object that generates an implicit event. Initially, the local variable guard is false.

When you execute the chart, state A becomes active. The chart performs the entry action and
displays the message 'Hello!'. After 1 second, the timer associated with the transition from A to B
wakes up the chart. Because the transition is not valid, the chart executes the during action in state
A and displays the message 'Hello!' a second time.

Suppose that, after 2 seconds, the chart receives the input event E. The chart executes the on action
in state A and changes the value of guard to true. Because the chart does not reset the timer
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associated with the operator after, the transition from A to B does not take place until another event
wakes up the chart.

After 5 seconds, the timer associated with the transition from A to C wakes up the chart. Because
the transition from A to B is valid and has a higher execution order, the chart does not take the
transition to state C or display the message 'Farewell!'. Instead, state B becomes active and the
chart displays the message 'Good bye!'.

Use Charts with Discrete Sample Times for More Efficient Code Generation

The code generated for discrete charts that are not inside a triggered or enabled subsystem uses
integer counters to track time instead of the time provided by Simulink. This behavior allows for more
efficient code generation in terms of overhead and memory, and enables this code for use in software-
in-the-loop (SIL) and processor-in-the-loop (PIL) simulation modes. For more information, see “SIL
and PIL Simulations” (Embedded Coder).

See Also
after | at | before | every | temporalCount | elapsed | count | duration | timer | Signal Editor | Step

More About
• “Control Oscillations by Using the duration Operator” on page 16-54
• “Implement an Automatic Transmission Gear System by Using the duration Operator” on page

16-57
• “Count Events by Using the temporalCount Operator” on page 16-60
• “Events in Standalone Charts” on page 3-56
• “Record State Activity by Using History Junctions” on page 2-46
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Model Bang-Bang Temperature Control System
This example shows how to model a bang-bang control system that regulates the temperature of a
boiler. The model has two components:

• Boiler Plant Model is a Simulink® subsystem the models the boiler dynamics.
• Bang-Bang Controller is a Stateflow® chart that implements the bang-bang control logic.

The chart uses:

• temporal logic to implement the timing of the bang-bang cycle
• 8-bit fixed-point data to represent the temperature of the boiler

Implement Control Logic by Using after Operator

The Bang-Bang Controller determines when the boiler turns on or off. Initially, the boiler is off. After
40 seconds, if the boiler is cold, the boiler turns on. After 20 seconds, the boiler turns off and the
bang-bang control cycle repeats.
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To control the transitions between the On and Off states, the chart calls the absolute-time temporal
logic operator after. For example, the transition label after(20,sec) triggers the transition from
On to Off after the On state is active for 20 seconds. The label after(40,sec)[cold()] causes the
transition from Off to On to occur if the function cold returns true after the Off state is active for
40 seconds.

The Off state also uses temporal logic to control a status LED. Because Stateflow charts in Simulink
models do not support the operator every for absolute time temporal logic, the state implements the
operation of the LED by using a substate Flash with a self-loop transition. The transition label
after(5,sec) triggers the entry action of the substate and causes the LED to flash every 5 seconds.

Process Floating-Point Data on an 8-Bit Processor

The Boiler Plant Model subsystem simulates the temperature reaction of the boiler during periods of
heating or cooling.
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Depending on the output of the Bang-Bang Controller chart, the subsystem adds or subtracts a
temperature increment (+1 for heating or –0.1 for cooling) to the previous boiler temperature and
passes the result to the Digital Thermometer subsystem.

The Digital Thermometer subsystem converts the resulting temperature into an 8-bit fixed-point
representation. The conversion occurs in three steps.

• The Sensor block converts input boiler temperature  to an intermediate analog voltage
output .

• The Analog-to-Digital Converter (ADC) subsystem digitizes the analog voltage from the sensor
block by multiplying the voltage by , rounding to the integer floor, and then limiting the result
to a maximum of 255 (the largest unsigned 8-bit integer value). The subsystem outputs a

quantized integer .

• The Linear Fixed-Point Conversion block inverts the combined transfer function of the Sensor and
ADC blocks to encode the boiler temperature as a fixed-point number with a slope of

 and a bias of . These fixed-point parameters convert the
8-bit quantized integer  into a digital coded temperature

.

The Bang-Bang Controller chart receives this digital coded temperature and interprets it as the
unsigned 8-bit fixed-point data temp. The chart processes this temperature data in an 8-bit
environment without any explicit conversions.
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Examine Simulation Results

After simulation, the Simulink scope shows that the boiler reaches a temperature of 20 degrees
Celsius after approximately 450 seconds (7.5 minutes). The bang-bang control logic effectively
maintains that temperature for the rest of the simulation.

See Also
after | every | Data Type Conversion

More About
• “Control Chart Execution by Using Temporal Logic” on page 16-34
• “Fixed-Point Data in Stateflow Charts” on page 26-2
• “Model Bang-Bang Controller by Using a State Transition Table” on page 18-16
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Control Oscillations by Using the duration Operator
The following example focuses on the gear logic of a car as it shifts from first gear to fourth gear.

When modeling the gear changes of this system, it is important to control the oscillation that occur.
The model sf_car uses parallel state debouncer logic that controls which gear state is active. For
more information about how debouncers work in Stateflow, see “Reduce Transient Signals by Using
Debouncing Logic” on page 30-12.

You can simplify the debouncer logic by using the duration operator. You can see this simplification
in the model sf_car_using_duration. The duration operator evaluates a condition expression
and outputs the length of time that the expression has been true. When that length of time crosses a
known time threshold, the state transitions to a higher or lower gear.

By removing the parallel state logic and using the duration operator, you can control oscillations
with simpler Stateflow logic. The duration operator is supported only in Stateflow charts in a
Simulink model.

Control Oscillation with Parallel State Logic
Open the model sf_car. While shift_logic is highlighted, in the State Chart tab, click Look
Under Mask.

The Stateflow chart shift_logic controls which gear the car is in, given the speed of the car and
how much throttle is being applied. Within shift_logic there are two parallel states: gear_state
and selection_state. gear_state contains four exclusive states for each gear.
selection_state determines whether the car is downshifting, upshifting, or remaining in its
current gear.
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In this Stateflow chart, for the car to move from first gear to second gear, the event UP must be sent
from selection_state to gear_state. The event is sent when the speed crosses the threshold
and remains higher than the threshold for the length of time determined by TWAIT. When the event
UP is sent, gear_state transitions from first to second.

Control Oscillation with the duration Operator
Open the model sf_car_using_duration. While Gear_Logic is highlighted, in the State Chart
tab, click Look Under Mask.

Within Gear_Logic there are four exclusive states for each gear. The local variables up and down
guard the transitions between each state.
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In this Stateflow chart, for the car to move from first gear to second gear, the condition up must be
true. The condition up is defined as true if the length of time that the speed is greater than or equal
to the threshold is greater than the length of time that is specified by TWAIT. The condition down is
defined as true if the length of time that the speed is less than or equal to the threshold is greater
than the length of time that is specified by TWAIT. The operator duration keeps track of the length
of time that the speed has been above or below the threshold. When the up condition is met, the
active state transitions from first to second.

By replacing the parallel state debouncer logic with the duration operator, you can create a simpler
Stateflow chart to model the gear shifting.

See Also
duration

Related Examples
• “Reduce Transient Signals by Using Debouncing Logic” on page 30-12
• “Control Chart Execution by Using Temporal Logic” on page 16-34
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Implement an Automatic Transmission Gear System by Using
the duration Operator

This example models an automotive transmission system by using the Stateflow® temporal logic
operator duration to automatically shift gears based on the vehicle's throttle requirements and
speed. For more information, see “Control Chart Execution by Using Temporal Logic” on page 16-34.

Model Description

There are five major blocks in this model.

• User Inputs: Provides two inputs to the model, brake and throttle.
• Engine: Calculates engine RPM based on impeller torque value and throttle.
• Gear_logic: Calculates next gear based on current gear, throttle, and current vehicle speed.
• Transmission: Calculates impeller and output torque based on RPM, gear and transmission speed.
• Vehicle: Calculates vehicle and transmission speed based on output torque and brake.

Chart Description

The Stateflow chart models the shifting of gears based on throttle and speed of the vehicle. The
down_threshold and up_threshold outputs represent minimum and maximum speed values that
throttle and current gear are able to handle. The Simulink function calculate_thresholds
calculates these two values using throttle and gear as inputs. If the actual speed is higher than
up_threshold for longer than TWAIT, then the chart transitions to higher gear. Conversely, if the
actual speed is lower than down_threshold for longer than TWAIT, then the chart transitions to a
lower gear. At each time step, the chart calls the duration operator to find the amount of time for
which speed is higher than up_threshold. If this time exceeds TWAIT then boolean variable up is
set which in turn transitions chart from current gear to a higher gear. Conversely the chart
transitions to a lower gear based on the value of down_threshold.
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Active State Data

Active State Data is the enumerated data that represents the current active state during simulation.
In this chart, the output data gear maintains the current active state which in turn represents the
current gear. This data automatically updates when a transition is taken. The data is used by
downstream blocks as well as by the Simulink® function calculate_thresholds. For more
information, see “Monitor State Activity Through Active State Data” on page 13-2.

Simulation

To visualize these changes, simulate the model and open the scope.
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See Also
duration

More About
• “Control Chart Execution by Using Temporal Logic” on page 16-34
• “Control Oscillations by Using the duration Operator” on page 16-54
• “Monitor State Activity Through Active State Data” on page 13-2
• “Simplify Stateflow Charts by Incorporating Active State Output” on page 13-7
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Count Events by Using the temporalCount Operator
This example shows how to use the temporalCount operator to count occurrences of explicit and
implicit events. For more information, see “Control Chart Execution by Using Temporal Logic” on
page 16-34.

Collect and Store Input Data in a Vector

The Stateflow chart in this model collects and stores input data in a vector during simulation.

The chart contains two states and one MATLAB® function.

Simulate the Model

The execution of the chart consists of three stages.

Stage 1: Observation of Input Data

The chart wakes up and remains in the Observe state until the input data u is positive. Then, the
transition to the state Collect_Data occurs.

Stage 2: Storage of Input Data

When the state Collect_Data becomes active, the value of the input data u is assigned to the first
element of the vector y. While this state is active, each subsequent value of u is assigned to
successive elements of y by using the temporalCount operator.

Stage 3: Display of Data Stored in the Vector
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After the chart wakes up ten times, the data collection process ends. The chart calls the function
status to display the vector data in the Diagnostic Viewer. Then, the chart takes the transition back
to the state Observe.

See Also
temporalCount

More About
• “Control Chart Execution by Using Temporal Logic” on page 16-34
• “Control Chart Behavior by Using Implicit Events” on page 14-26
• “Vectors and Matrices in Stateflow Charts” on page 21-2
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Detect Changes in Data and Expression Values
Stateflow charts can detect changes in the values of data and expressions between time steps. You
can:

• Use change detection operators to determine when a variable changes to or from a value.
• Use edge detection operators to determine when an expression rises above or falls below a

threshold.

To generate an implicit local event when the chart sets the value of a variable, use the change
operator. For more information, see “Control Chart Behavior by Using Implicit Events” on page 14-26.

Change Detection Operators
To detect changes in Stateflow data, use the operators listed in this table.

Operator Syntax Description Example
hasChan
ged

tf =
hasChanged(data_
name)

Returns 1 (true) if the value of
data_name at the beginning of
the current time step is different
from the value of data_name at
the beginning of the previous
time step. Otherwise, the
operator returns 0 (false).

Transition out of state if any
element of the matrix M has
changed value since the last
time step or input event.

[hasChanged(M)]

Transition out of state if the
element in row 1 and column 3
of the matrix M has changed
value since the last time step or
input event.

In charts that use MATLAB as
the action language, use:

[hasChanged(M(1,3))]

In charts that use C as the
action language, use:

[hasChanged(M[0][2])]

hasChan
gedFrom

tf =
hasChangedFrom(d
ata_name,value)

Returns 1 (true) if the value of
data_name was equal to the
specified value at the
beginning of the previous time
step and is a different value at
the beginning of the current
time step. Otherwise, the
operator returns 0 (false).

Transition out of state if the
previous value of the structure
struct was equal to
structValue and any field of
struct has changed value
since the last time step or input
event.

[hasChangedFrom(struct,structValue)]
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Operator Syntax Description Example
hasChan
gedTo

tf =
hasChangedTo(dat
a_name,value)

Returns 1 (true) if the value of
data_name was not equal to the
specified value at the
beginning of the previous time
step and is equal to value at
the beginning of the current
time step. Otherwise, the
operator returns 0 (false).

Transition out of state if the
structure field struct.field
has changed to the value 5 since
the last time step or input event.

[hasChangedTo(struct.field,5)]

Note If multiple input events occur in the same time step, these operators can detect changes in
data value between input events.

Example of Chart with Change Detection

This model shows how the operators hasChanged, hasChangedFrom, and hasChangedTo detect
specific changes in an input signal. In this example, a Ramp (Simulink) block sends a discrete,
increasing time signal to a chart.

The model uses a fixed-step solver with a step size of 1. The signal increments by 1 every time step.
The chart analyzes the input signal u for these changes:

• Any change from the previous time step
• A change to the value 3
• A change from the value 3

To check the signal, the chart calls three change detection operators in a transition action. The chart
outputs the return values as y1, y2, and y3.
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During simulation, the Scope (Simulink) block shows the input and output signals for the chart.

• The value of u increases by 1 every time step.
• The value of y1 changes from 0 to 1 at time t = 1. The value of y1 remains 1 because u

continues to change at each subsequent time step.
• The value of y2 changes from 0 to 1 at time t = 4 when the value of u changes from 3 to 4. The

value of y2 returns to 0 after one time step.
• The value of y3 changes from 0 to 1 at time t = 3 when the value of u changes from 2 to 3. The

value of y3 returns to 0 after one time step.

16 Use Actions in Charts

16-64



Limitations of Change Detection

The type of Stateflow chart determines the scope of the data supported for change detection:

• Standalone Stateflow charts in MATLAB: Local only
• Charts in Simulink that use MATLAB as the action language: Input only
• Charts in Simulink that use C as the action language: Input, Output, Local, or Data Store

Memory

The argument data_name can be:
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• A scalar variable.
• A matrix or an element of a matrix.

• If data_name is a matrix, the operator returns true when it detects a change in any element
of data_name.

• Index elements of a matrix by using numbers or expressions that evaluate to a constant
integer. See “Supported Operations for Vectors and Matrices” on page 21-4.

• A structure or a field in a structure.

• If data_name is a structure, the change detection operator returns true when it detects a
change in any field of data_name.

• Index fields in a structure by using dot notation. See “Index and Assign Values to Stateflow
Structures” on page 29-7.

• Any valid combination of structure fields or matrix elements.

The argument data_name cannot be a nontrivial expression or a custom code variable.

Note Standalone charts in MATLAB do not support change detection on an element of a matrix or a
field in a structure.

For the hasChangedFrom and hasChangedTo operators, the argument value can be any expression
that resolves to a value that is comparable with data_name.

• If data_name is a scalar, then value must resolve to a scalar value.
• If data_name is a matrix, then value must resolve to a matrix value with the same dimensions as

data_name.

Alternatively, in a chart that uses C as the action language, value can resolve to a scalar value.
The chart uses scalar expansion to compare data_name to a matrix whose elements are all equal
to the value specified by value. See “Assign Values to All Elements of a Matrix” on page 21-6.

• If data_name is a structure, then value must resolve to a structure value whose field
specification matches data_name exactly.

If you generate code from a chart that uses change detection operators and row-major array layout is
enabled, code generation produces an error. Before generating code, enable column-major array
layout. See “Select Array Layout for Matrices in Generated Code” on page 32-5.

Edge Detection Operators
To determine when an expression rises above or falls below a threshold, use the operators listed in
this table.
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Operator Syntax Description Example
crossin
g

tf =
crossing(express
ion)

Returns 1 (true) if:

• The previous value of
expression was positive
and its current value is zero
or negative.

• The previous value of
expression was zero and
its current value is nonzero.

• The previous value of
expression was negative
and its current value is zero
or positive.

Otherwise, the operator returns
0 (false).

This operator imitates the
behavior of a Trigger block with
Trigger Type set to either.

Transition out of state if the
value of the input data signal
crosses a threshold of 2.5.

[crossing(signal-2.5)]

The edge is detected when the
value of the expression
signal-2.5 changes from
positive to negative, from
negative to positive, from zero
to nonzero, or from nonzero to
zero.

falling tf =
falling(expressi
on)

Returns 1 (true) if:

• The previous value of
expression was positive
and its current value is zero
or negative.

• The previous value of
expression was zero and
its current value is negative.

Otherwise, the operator returns
0 (false).

This operator imitates the
behavior of a Trigger block with
Trigger Type set to falling.

Transition out of state if the
value of the input data signal
falls below a threshold of 2.5.

[falling(signal-2.5)]

The falling edge is detected
when the value of the
expression signal-2.5
changes from positive to
negative, from positive to zero,
or from zero to negative.
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Operator Syntax Description Example
rising tf =

rising(expressio
n)

Returns 1 (true) if:

• The previous value of
expression was negative
and its current value is zero
or positive.

• The previous value of
expression was zero and
its current value is positive.

Otherwise, the operator returns
0 (false).

This operator imitates the
behavior of a Trigger block with
Trigger Type set to rising.

Transition out of state if the
value of the input data signal
rises above a threshold of 2.5.

[rising(signal-2.5)]

The rising edge is detected
when the value of the
expression signal-2.5
changes from negative to
positive, from negative to zero,
or from zero to positive.

Note Like the Trigger block, these operators detect a single edge when the expression argument
changes value from positive to zero to negative or from negative to zero to positive at three
consecutive time steps. The edge occurs when the value of the expression becomes zero.

Example of Chart with Edge Detection

This model shows how the operators crossing, falling, and rising detect edges in an input
signal. In this example, a Pulse Generator (Simulink) block sends a square wave to a chart.

The model uses a fixed-step solver with a step size of 1. The value of the input signal u alternates
between 0 and 5 every two time steps. The chart analyzes the input signal u for these edges:

• A falling or rising edge crossing the threshold of 2.5
• An edge rising over the threshold of 2.5
• An edge falling under the threshold of 2.5

To check the signal, the chart calls three edge detection operators in a transition action. The chart
outputs the return values as y1, y2, and y3.
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During simulation, the Scope (Simulink) block shows the input and output signals for the chart.

• The value of u alternates between 0 and 5 at every other time step.
• The value of y1 changes from 0 to 1 at time t = 1, 3, 5, and 7, when the value of the expression

u-2.5 changes sign. The value of y1 returns to 0 after one time step.
• The value of y2 changes from 0 to 1 at time t = 1 and 5, when the value of the expression u-2.5

changes from negative to positive. The value of y2 returns to 0 after one time step.
• The value of y3 changes from 0 to 1 at time t = 3 and 7, when the value of the expression u-2.5

changes from positive to negative. The value of y3 returns to 0 after one time step.
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Limitations of Edge Detection

Edge detection is supported only in Stateflow charts in Simulink models.

The argument expression:

• Must be a scalar-valued expression
• Can combine chart input data, constants, nontunable parameters, continuous-time local data, and

state data from Simulink based states
• Can include addition, subtraction, and multiplication of scalar variables, elements of a matrix,
fields in a structure, or any valid combination of structure fields and matrix elements
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Index elements of a matrix by using numbers or expressions that evaluate to a constant integer.

Edge detection for continuous-time local data and state data from Simulink based states is supported
only in transition conditions.

In atomic subcharts, map all input data that you use in edge detection expressions to input data or
nontunable parameters in the main chart. Mapping these input data to output data, local data, or
tunable parameters can result in undefined behavior.

Stateflow charts that use edge detection operators do not support operating points.

Implementation of Change and Edge Detection
A chart detects changes in chart data and expressions by evaluating the values at time step
boundaries. The chart compares the value at the beginning of the previous execution step with the
value at the beginning of the current execution step.

For example, when you invoke the hasChanged operator with an argument of x, the Stateflow chart
double-buffers the values of x in local variables.

Local Buffer Description
x_prev Value of data x at the beginning of the last time step
x_start Value of data x at the beginning of the current time step

To detect changes, the chart double-buffers data values after an event triggers the chart but before
the chart begins execution. If the values of xprev and xstart match, the change detection operator
returns false to indicate that no change occurred; otherwise, it returns true to indicate a change.
This diagram places these tasks in the context of the chart life cycle.

 Detect Changes in Data and Expression Values

16-71



16 Use Actions in Charts

16-72



Edge detection operators behave in a similar way, except that they compare the value of an
expression at the beginning of the last time step (xprev) with its current value (x). The difference in
implementation allows continuous-time charts to detect edges in local data during minor time steps.

Transient Value Changes in Local Data

The change detection operators attempt to filter out transient changes in local chart variables by
evaluating their values only at time boundaries. The chart evaluates the specified local variable only
once at the end of the execution step. The return value of the change detection operators remains
constant even if the value of the local variable fluctuates within a given time step. For example,
suppose that in the current time step, the local variable temp changes from its value at the previous
time step but then reverts to the original value. The operator hasChanged(temp) returns false for
the next time step, indicating that no change occurred.

In contrast, the edge detection operators can detect edges in continuous-time local data during minor
time steps. For example, suppose that p is a continuous-time local variable with a negative derivative.
Then the operator falling(p) returns true during the minor time step when p changes sign from
positive to negative.

Detect Value Changes Between Input Events or Super Step Iterations

When multiple input events occur in the same time step, or when you enable super step semantics,
the chart updates the xprev and xstart buffers every time it executes. The chart detects changes in
value between input events and super step iterations even if the changes occur more than once in a
given time step. For more information, see “Use Events to Execute Charts” on page 3-54 and “Super
Step Semantics” on page 3-48.

See Also
change | crossing | falling | hasChanged | hasChangedFrom | hasChangedTo | rising

More About
• “Design a Game by Using Stateflow” on page 16-74
• “Control Chart Behavior by Using Implicit Events” on page 14-26
• “Use Events to Execute Charts” on page 3-54
• “Super Step Semantics” on page 3-48
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Design a Game by Using Stateflow
This example shows how to implement the game of Tetris by using a Stateflow® chart. This model is
a redesigned version of the classic Stateflow demo sf_tetris. The new design incorporates these
programming paradigms:

• Parallel decomposition to separate pre- and post-processing tasks from the main game control
logic.

• State hierarchy and subcharts to provide semantic abstractions that simplify the design of the
chart.

• Change detection operators to query for input from the keyboard.

Separate Subcomponents by Using Parallel Decomposition

The chart TetrisLogic implements the logic behind the game. The chart consists of three parallel
states, which execute in this order:

• WaitingArea performs preprocessing tasks such as randomly generating the next tetronimo (a
shape consisting of four squares). During simulation, the smaller square on the right of the game
UI displays this tetronimo.

• MainArea implements the main control logic for the game. To represent the playing arena, this
state uses a 21-by-12 array arena. At each simulation step, the chart updates the array based on
the state of the game and the input from the player.

• Draw performs post-processing tasks such as calling the MATLAB® script sf_tetris_gui. This
script displays the arena as an image and captures keystrokes from the player.
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Simplify Chart Design by Using Hierarchy and Subcharts

By using state hierarchy and subcharts, you can graphically abstract the game logic, present a high-
level overview of the flow of the game, and hide the inner complexity of each stage of the game. For
example, each substate of the parallel state MainArea represents a separate stage in the flow of the
game.

• The game starts by generating a new tetronimo (substate NewShape).
• The tetronimo moves down or sideways, depending on the input from the player (substate

Moving).
• When the tetronimo touches the bottom of the arena or an earlier tetronimo below it, the

tetronimo stops moving (substate Stopped).
• If the tetronimo stops at too high a point on the arena, the game ends (substate GameOver).

Otherwise, the chart freezes the tetronimo (substate FreezeShape), adjusts the score (substate
Score), advances to the next level if necessary (substate NextLevel), and proceeds to the next
tetronimo (substate NewShape).
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Capture Keyboard Input Through Change Detection

The Moving subchart moves the tetronimo based on the input from the player. By default, the
substate MoveSlowly is active. The tetronimo moves slowly down the playing arena while the
parallel substates in MoveSlowly monitor the input from the keyboard. If the player presses the
space bar, the substate MoveFast becomes active. The tetronimo drops quickly to the bottom of the
arena.

To gather input from the keyboard, the subchart uses the change detection operator hasChanged.
Every time that the player presses a key, sf_tetris_gui increments an input to the chart, which
makes the corresponding hasChanged operator return a value of true. Because MoveSlowly has a
parallel decomposition, the chart can process multiple keystrokes each time step.

Key Mappings

To interact with the game UI, use these keys:

• Move left: Left arrow or J
• Move right: Right arrow or L
• Rotate clockwise: Up arrow or I
• Rotate counterclockwise: Down arrow or K
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• Drop to bottom: Space bar
• To pause and resume play: P
• To quit: Q

See Also
hasChanged

More About
• “State Decomposition” on page 2-19
• “State Hierarchy” on page 2-17
• “Encapsulate Modal Logic by Using Subcharts” on page 8-7
• “Detect Changes in Data and Expression Values” on page 16-62
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Modeling an Automatic Transmission Controller
This example shows how to model an automotive drivetrain with Simulink®. Stateflow® enhances
the Simulink model with its representation of the transmission control logic. Simulink provides a
powerful environment for the modeling and simulation of dynamic systems and processes. In many
systems, though, supervisory functions like changing modes or invoking new gain schedules must
respond to events that may occur and conditions that develop over time. As a result, the environment
requires a language capable of managing these multiple modes and developing conditions. In the
following example, Stateflow shows its strength in this capacity by performing the function of gear
selection in an automatic transmission. This function is combined with the drivetrain dynamics in a
natural and intuitive manner by incorporating a Stateflow block in the Simulink block diagram.

Analysis and Physics

The figure below shows the power flow in a typical automotive drivetrain. Nonlinear ordinary
differential equations model the engine, four-speed automatic transmission, and vehicle. The model
discussed in this example directly implements the blocks from this figure as modular Simulink
subsystems. On the other hand, the logic and decisions made in the Transmission Control Unit (TCU)
do not lend themselves to well-formulated equations. TCU is better suited for a Stateflow
representation. Stateflow monitors the events which correspond to important relationships within the
system and takes the appropriate action as they occur.

The throttle opening is one of the inputs to the engine. The engine is connected to the impeller of the
torque converter which couples it to the transmission (see Equation 1).

Equation 1
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The input-output characteristics of the torque converter can be expressed as functions of the engine
speed and the turbine speed. In this example, the direction of power flow is always assumed to be
from the impeller to the turbine (see Equation 2).

Equation 2

The transmission model is implemented via static gear ratios, assuming small shift times (see
Equation 3).

Equation 3

The final drive, inertia, and a dynamically varying load constitute the vehicle dynamics (see Equation
4).

Equation 4

The load torque includes both the road load and brake torque. The road load is the sum of frictional
and aerodynamic losses (see Equation 5).

Equation 5
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The model programs the shift points for the transmission according to the schedule shown in the
figure below. For a given throttle in a given gear, there is a unique vehicle speed at which an upshift
takes place. The simulation operates similarly for a downshift.

Modeling

When you open the model, the Initial conditions are set in the Model Workspace.

The top-level diagram of the model is shown in the figure below. To run the simulation, on the
Simulation tab, click Run. Note that the model logs relevant data to MATLAB Workspace in a data
structure called sldemo_autotrans_output. Logged signals have a blue indicator. After you run
the simulation, you can view the components of the data structure by typing
sldemo_autotrans_output in MATLAB Command Window. Also note that the units appear on the
subsystem icons and signal lines.
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Modeling

The Simulink model shown above is composed of modules which represent the engine, transmission,
and the vehicle, with an additional shift logic block to control the transmission ratio. User inputs to
the model are in the form of throttle (given in percent) and brake torque (given in ft-lb). The user
inputs throttle and brake torques using the ManeuversGUI interface.

The Engine subsystem consists of a two-dimensional table that interpolates engine torque versus
throttle and engine speed. The figure below shows the composite Engine subsystem. Double click on
this subsystem in the model to view its structure.

The TorqueConverter and the TransmissionRatio blocks make up the Transmission subsystem, as
shown in the figure below. Double click on the Transmission subsystem in the model window to view
its components.
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The TorqueConverter is a masked subsystem, which implements Equation 2. To open this subsystem,
right click on it and select Mask > Look Under Mask from the drop-down menu. The mask requires
a vector of speed ratios ( Nin/Ne ) and vectors of K-factor (f2) and torque ratio (f3). This figure
shows the implementation of the TorqueConverter subsystem.

The transmission ratio block determines the ratio shown in Table 1 and computes the transmission
output torque and input speed, as indicated in Equation 3. The figure that follows shows the block
diagram for the subsystem that realizes this ratio in torque and speed.

Table 1: Transmission gear ratios

gear     Rtr = Nin/Ne
 1         2.393
 2         1.450
 3         1.000
 4         0.677
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The Stateflow block labeled ShiftLogic implements gear selection for the transmission. Double click
on ShiftLogic in the model window to open the Stateflow diagram. The Model Explorer is utilized to
define the inputs as throttle and vehicle speed and the output as the desired gear number. Two
dashed AND states keep track of the gear state and the state of the gear selection process. The
overall chart is executed as a discrete-time system, sampled every 40 milliseconds. The Stateflow
diagram shown below illustrates the functionality of the block.

 Modeling an Automatic Transmission Controller

16-83



The shift logic behavior can be observed during simulation by enabling animation in the Stateflow
debugger. The selection_state (always active) begins by performing the computations indicated
in its during function. The model computes the upshift and downshift speed thresholds as a function
of the instantaneous values of gear and throttle. While in steady_state, the model compares these
values to the present vehicle speed to determine if a shift is required. If so, it enters one of the
confirm states (upshifting or downshifting), which records the time of entry.

If the vehicle speed no longer satisfies the shift condition, while in the confirm state, the model
ignores the shift and it transitions back to steady_state. This prevents extraneous shifts due to
noise conditions. If the shift condition remains valid for a duration of TWAIT ticks, the model
transitions through the lower junction and, depending on the current gear, it broadcasts one of the
shift events. Subsequently, the model again activates steady_state after a transition through one of
the central junctions. The shift event, which is broadcast to the gear_selection state, activates a
transition to the appropriate new gear.

For example, if the vehicle is moving along in second gear with 25% throttle, the state second is
active within gear_state, and steady_state is active in the selection_state. The during
function of the latter, finds that an upshift should take place when the vehicle exceeds 30 mph. At the
moment this becomes true, the model enters the upshifting state. While in this state, if the vehicle
speed remains above 30 mph for TWAIT ticks, the model satisfies the transition condition leading
down to the lower right junction. This also satisfies the condition [|gear == 2|] on the transition
leading from here to steady_state, so the model now takes the overall transition from
upshifting to steady_state and broadcasts the event UP as a transition action. Consequently, the
transition from second to third is taken in gear_state which completes the shift logic.

The Vehicle subsystem uses the net torque to compute the acceleration and integrate it to compute
the vehicle speed, per Equation 4 and Equation 5. The Vehicle subsystem is masked. To see the
structure of the Vehicle block, right click on it and select Mask > Look Under Mask from the drop-
down menu. The parameters entered in the mask menu are the final drive ratio, the polynomial
coefficients for drag friction and aerodynamic drag, the wheel radius, vehicle inertia, and initial
transmission output speed.

Results

The engine torque map, and torque converter characteristics used in the simulations are shown
below.
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Get the FactorK (second row) and the TorqueRatio (third row) vs SpeedRatio(first row)
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The first simulation (passing maneuver) uses the throttle schedule given in Table 2 (this data is
interpolated linearly).

Table 2: Throttle schedule for first simulation (passing maneuver)

Time (sec)    Throttle (%)
  0             60
 14.9           40
 15            100
100              0
200              0

The first column corresponds to time; the second column corresponds to throttle opening in percent.
In this case no brake is applied (brake torque is zero). The vehicle speed starts at zero and the engine
at 1000 RPM. The following figure shows the plot for the baseline results, using the default
parameters. As the driver steps to 60% throttle at t=0, the engine immediately responds by more
than doubling its speed. This brings about a low speed ratio across the torque converter and, hence, a
large torque ratio. The vehicle accelerates quickly (no tire slip is modeled) and both the engine and
the vehicle gain speed until about t = 2 sec, at which time a 1-2 upshift occurs. The engine speed
characteristically drops abruptly, then resumes its acceleration. The 2-3 and 3-4 upshifts take place at
about four and eight seconds, respectively. Notice that the vehicle speed remains much smoother due
to its large inertia.
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At t=15sec, the driver steps the throttle to 100% as might be typical of a passing maneuver. The
transmission downshifts to third gear and the engine jumps from about 2600 RPM to about 3700
RPM. The engine torque thus increases somewhat, as well as the mechanical advantage of the
transmission. With continued heavy throttle, the vehicle accelerates to about 100 mph and then shifts
into overdrive at about t = 21 sec. The vehicle cruises along in fourth gear for the remainder of
the simulation. Double click on the ManeuversGUI block and use the graphical interface to vary the
throttle and brake history.

Closing the Model

Close the model, clear generated data.

Conclusions

You can enhance this basic system in a modular manner, for example, by replacing the engine or
transmission with a more complex model. You can build large systems within this structure via step-
wise refinement. The seamless integration of Stateflow control logic with Simulink signal processing
enables the construction of a model that is efficient and visually intuitive.

See Also

More About
• “Unit Specification in Simulink Models” (Simulink)
• “Powertrain Blockset”
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• “Modify the Action Language for a Chart” on page 17-2
• “Differences Between MATLAB and C as Action Language Syntax” on page 17-5
• “Model an Assembly Line Feeder” on page 17-9
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Modify the Action Language for a Chart
Stateflow charts in Simulink models have an action language property that defines the syntax for
state and transition actions. An icon in the lower-left corner of the chart canvas indicates the action
language for the chart.

•
 MATLAB as the action language.

•
 C as the action language.

You can change the action language of a chart in the Action Language box of the Chart properties
dialog box. For more information, see “Differences Between MATLAB and C as Action Language
Syntax” on page 17-5.

Change the Default Action Language
MATLAB is the default action language syntax for new Stateflow charts. To create a chart that uses C
as the action language, enter:

sfnew -C

To change the default action language of new charts, use these commands:

Command Result
sfpref('ActionLanguage','MATLAB') All new charts created have MATLAB as the

action language, unless otherwise specified in
sfnew.

sfpref('ActionLanguage','C') All new charts created have C as the action
language, unless otherwise specified in sfnew.

For more information, see sfpref.

Auto Correction When Using MATLAB as the Action Language
Stateflow charts that use MATLAB as the action language automatically correct common C constructs
to MATLAB syntax:

• Increment and decrement operations such as a++ and a--. For example, a++ is changed to a = a
+1.

• Assignment operations such as a += b, a –= b, a *= b, and a /= b. For example, a += b is
changed to a = a+b.

• Evaluation operations such as a != b and !a. For example, a != b is changed to a ~= b.
• Comment markers // and /* */ are changed to %.

To disable this preference, you can use the sfpref function and the following command:

sfpref('EnableLabelAutoCorrectionForMAL',0)

For more information, see sfpref.
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C to MATLAB Syntax Conversion
For nonempty charts, after you change the action language property from C to MATLAB, a
notification appears at the top of the chart. The notification provides the option to convert some of
the C syntax to MATLAB syntax. In the notification, click the link to have Stateflow convert syntax in
the chart. C syntax constructs that are converted include:

• Zero-based indexing.
• Increment and decrement operations such as a++ and a--. For example, a++ is changed to a = a

+1.
• Assignment operations such as a += b, a –= b, a *= b, and a /= b. For example, a += b is

changed to a = a+b.
• Binary operations such as a %% b, a >> b, and a << b. For example, a %% b is changed to

rem(a,b).
• Bitwise operations such as a ^ b, a & b, and a | b. For example, if the chart property Enable

C-bit operations is selected, then a ^ b is changed to bitxor(a,b).
• C style comment markers. For example, // and /* */ are changed to %.

If the chart contains C constructs that cannot be converted to MATLAB, Stateflow shows a message in
a dialog box. Click on the warnings link to display the warnings in the Diagnostic Viewer. Choose
whether or not to continue with the conversion of supported syntax. C constructs not converted to
MATLAB include:

• Explicit type casts with cast and type
• Operators such as &, * and :=
• Custom data
• Access to workspace variables using ml operator
• Functions not supported in code generation
• Hexadecimal and single precision notation
• Context-sensitive constants

Rules for Using MATLAB as the Action Language
Use unique names for data in a chart

Using the same name for data at different levels of the chart hierarchy causes a compile-time error.

Use unique names for functions in a chart

Using the same name for functions at different levels of the chart hierarchy causes a compile-time
error.

Include a type prefix for identifiers of enumerated values

The identifier TrafficColors.Red is valid, but Red is not.

Use the MATLAB format for comments

Use % to specify comments in states and transitions for consistency with MATLAB. For example, the
following comment is valid:
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% This is a valid comment in the style of MATLAB

C style comments, such as // and /* */, are auto-corrected to use %.

Use one-based indexing for vectors and matrices

One-based indexing is consistent with MATLAB syntax.

Use parentheses instead of brackets to index into vectors and matrices

This statement is valid:

a(2,5) = 0;

This statement is not valid:

a[2][5] = 0;

Do not use control flow logic in condition actions and transition actions

If you try to use control flow logic in condition actions or transition actions, you get an error. Use of
an if, switch, for, or while statement does not work.

Do not use transition actions in graphical functions

Transition labels in graphical functions do not support transition actions.

Enclose transition actions with braces

The following transition label contains a valid transition action:

E [x > 0] / {x = x+1;}

The following transition label:

E [x > 0] / x = x+1;

is incorrect, but is auto-corrected to the valid syntax.

Do not declare global or persistent variables in state actions

The keywords global and persistent are not supported in state actions.

To generate code from your model, use MATLAB language features supported for code
generation

Otherwise, use coder.extrinsic to call unsupported functions, which gives the functionality that
you want for simulation, but not in the generated code. For a list of supported features and functions,
see “Language, Function, and Object Support” (Simulink).

Assign an initial value to local and output data

When using MATLAB as the action language, data read without an initial value causes an error.
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Differences Between MATLAB and C as Action Language Syntax
Stateflow charts in Simulink models have an action language property that defines the syntax for
state and transition actions. An icon in the lower-left corner of the chart canvas indicates the action
language for the chart.

•
 MATLAB as the action language.

•
 C as the action language.

MATLAB is the default action language syntax for new Stateflow charts. To create a chart that uses C
as the action language, enter:

sfnew -c

Compare Functionality of Action Languages
This table lists the most significant differences in functionality between the two action languages.

Functionality MATLAB as the Action
Language

C as the Action Language

Vector and matrix indexing One-based indexing delimited by
parentheses and commas. For
example, A(4,5). See
“Supported Operations for
Vectors and Matrices” on page
21-4.

Zero-based indexing delimited by
square brackets. For example,
A[3][4]. See “Supported
Operations for Vectors and
Matrices” on page 21-4.

C constructs:

• Increment and decrement
operations a++ and a--

• Assignment operations a +=
b, a –= b, a *= b, and
a /= b

• Evaluation operations a !=
b and !a

• Binary operations a %% b, a
>> b, a << b, a & b, and a
| b

• Comment markers // and /*
*/

Auto-correction to MATLAB
syntax. For example, a++ is
corrected to a = a+1. See
“Auto Correction When Using
MATLAB as the Action
Language” on page 17-2.

Supported. See “Supported
Operations for Chart Data” on
page 16-4.

Conditional and loop control
statements in state actions

Supported. For example, you
can use if, for, and while
statements in state actions. See
“Loops and Conditional
Statements”.

Not supported. For conditional
and loop patterns, use graphical
functions instead. See “Reuse
Logic Patterns by Defining
Graphical Functions” on page 8-
10.
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Functionality MATLAB as the Action
Language

C as the Action Language

Format of transition actions Auto-correction encloses
transition actions with braces
{}. See “Transition Actions” on
page 2-24.

Not required to enclose
transition actions with braces {}.
See “Transition Actions” on page
2-24.

Ordering of parallel states Explicit ordering only. See
“Execution Order for Parallel
States” on page 3-61.

Explicit or implicit ordering. See
“Execution Order for Parallel
States” on page 3-61.

Variable-size data Access and modify variable-size
input, output, and local data in
state and transition actions.

Access and modify variable-size
input and output data by using:

• MATLAB functions
• Simulink functions
• Truth tables that use MATLAB

as the action language

All computations with variable-
size data must occur inside these
functions, and not directly in
states or transitions. For more
information, see “Guidelines for
Using Variable-Size Data” on
page 22-3.

Fixed-point constructs:

• Special assignment
operator :=

• Context-sensitive constants
such as 4.3C

Not supported. Supported. See “Override Fixed-
Point Promotion in C Charts” on
page 26-15 and “Fixed-Point
Context-Sensitive Constants” on
page 26-4.

Complex data Use complex number notation a
+ bi or the complex operator.
See “Supported Operations for
Complex Data” on page 27-4.

Use the complex operator.
Complex number notation is not
supported. See “Supported
Operations for Complex Data” on
page 27-4.

Data type propagation Follows MATLAB typing rules.
For example, adding data of
type double to data of type
int32 results in data of type
int32.

Follows C typing rules. For
example, adding data of type
double to data of type int32
results in data of type double.
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Functionality MATLAB as the Action
Language

C as the Action Language

Explicit type cast operations Use one of these casting forms:

• MATLAB type conversion
function. For example,
single(x).

• cast function with a type
keyword. For example,
cast(x,'int8').

• cast function with the
'like' keyword. For
example,
cast(x,'like',z).

The type operator is not
supported. See “Type Cast
Operations” on page 16-7.

Use one of these casting forms:

• MATLAB type conversion
function. For example,
uint16(x).

• cast function with the type
operator. For example,
cast(x,type(z)).

Type keywords for the cast
function are not supported. See
“Type Cast Operations” on page
16-7.

Scalar expansion Not supported. Supported. See “Assign Values to
All Elements of a Matrix” on page
21-6.

String data Not supported. Supported. See “Manage Textual
Information by Using Strings” on
page 24-2.

Specification of data properties:

• First index
• Save final value to base

workspace
• Units

Not supported. Supported. For more information,
see:

• “First Index” on page 12-7
• “Save Final Value to Base

Workspace” on page 12-17
• “Units” on page 12-17

Scope of data in graphical, truth
table, and MATLAB functions

Constant, Parameter, Input,
Output

Local, Constant, Parameter,
Input, Output, Temporary

Dot notation for specifying
states, local data, message, and
local events inside MATLAB
functions

Supported. See “Identify Data
by Using Dot Notation” on page
12-38.

Not supported.
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Functionality MATLAB as the Action
Language

C as the Action Language

Custom code functions and
variables

Behavior depends on the
Import Custom Code
configuration parameter.

• When Import Custom Code
is on, both custom code
functions and variables are
supported in states and
transitions (default).

• When Import Custom Code
is off, only custom code
functions are supported. Use
the coder.ceval function.

See “Custom Code” and “Import
custom code” (Simulink).

Custom code functions and
variables are supported in states
and transitions.

Row-major array layout in
generated code

Supported. See “Select Array
Layout for Matrices in
Generated Code” on page 32-
5.

Supported. See “Select Array
Layout for Matrices in Generated
Code” on page 32-5.

Multidimensional array layout in
generated code

Not supported. Supported for local data. See
“Select Array Layout for Matrices
in Generated Code” on page 32-
5.

Structure parameters Tunable and nontunable
parameters are supported.

Only tunable parameters are
supported.

Use of global fimath object Supported. Not supported.

See Also
sfnew

More About
• “Modify the Action Language for a Chart” on page 17-2
• “Supported Operations for Chart Data” on page 16-4
• “Supported Operations for Vectors and Matrices” on page 21-4
• “Supported Operations for Complex Data” on page 27-4
• “Supported Operations for Fixed-Point Data” on page 26-12
• “Execution Order for Parallel States” on page 3-61
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Model an Assembly Line Feeder

Typical Approaches to Chart Programming
There are two general approaches to programming a Stateflow chart in a Simulink model:

• Identify the operating modes of your system.
• Identify the system interface, such as events to which your system reacts.

This tutorial uses the first approach— that is, start by identifying the operating modes of the system
to program the chart.

Design Requirements
This example shows how to build a Stateflow chart using MATLAB as the action language. The model
represents a machine on an assembly line that feeds raw material to other parts of the line. This
feeder behaves as follows:

• At system initialization, check that the three sensor values are normal.

A positive value means the sensor is working correctly. A zero means that the sensor is not
working.

• If all sensor values are normal, transition from "system initialization" to "on".
• If the feeder does not leave initialization mode after 5 seconds, force the feeder into the failure

state.
• After the system turns on, it starts counting the number of parts fed.
• At each time step, if any sensor reading is 2 or greater, the part has moved to the next station.
• If the alarm signal sounds, force the system into the failure state.

An alarm signal can occur when an operator opens one of the safety doors on the feeder or a
downstream problem occurs on the assembly line, which causes all upstream feeders to stop.

• If the all-clear signal sounds, resume normal operation and reset the number of parts fed to zero.
• The feeder LED changes color to match the system operating mode— orange for "system

initialization", green for "on", and red for "failure state".

Identify System Attributes
Based on the description of feeder behavior, you can identify the key system attributes.

Attribute Characteristic
Operating modes • System initialization, to perform system checks before turning on

the machine
• On, for normal operation
• System failure, for a recoverable machine failure flagged by an

alarm

 Model an Assembly Line Feeder
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Attribute Characteristic
Transitions • System initialization to On

• System initialization to Failure state
• On to Failure state
• Failure state to System initialization

Parallel Modes No operating modes run in parallel. Only one mode can be active at any
time.

Default Mode System initialization
Inputs • Three sensor readings to detect if a part has moved to a downstream

assembly station
• An alarm signal that can take one of two values: 1 for on and 0 for
off

Outputs • Number of parts that have been detected as fed to a downstream
assembly station

• Color of the LED on the feeder

Build the Model Yourself or Use the Supplied Model
In this exercise, you add a Stateflow chart to a Simulink model that contains sensor and alarm input
signals to the feeder.

To implement the model yourself, follow these exercises. Otherwise, you can open the completed
model.

Add a Stateflow Chart to the Feeder Model
1 Open the partially built model.

2 Double-click the SensorSignals block to see the three sensor signals represented by pulse
generator blocks.

The sensors signal indicates when the assembly part is ready to move to the next station.
3 Double-click the AlarmSignal block to see the step blocks that represent the alarm signal.

When the ALARM signal is active, the machine turns off.
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4 Run the model to see the output of the sensor and alarm signals in the Scope block.

The upper axis shows the sensor signals. Only two sensor signals appear because two of the
sensors have the same signal. The lower axis shows the alarm signal which turns the feeder off
between the simulation time of 45 to 80 seconds.

5 Open the Stateflow Library by executing sflib at the MATLAB command prompt.
6 Select Chart and drag it into your model.

Tip To create a new model with an empty Stateflow chart which uses MATLAB as the action
language, use the function sfnew.
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7 Delete the connections from the SensorSignals subsystem to the scope and from the AlarmSignal
subsystem to the scope.

8 Rename the label Chart located under the Stateflow chart to Feeder. The model should now
look like this:

Add States to Represent Operating Modes
Based on the system attributes previously described, there are three operating modes:

• System initialization
• On
• Failure state

To add states for modeling the behavior of these operating modes:

1 Double-click the Feeder Chart to begin adding states.

Note The MATLAB icon in the lower left corner of the chart indicates that you are using a
Stateflow chart with MATLAB syntax.

2 Click the State Tool icon to bring a state into the chart.

3 Click the upper left corner of the state and type the name, InitializeSystem.
4 Repeat steps 2 and 3 to add two more states named On and FailState.

Implement State Actions
Decide the Type of State Action

States perform actions at different phases of their execution cycle from the time they become active
to the time they become inactive. Three basic state actions are:
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Type of Action When Executed How Often Executed While State Is
Active

Entry When the state is entered (becomes
active)

Once

During While the state is active and no valid
transition to another state is
available

At every time step

Exit Before a transition is taken to
another state

Once

For example, you can use entry actions to initialize data, during actions to update data, and exit
actions to configure data for the next transition. For more information about other types of state
actions, see “Syntax for States and Transitions”.)

1 Press return after the InitializeSystem state name and add this text to define the state entry
action:

entry:
Light = ORANGE;

An orange LED indicates entry into the InitializeSystem state.

Syntax for an entry action

The syntax for entry actions is:

entry: one or more actions;
2 Add the following code after the FailState state name to define the entry action:

entry:
Light = RED;

A red LED indicates entry in the FailState.
3 Add the following code after the On state name to define the entry action:

entry:
Light = GREEN;
partsFed = 0;

A green LED indicates entry in the On state. The number of parts fed is initialized to 0 each time
we enter the On state.

4 Add the following code to the On state after the entry action to check if there is a strong sensor
signal and increment the parts fed to the next station:

during:
if(any(sensors >= 2))
    partsFed = partsFed + 1;
end

The On state checks the sensor signal to determine if a part is ready to be fed to the next
assembly station. If the sensor signal is strong (the number of sensors that are on is greater than
or equal to 2), then the chart counts the part as having moved on to the next station.
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Syntax for during actions

The syntax for during actions is:

during: one or more actions;

The chart should now look like this figure.

Specify Transition Conditions
Transition conditions specify when to move from one operating mode to another. When the condition
is true, the chart takes the transition to the next state. Otherwise, the current state remains active.
For more information, see “Transitions” on page 2-21.

Based on the description of feeder behavior, specify the rules for transitions between states:

1 Connect a default transition to the InitializeSystem state to indicate the chart entry point.

“Default Transitions” on page 2-32 specify where to begin the simulation.
2 Draw a transition from the InitializeSystem state to the On state:

a Move the mouse over the lower edge of the InitializeSystem state until the pointer
shape changes to crosshairs.
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b Click and drag the mouse to the upper edge of the On state. You then see a transition from
the InitializeSystem state to the On state.

c Double-click the transition to add this condition:

[all(sensors>0)]

This transition condition verifies if all of the sensors have values greater than zero.
3 Repeat these steps to create these remaining transition conditions.

Transition Condition
On to FailState [Alarm == 1]
FailState to InitializeSystem [Alarm == 0]

4 Draw another transition from InitializeSystem to FailState. On this transition, type the
following to create the transition event:

after(5,sec)

If the sensors have not turned on after 5 seconds, this syntax specifies a transition from
InitializeSystem to FailState.

Note The syntax on this transition is an event rather than a transition condition. For more
information, see “Control Chart Execution by Using Temporal Logic” on page 16-34.

The chart now looks like this figure.
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Note The outgoing transitions from InitializeSystem have a small label 1 and 2 to indicate the
order in which transition segments are evaluated. If the numbers from the figure do not match your
model, right click the transition and then change it by clicking on Execution Order. See
“Transition Evaluation Order” on page 3-40 for details.

Define Data for Your System
Verify the Chart Data Properties

Start the simulation of your model. Errors about unresolved symbols appear, along with the Symbol
Wizard.
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The Symbol Wizard does not automatically add any data to your chart. It identifies the unresolved
data and infers the class and scope of that data using the inference rules of MATLAB expressions in
Stateflow actions. In the chart:

• Data that is read from but not written to is inferred as input data. However, if the name of the data
is in all uppercase letters, the Symbol Wizard infers the data as a parameter

• Data that is written to but not read from is inferred as output data.
• Data that is read from and written to is inferred as local data.

The Symbol Wizard infers the scope of the input data in your chart. However, you must fix the data
scope for the partsFed Output. Follow these steps:

1 For the partsFed data: in the Scope column, select Output from the list.

The Symbol Wizard now looks like this figure.
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2 To add the data that the Symbol Wizard suggests, click OK.
3 Add initial values for the parameters. At the MATLAB command prompt, enter:

RED = 0;
4 Similarly, at the MATLAB command prompt, add the following initial values for the remaining

parameters:

Parameter Value
RED 0
ORANGE 1
GREEN 2

5 Return to the model and connect the inputs and outputs to their respective ports.
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Verify the System Representation
1 Start the simulation.

Double-click the Scope block to verify that the model captures the expected feeder behavior.

The upper axis shows the LED signal which varies between orange (1), green (2), and red (0) to
indicate the current operating mode. The lower axis shows the number of parts fed to the next
assembly station, which increases incrementally until the alarm signal turns the machine off and then
resets.
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Alternative Approach: Event-Based Chart
Another approach to programming the chart is to start by identifying parts of the system interface,
such as events to which your system reacts.

In the previous example, when you use input data to represent an event, the chart wakes up
periodically and verifies whether the conditions on transitions are valid. In this case, if ALARM == 1,
then the transition to the failure state happens at the next time step. However, creating a Stateflow
chart which reacts to input events allows you to react to the alarm signal when the event is triggered.

For details on when to use an event-based chart, see “Synchronize Model Components by
Broadcasting Events” on page 14-2.

Identify System Attributes for Event-Driven Systems

In the event-based approach, the system attributes to consider first are the events, inputs, and
outputs.

In the following table, consider the characteristics of the event-driven Feeder Model that are different
from the system based on transition conditions.

Attributes Characteristics
Events Two asynchronous events: an alarm signal and an all-clear signal
Inputs Three sensor readings to detect if a part has moved to a downstream

assembly station

Feeder Chart Activated by Input Events
In this example, the feeder model reacts to input events using a triggered chart.

The chart now has only one input port on the left and an event triggered input on the top. For more
information on how to create a Stateflow chart activated by events, see “Activate a Stateflow Chart by
Sending Input Events” on page 14-7

When the ALARM signal triggers the chart, the chart responds to the trigger in that time step. If the
current state is On when the alarm is triggered, then the current state transitions to FailState.
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The scope output for the Event-triggered chart is in the following figure.

 Model an Assembly Line Feeder

17-21



The upper axis shows the LED signal which varies between red (0), orange (1), and green (2) to
indicate the current operating mode. The lower axis shows the number of parts fed to the next
assembly station, which increases incrementally until the alarm signal turns the machine off and then
resets. However, the event-based simulation feeds more parts to the next assembly station due to
clock and solver differences.

See Also
sflib | sfnew
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• “State Transition Tables in Stateflow” on page 18-2
• “State Transition Table Operations” on page 18-7
• “Highlight Flow of Logic in a State Transition Table” on page 18-9
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• “Model Bang-Bang Controller by Using a State Transition Table” on page 18-16
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• “View Sequential Logic Through State Transition Matrix” on page 18-32
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State Transition Tables in Stateflow
A state transition table is an alternative way of expressing sequential modal logic. Instead of drawing
states and transitions graphically in a Stateflow chart, use state transition tables to express the modal
logic in tabular format. State transition tables are supported only as blocks in a Simulink model.

The benefits of using state transition tables include:

• The ease of modeling train-like state machines, where the modal logic involves transitions from
one state to its neighbor

• A concise, compact format for a state machine
• Reduced maintenance of graphical objects
• When you add or remove states from a chart, you have to rearrange states, transitions, and

junctions. When you add or remove states from a state transition table, you do not have to
rearrange any graphical objects.

State transition tables support using both MATLAB and C as the action language. For more
information about the differences between these action languages, see “Differences Between
MATLAB and C as Action Language Syntax” on page 17-5.

Create a State Transition Table
At the MATLAB command prompt, enter:

• To create a State Transition Table in a new Simulink model, enter:

sfnew -STT
• To add a new State Transition Table to an existing model, use the function add_block. For

example:

add_block('sflib/State Transition Table','myModel/State Transition Table')

From the Simulink Library Browser:

1 Select the Stateflow library.
2 Drag a state transition table into your model.

Anatomy of a State Transition Table
A state transition table contains the following components:

18 Tabular Expression of Modal Logic

18-2



Each transition column contains the following state-to-state transition information:

• Condition
• Condition action
• Destination state

Use a State Transition Chart to Model a Boiler
The following state transition table contains the modal logic for maintaining the temperature of a
boiler between two set points:
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This Stateflow chart represents the same modal logic:
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Differences Between State Transition Tables and Charts
State transition tables support a subset of the most commonly used elements in Stateflow charts.
Elements that state transition tables do not support include:

• Supertransitions
• Parallel (AND) decomposition
• Local events
• Flow charts
• Use of chart-level functions (graphical, truth table, MATLAB, and Simulink)

Guidelines for Using State Transition Tables
• If you specify an action in a transition cell, it must be a condition action.
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• State transition tables must have at least one state row and one transition column.

Specify Properties for State Transition Tables
To open the State Transition Table properties dialog box, in the Modeling tab, click Table
Properties.

The properties for state transition tables are the same as those for charts that use MATLAB as the
action language. For a description of each property, see “Specify Properties for Stateflow Charts” on
page 28-2.

You can also specify state transition table properties programmatically by using
Stateflow.StateTransitionTableChart objects. For more information about the Stateflow
programmatic interface, see “Overview of the Stateflow API”.

Generate Diagrams from State Transition Tables
Stateflow software automatically generates a read-only state transition diagram from the state
transition table you create. As you enter changes to a state transition table, Stateflow incrementally
updates the diagram as well. To see the most up-to-date version of the underlying diagram, in the
Debug tab, click Show Auto Chart.

See Also
State Transition Table

More About
• “State Transition Table Operations” on page 18-7
• “Debug Run-Time Errors in a State Transition Table” on page 18-12
• “Model Bang-Bang Controller by Using a State Transition Table” on page 18-16
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State Transition Table Operations
A state transition table is an alternative way of expressing sequential modal logic. Instead of drawing
states and transitions graphically in a Stateflow chart, use state transition tables to express the modal
logic in tabular format. State transition tables are supported only as blocks in a Simulink model. For
more information, see “State Transition Tables in Stateflow” on page 18-2.

To create state transition tables, use the Stateflow Editor. You can insert, edit, and move rows and
columns. You can also add history junctions and set the default state for the state transition table.

Insert Rows and Columns
To insert a row:

1 Select an existing state.
2 In the Modeling tab, select one of the following options:

Option Description
Insert State Row Inserts a state at the same level of hierarchy.
Insert Child State Row Inserts a state as a child of the selected

state.
Insert Default Transition Path Row Inserts a row for specifying conditional

default transition paths.
Insert Inner Transition Path Row Inserts a row for specifying inner transitions

from the selected parent state to its child
states. This row type can only be added to
states with children states.

To insert a column:

1 In the Modeling tab, click Append Transition Col. A new else-if column appears to the right
of the last column.

Move Rows and Cells
To move a row, click the state cell and drag the row to a new location. As you drag the row, you see a
visual indicator of where in the hierarchy the state will appear in its new position.

To move a transition cell, click anywhere in the cell and drag the condition, action, and destination
cells as a unit to a new location. The transition cell you displace moves one cell to the right. If column
does not exist, Stateflow creates one. The state transition table prevents you from moving cells to an
invalid destination and alerts you to the problem.

Copy Rows and Transition Cells
To copy a row:

1 Right-click the state in the row you want to copy and select Copy.
2 Right-click the state in the destination row and select Paste.
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The row appears above the destination row.

To copy a transition cell:

1 Right-click a cell and select Copy.
2 Right-click a destination cell of the same type and select Paste.

The new content overwrites the existing content at the destination. The state transition table
prevents you from copying content to an invalid destination.

Set Default State
Right-click the state and select Set to default.

Add History Junction
You can add history junctions to states that have children. Right-click the state and select Add
history junction.

Print State Transition Tables
To print a copy of the state transition table, press Ctrl+P (Command+P).

Select and Clear Table Elements
Task Action
Select a cell for editing Click the cell.
Exit edit mode in a cell Press Esc or click another table, cell, row, or

column.

Undo and Redo Edit Operations
To undo the effects of the previous operation, press Ctrl+Z (Command+Z).

To redo the effects of the previous operation, press Ctrl+Y (Command+Y).

You can undo and redo up to 10 operations.

See Also

More About
• “State Transition Tables in Stateflow” on page 18-2
• “Debug Run-Time Errors in a State Transition Table” on page 18-12
• “View Sequential Logic Through State Transition Matrix” on page 18-32
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Highlight Flow of Logic in a State Transition Table
A state transition table is an alternative way of expressing sequential modal logic. Instead of drawing
states and transitions graphically in a Stateflow chart, use state transition tables to express the modal
logic in tabular format. State transition tables are supported only as blocks in a Simulink model. For
more information, see “State Transition Tables in Stateflow” on page 18-2.

To visualize a flow of logic, you can highlight one transition cell per row in your state transition table.
Highlighting can be used to show the primary flow of logic from one state to another or the flow that
represents an error condition.

The highlighting persists across MATLAB sessions and appears in the autogenerated state transition
diagram and the state transition table.

To highlight transition cells:

1 In the transition table editor, right-click the transition cell and select Mark as primary
transition.

The transition cell appears with a red border.
2 To complete the flow, highlight additional cells, one per row.

For example:
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3 To view the flow in the autogenerated state diagram, in the Debug tab, click Show Auto Chart.

The transitions that represent the flow appear highlighted in the diagram.

See Also

More About
• “State Transition Tables in Stateflow” on page 18-2
• “Model Bang-Bang Controller by Using a State Transition Table” on page 18-16
• “Debug Run-Time Errors in a State Transition Table” on page 18-12
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State Transition Table Diagnostics
A state transition table is an alternative way of expressing sequential modal logic. Instead of drawing
states and transitions graphically in a Stateflow chart, use state transition tables to express the modal
logic in tabular format. State transition tables are supported only as blocks in a Simulink model. For
more information, see “State Transition Tables in Stateflow” on page 18-2.

You can run diagnostic checks on a state transition table. From the Stateflow Editor, in the Debug
tab, select Update Model > Update Table.

The diagnostics tool statically parses the table to find errors such as:

• States with no incoming transitions
• Transition cells with conditions or actions, but no destination
• Action text in a condition cell
• States that are unreachable from the default transition
• Default transition row without unconditional transition
• Inner transition row execution order mismatches. The inner transition row for a state must specify

destination states from left to right in the same order as the corresponding states appear in the
table, from top to bottom.

Each error is reported with a hyperlink to the corresponding object causing the error. These checks
are also performed during simulation.

See Also

More About
• “State Transition Tables in Stateflow” on page 18-2
• “Debug Run-Time Errors in a State Transition Table” on page 18-12
• “Model Bang-Bang Controller by Using a State Transition Table” on page 18-16
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Debug Run-Time Errors in a State Transition Table
A state transition table is an alternative way of expressing sequential modal logic. Instead of drawing
states and transitions graphically in a Stateflow chart, use state transition tables to express the modal
logic in tabular format. State transition tables are supported only as blocks in a Simulink model. For
more information, see “State Transition Tables in Stateflow” on page 18-2.

Create the Model and the State Transition Table
1 Create a Simulink model with a new State Transition Table.

sfnew -STT
2 Add the following states and transitions to your table:

The table has two states at the highest level in the hierarchy, Power_off and Power_on. By
default, Power_off is active. The event SWITCH toggles the system between the Power_off and
Power_on states. Power_on has three substates: First, Second, and Third. By default, when
Power_on becomes active, First also becomes active. When Shift equals 1, the system
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transitions from First to Second, Second to Third, and Third to First, for each occurrence
of the event SWITCH. Then the pattern repeats.

3 Add two inputs on page 12-2 from Simulink:

• An event called SWITCH with a scope of Input from Simulink and a Rising edge trigger.
• A data called Shift with a scope of Input from Simulink.

4 In the model view, connect a Sine Wave block as the SWITCH event and a Step block as the Shift
data for your State Transition Table.

In the model, there is an event input and a data input. A Sine Wave block generates a repeating
input event that corresponds with the Stateflow event SWITCH. The Step block generates a
repeating pattern of 1 and 0 that corresponds with the Stateflow data object Shift. Ideally, the
SWITCH event occurs at a frequency that allows at least one cycle through First, Second, and
Third.

Debug the State Transition Table
To debug the table in “Create the Model and the State Transition Table” on page 18-12, follow these
steps:

1 Right-click the Power_off state, and select Set Breakpoint > On State Entry.
2 Start the simulation.

Because you specified a breakpoint on Power_off, execution stops at that point.
3

Move to the next step by clicking the Step In button, .
4 To see the data used and the current values, hover your cursor over the different table cells.

Continue clicking the Step In button and watching the animating states. After each step, watch
the chart animation to see the sequence of execution. Use the tooltips to see the data values.

Single-stepping shows that the loop from First to Second to Third inside the state Power_on does
not occur. The transition from Power_on to Power_off takes priority.
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Correct the Run-Time Error
In “Debug the State Transition Table” on page 18-13, you step through a simulation of a state
transition table and find an error. The event SWITCH drives the simulation, but the simulation time
passes too quickly for the input data object Shift to have an effect.

To correct this error:

1 Stop the simulation so that you can edit the table.
2 Add the condition after(20.0, sec) to the transition from Power_on to Power_off.

Now the transition from Power_on to Power_off does not occur until 20 seconds have passed.
3 Begin simulation.
4 Click the Step In button repeatedly to observe the fixed behavior.
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See Also

Related Examples
• “State Transition Tables in Stateflow” on page 18-2
• “State Transition Table Diagnostics” on page 18-11
• “Model Bang-Bang Controller by Using a State Transition Table” on page 18-16
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Model Bang-Bang Controller by Using a State Transition Table
A state transition table is an alternative way of expressing sequential modal logic. Instead of drawing
states and transitions graphically in a Stateflow chart, use state transition tables to express the modal
logic in tabular format. State transition tables are supported only as blocks in a Simulink model. For
more information, see “State Transition Tables in Stateflow” on page 18-2.

Design Requirements
This example shows how to model a bang-bang controller for temperature regulation of a boiler, using
a state transition table. The controller must turn the boiler on and off to meet the following design
requirements:

• High temperature cannot exceed 25 degrees Celsius.
• Low temperature cannot fall below 23 degrees Celsius.
• Steady-state operation requires a warm-up period of 10 seconds.
• When the alarm signal sounds, the boiler must shut down immediately.
• When the all-clear signal sounds, the boiler can turn on again.

Identify System Attributes
You can identify the operating modes and data requirements for the bang-bang controller based on its
design requirements.

Operating Modes

The high-level operating modes for the boiler are:

• Normal operation, when no alarm signal sounds.
• Alarm state, during an alarm signal.

During normal operation, the boiler can be in one of three states:

• Off, when the temperature is above 25 degrees Celsius.
• Warm-up, during the first 10 seconds of being on.
• On, steady-state after 10 seconds of warm-up, when the temperature is below 23 degrees Celsius.

Data Requirements

The bang-bang controller requires the following data.

Scope Description Variable Name
Input High temperature set point reference_high
Input Low temperature set point reference_low
Input Alarm indicator ALARM
Input All-clear indicator CLEAR
Input Current temperature of the

boiler
temp
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Scope Description Variable Name
Local Indicator that the boiler

completed warm-up
doneWarmup

Output Command to set the boiler
mode: off, warm-up, or on

boiler_cmd

Build the Controller or Use the Supplied Model
To build the bang-bang controller model yourself using a state transition table, follow these exercises.
Otherwise, you can open the completed model.

Create a New State Transition Table
To represent the bang-bang controller, use a state transition table. Compared to a graphical state
transition diagram, the state transition table is a compact way to represent modal logic that involves
transitions between neighboring states. For this example, use MATLAB as your action language.

1 Open the partially built boiler plant model.

This model contains all required Simulink blocks, except for the bang-bang controller.

2 Delete the five output ports and the single input port.
3 Open the Library Browser. In the Simulation tab, click Library Browser.
4 In the left pane of the Library Browser, select the Stateflow library, then drag a State Transition

Table block from the right pane into your boiler model.

Your model looks like this model.
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5 Close the Library Browser.

Now you are ready to add states and hierarchy to the state transition table.

Add States and Hierarchy
To represent the operating modes of the boiler, add states and hierarchy to the state transition table.

1 Open the state transition table.
2 Represent the high-level operating modes: normal and alarm.

a Double-click state1 and rename it Normal.
b Double-click state2 and rename it Alarm.

3 Represent the three states of normal operation as substates of Normal:

a Right-click the Normal state, select Insert Row > Child State Row, and name the new
state Off.

b Repeat step a two more times to create the child states Warmup and On, in that order.

By default, when there is ambiguity, the top exclusive (OR) state at every level of hierarchy
becomes active first. For this reason, the Normal and Off states appear with default transitions.
This configuration meets the design requirements for this model. To set a default state, right-
click the state and select Set to default.

Your state transition table looks like this table.
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Now you are ready to specify actions for each state.

Specify State Actions
To describe the behavior that occurs in each state, specify state actions in the table. In this exercise,
you initialize modes of operation as the boiler enters normal and alarm states, using the variables
boiler_cmd and doneWarmup (described in “Data Requirements” on page 18-16).

1 In the following states, click after the state name, press Enter, and type the specified entry
actions.
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In State: Type: Resulting Behavior
Off entry:

boiler_cmd = 0;
doneWarmup = false;

Turns off the boiler and
indicates that the boiler has
not warmed up.

Warmup entry:
boiler_cmd = 2;

Starts warming up the boiler.

On entry:
boiler_cmd = 1;

Turns on the boiler.

Alarm entry:
boiler_cmd = 0;

Turns off the boiler.

2 Save the state transition table.

Your state transition table looks like this table.
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Now you are ready to specify the conditions and actions for transitioning from one state to another
state.

Specify Transition Conditions and Actions
To indicate when to change from one operating mode to another, specify transition conditions and
actions in the table. In this exercise, you construct statements using variables described in “Data
Requirements” on page 18-16.

1 In the Normal state row, enter:

if
[ALARM]
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if
 
Alarm

During simulation:

a When first entered, the chart activates the Normal state.
b At each time step, normal operation cycles through the Off, Warmup, and On states until the

ALARM condition is true.
c When the ALARM condition is true, the boiler transitions to the Alarm state and shuts down

immediately.
2 In the Off state row, enter:

if
[temp <= reference_low]
 
Warmup

During simulation, when the current temperature of the boiler drops below 23 degrees Celsius,
the boiler starts to warm up.

3 In the Warmup state row, enter:

if else-if
[doneWarmup] [after(10, sec)]
 {doneWarmup = true;}
On On

During simulation, the boiler warms up for 10 seconds and then transitions to the On state.
4 In the On state row, enter:

if
[temp >= reference_high]
 
Off

During simulation, when the current temperature of the boiler rises above 25 degrees Celsius,
the boiler shuts off.

5 In the Alarm state row, enter:

if
[CLEAR]
 
Normal

During simulation, when the all-clear condition is true, the boiler returns to normal mode.
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6 Save the state transition table.

Your state transition table looks like this table.

Now you are ready to add data definitions using the Symbol Wizard.

Define Data
When you create a state transition table that uses MATLAB syntax, there are language requirements
for C/C++ code generation. One of these requirements is that you define the size, type, and
complexity of all MATLAB variables so that their properties can be determined at compile time. Even
though you have not yet explicitly defined the data in your state transition table, you can use the
Symbol Wizard. During simulation, the Symbol Wizard alerts you to unresolved symbols, infers their
properties, and adds the missing data to your table.
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1 In the Simulink model , select Run.

Two dialog boxes appear:

• The Diagnostic Viewer indicates that you have unresolved symbols in the state transition
table.

• The Symbol Wizard attempts to resolve the missing data. The wizard correctly infers the
scope of all data except for the inputs ALARM and CLEAR.

2 In the Symbol Wizard, correct the scopes of ALARM and CLEAR by selecting Input from their
Scope drop-down lists.

3 When the Model Explorer opens, verify that the Symbol Wizard added all required data
definitions correctly.

Some of the inputs are assigned to the wrong ports.
4 In the Contents pane of the Model Explorer, reassign input ports as follows:

Assign: To Port:
reference_low 2
reference_high 1
temp 5
ALARM 3
CLEAR 4

5 Save the state transition table.
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6 Close the Diagnostic Viewer and the Model Explorer.

In the Simulink model, the inputs and outputs that you defined appear in the State Transition Table
block. Now you are ready to connect these inputs and outputs to the Simulink signals and run the
model.

Connect the Transition Table and Run the Model
1 In the Simulink model, connect the state transition table to the Simulink inputs and outputs:

2 Save the model.
3 Reopen your state transition table.
4 Start the simulation by selecting Run.

As the simulation runs, you can watch the animation in the state transition table activate
different states.

The following output appears in the Scope block.
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When performing interactive debugging, you can set breakpoints on different states and view the
data values at different points in the simulation. For more information about debugging, see
“Debugging Stateflow Charts” on page 33-2.

View the Graphical Representation
Stateflow automatically generates a read-only graphical representation of the state transition table
you created.

1 In the Debug tab, click Show Auto Chart.

The top-level state transition diagram:
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The Normal state appears as a subchart.
2 To view the states and transitions the chart contains, double-click the Normal state.

See Also

More About
• “State Transition Tables in Stateflow” on page 18-2
• “State Transition Table Operations” on page 18-7
• “Debug Run-Time Errors in a State Transition Table” on page 18-12
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Modeling a CD Player/Radio Using State Transition Tables
This example shows a simple model of a CD Player/Radio logic that uses State Transition Tables in
Stateflow®. This model is a reimplementation of sf_cdplayer using State Transition Tables.

The heart of the logic for controlling the CD Player/Radio is in the "CdPlayerModeManager" chart,
which is designed using a State Transition Table. The table is used to represent modal logic in tabular
form. It allows us to define various states and their hierarchical structure along with the transitions
between the states.
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State Cells

The left most column represents all the states in the table. Notice that states can be nested
hierarchically. You can choose one of the states to be the default state at any given level. This is
represented by a default transition drawn to the left of the state. You can also add a "default
transition row" if there is logic involved in choosing the first state to enter.

You can add a history junction to a given state by right-clicking the state and selecting 'Add history
junction'. This enables the state to remember the last active state when it is re-entered instead of
choosing the default state. For example, states ModeManager and ON have history junctions. A
Stateflow chart can be automatically generated from this table view.

Transition Cells

The next set of columns represent the outer transitions from a state. Each row represents the outer
transitions from a given state. Each of the transition cells is sub-divided into three sub-cells:

1) Condition cell: to specify a boolean condition which specifies when the transition is active
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2) Condition Action cell: to specify the action to be taken when the transition is active

3) Destination cell: to specify the destination state for the transition. Notice that you can use special
keywords such as "$NEXT", "$PREV" to specify the destination relative to the current state.

This chart receives user inputs, such as whether a disk has been inserted and the choice for the radio
mode (FM, AM, or CD). Then the chart determines the mechanical command to output. The data
types of input and output data are defined as enumerated data types in the MATLAB® files
CdRequestMode.m and RadioRequestMode.m.

The output command from the "CdPlayerModeManager" is processed by the chart
"CdPlayerBehaviorModel" which models the behavior of the CD Player mechanism. This logic is also
implemented using a State Transition Table.

A MATLAB UI is used to set the various CD/Radio modes.

18 Tabular Expression of Modal Logic

18-30



See Also

More About
• “State Transition Tables in Stateflow” on page 18-2
• “Model Media Player by Using Enumerated Data” on page 23-15
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View Sequential Logic Through State Transition Matrix
This example shows how to use the State Transition Matrix view for a state transition table in
Stateflow®. Instead of drawing states and transitions graphically in a Stateflow chart, use state
transition tables to express the modal logic in tabular format. State transition tables are supported
only as blocks in a Simulink® model. For more information, see “State Transition Tables in Stateflow”
on page 18-2.

Generate State Transition Matrix

A state transition matrix is an alternative, read-only view of a State Transition Table. This view
enables you to analyze how the state transition table responds to various input conditions. For
example, this state transition table models debouncing logic that is commonly used to remove jitter in
switching logic. The debouncer removes rapid changes in the input u that last less than 0.1 seconds.

To generate the state transition matrix view, on the Debug tab, click Transition Matrix.
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Each row of the matrix represents a state in the state transition table. These states appear on the left
of the matrix in the same order as in the state transition table.

The columns of the matrix correspond to conditions or events. Every unique condition or event used
in the state transition table is represented by a separate column. The order of the columns is based
on the number of states that respond to each condition or event. Conditions on the left of the matrix
impact more states than conditions on the right of the matrix.

The cells in the matrix display how the chart responds to a particular condition or event when a state
is active. If a condition or event does not impact a state, the corresponding cell of the matrix appears
empty. Empty cells to the left of a nonempty entry appear in light gray. Empty cells to the right of the
last nonempty entry in a row appear in dark gray.

If you change the state transition table, you must regenerate the state transition matrix.

Examine State Reactions

To see the reaction of a state to each event or condition, look at all the entries in a state row. To see
how each state responds to an event or condition, look at all the entries in a column.

Each entry in the matrix lists the action and destination for a transition in the state transition table.
The execution order of the transition appears in the upper-right corner of each entry. The execution
order is displayed in red if it is out of order relative to the matrix columns. Otherwise, the execution
order is displayed in blue.
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Filter by State Name

To see a subset of state rows, you can filter rows based on state names. In the upper-left corner of the
state transition matrix, in the Filter States search box, enter a state name or select a name from the
drop-down list.

Trace Matrix Cells to State Transition Table

In the state transition matrix, the state names, conditions, actions, and destinations are hyperlinks. To
highlight the corresponding state, action, condition, or destination in the state transition table, click
one of these hyperlinks.

See Also

More About
• “State Transition Tables in Stateflow” on page 18-2
• “Reduce Transient Signals by Using Debouncing Logic” on page 30-12
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Make States Reusable with Atomic
Subcharts

• “Create Reusable Subcomponents by Using Atomic Subcharts” on page 19-2
• “Guidelines for Using Atomic Subcharts” on page 19-7
• “Map Variables for Atomic Subcharts and Boxes” on page 19-11
• “Isolate the Transition Logic for Entering and Exiting an Atomic Subchart” on page 19-24
• “Reuse a State Multiple Times in a Chart” on page 19-31
• “Reduce the Compilation Time of a Chart” on page 19-37
• “Divide a Chart into Separate Units” on page 19-40
• “Generate Separate Code for an Atomic Subchart” on page 19-43
• “Model a Redundant Sensor Pair by Using Atomic Subcharts” on page 19-48
• “Model an Elevator System by Using Atomic Subcharts” on page 19-52
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Create Reusable Subcomponents by Using Atomic Subcharts
An atomic subchart is a graphical object that helps you to create independent subcomponents in a
Stateflow chart. Atomic subcharts are not supported in standalone Stateflow charts in MATLAB.

Atomic subcharts allow for:

• Reuse of the same state or subchart across multiple charts and models
• Faster simulation after making small changes to a chart with many states or levels of hierarchy
• Ease of team development when multiple people are working on different parts of the same chart
• Manual inspection of generated code for a specific state or subchart in a chart

An atomic subchart looks opaque and includes the label Atomic in the upper left corner. If you use a
linked atomic subchart from a library, the label Link appears in the upper left corner.

Example of an Atomic Subchart
This example illustrates the difference between a normal subchart and an atomic subchart.

In the Air Controller chart, PowerOff is a normal subchart. PowerOn is an atomic subchart. Both
subcharts look opaque, but the PowerOn includes the label Atomic on the upper left corner.
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Benefits of Using Atomic Subcharts
Atomic subcharts combine the functionality of states on page 2-8, normal subcharts on page 8-7, and
atomic subsystems (Simulink). Atomic subcharts:

• Behave as independent charts.
• Support usage as library links.
• Support the generation of reusable code.
• Allow mapping of inputs, outputs, parameters, data store memory, and input events.

Atomic subcharts do not support access to:

• Data at every level of the chart hierarchy.
• Event broadcasts outside the scope of the atomic subchart.

Atomic subcharts do not support explicit specification of sample time.

Create an Atomic Subchart
You can create an atomic subchart by converting an existing subchart or by linking a chart from a
library model. After creating the atomic subchart, update the mapping of variables by right-clicking
the atomic subchart and selecting Subchart Mappings. For more information, see “Map Variables
for Atomic Subcharts and Boxes” on page 19-11.

Convert a Normal Subchart to an Atomic Subchart

To create an independent component that allows for faster debugging and code generation
workflows, convert an existing state or subchart into an atomic subchart. In your chart, right-click a
state or a normal subchart and select Group & Subchart > Atomic Subchart. The label Atomic
appears in the upper left corner of the subchart.

The conversion provides the atomic subchart with its own copy of every data object that the subchart
accesses in the chart. Local data is copied as data store memory. The scope of other data, including
input and output data, does not change.

For more information, see “Restrictions for Converting to Atomic Subcharts” on page 19-9.

Note If a state or subchart contains messages, you cannot convert it to an atomic subchart.
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Link an Atomic Subchart from a Library

To create a subcomponent for reuse across multiple charts and models, create a link from a library
model. Copy a chart in a library model and paste it to a chart in another model. If the library chart
contains any states, it appears as a linked atomic subchart with the label Link in the upper left
corner.

This modeling method minimizes maintenance of similar states. When you modify the atomic subchart
in the library, your changes propagate to the links in all charts and models.

If the library chart contains only functions and no states, then it appears a linked atomic box in the
chart. For more information, see “Reuse Functions by Using Atomic Boxes” on page 8-19.

Convert an Atomic Subchart to a Normal Subchart

Converting an atomic subchart back to a state or a normal subchart removes all of its variable
mappings. The conversion merges subchart-parented data objects with the chart-parented data to
which they map.

1 If the atomic subchart is a library link, right-click the atomic subchart and select Library Link >
Disable Link.

2 To convert an atomic subchart back to a normal subchart, right-click the atomic subchart and
clear the Group & Subchart > Atomic Subchart check box.

3 To convert the subchart back to a state, right-click the subchart and clear the Group &
Subchart > Subchart check box.

4 If necessary, rearrange graphical objects in your chart.

You cannot convert an atomic subchart to a normal subchart if:

• The atomic subchart maps a parameter to an expression other than a single variable name. For
example, mapping a parameter data1 to one of these expressions prevents the conversion of an
atomic subchart to a normal subchart:

• 3
• data2(3)
• data2 + 3

• Both of these conditions are true:

• The atomic subchart contains MATLAB functions or truth table functions that use MATLAB as
the action language.

• The atomic subchart does not map each variable to a variable of the same name in the main
chart.

When to Use Atomic Subcharts
Reuse State Logic

Suppose that you want to reuse the same state or subchart many times to facilitate large-scale
modeling.

If you do not use atomic subcharts, you have to maintain each copy of a subcomponent manually. For
example, this chart contains two states with a similar structure. The only difference between the two
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states is the names of variables. If you change the logic in state A, then you must make the same
change in state B.

To enable reuse of subcomponents by using linked atomic subcharts, create a single copy of state A
and store it as a chart in a library model. From that library, copy and paste the atomic subchart twice
in your chart. Then update the mapping of subchart variables as needed.

When you change an atomic subchart in a library, the change propagates to all library links. For more
information, see “Reuse a State Multiple Times in a Chart” on page 19-31.

Debug Charts Incrementally

Suppose that you want to test a sequence of changes in a chart that contains many states or several
levels of hierarchy.

If you do not use atomic subcharts, when you make a small change to one part of a chart and start
simulation, recompilation occurs for the entire chart. Because recompiling the entire chart can take a
long time, you decide to make several changes before testing. However, if you find an error, you must
step through all of your changes to identify the cause of the error.

In contrast, when you modify an atomic subchart, recompilation occurs for only the subchart and not
for the entire chart. Incremental builds for simulation require less time to recompile. This reduction
in compilation time enables you to test each individual change instead of waiting to test multiple
changes at once. By testing each change individually, you can quickly identify a change that causes an
error. For more information, see “Reduce the Compilation Time of a Chart” on page 19-37.

Develop Charts Used by Multiple People

Suppose that you want to break a chart into subcomponents because multiple people are working on
different parts of the chart.

Without atomic subcharts, only one person at a time can edit the model. If someone edits one part of
a chart while someone else edits another part of the same chart, you must merge those changes at
submission time.

In contrast, you can store different parts of a chart as linked atomic subcharts. Because atomic
subcharts behave as independent objects, different people can work on different parts of a chart
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without affecting the other parts of the chart. At submission time, no merge is necessary because the
changes exist in separate models. For more information, see “Divide a Chart into Separate Units” on
page 19-40.

Inspect Generated Code

Suppose that you want to inspect code generated by Simulink Coder or Embedded Coder manually
for a specific part of a chart.

If you do not use atomic subcharts, you generate code for an entire model in one file. To find code for
a specific part of the chart, you have to look through the entire file.

In contrast, you can specify that the code for an atomic subchart appears in a separate file. This
method of code generation enables unit testing for a specific part of a chart. You avoid searching
through unrelated code and focus only on the code that interests you. For more information, see
“Generate Separate Code for an Atomic Subchart” on page 19-43.

See Also
Atomic Subsystem

More About
• “Encapsulate Modal Logic by Using Subcharts” on page 8-7
• “Map Variables for Atomic Subcharts and Boxes” on page 19-11
• “Model an Elevator System by Using Atomic Subcharts” on page 19-52
• “Model a Redundant Sensor Pair by Using Atomic Subcharts” on page 19-48
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Guidelines for Using Atomic Subcharts
An atomic subchart is a graphical object that helps you to create independent subcomponents in a
Stateflow chart. Atomic subcharts are not supported in standalone Stateflow charts in MATLAB. For
more information, see “Create Reusable Subcomponents by Using Atomic Subcharts” on page 19-2.

Chart Properties and Atomic Subcharts
Do Not Use Moore Charts as Atomic Subcharts

Moore charts do not have the same simulation behavior as Classic Stateflow charts with the same
constructs.

Do Not Use Atomic Subcharts in Continuous-Time Charts

Continuous-time charts do not support atomic subcharts.

Avoid Using Atomic Subcharts in Charts That Execute at Initialization

You get a warning when the following conditions are true:

• The chart property Execute (enter) Chart At Initialization is enabled.
• The default transition path of the chart reaches an atomic subchart.

If an entry action inside the atomic subchart requires access to a chart input or data store memory,
you can get inaccurate results. To avoid this warning, you can disable Execute (enter) Chart At
Initialization or redirect the default transition path away from the atomic subchart.

For more information about execute-at-initialization behavior, see “Execution of a Chart at
Initialization” on page 3-23.

Use Consistent Settings for Super Step Semantics

When you use linked atomic subcharts, verify that your settings for super step semantics match the
settings in the main chart. For more information, see “Super Step Semantics” on page 3-48.

Data in Atomic Subcharts
Define Data in an Atomic Subchart Explicitly

Be sure to define data that appears in an atomic subchart explicitly in the main chart. Atomic
subcharts can only access main chart data whose size, type, and complexity are fully specified. For
more information, see “Set Data Properties” on page 12-5.

Map Variables of Linked Atomic Subcharts

When you use linked atomic subcharts, map the variables so that data in the subchart corresponds to
the correct data in the main chart. Map subchart variables manually if, when you add the subchart,
the variables do not have the same names as the corresponding symbols in the main chart. For more
information, see “Map Variables for Atomic Subcharts and Boxes” on page 19-11.
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Match Size, Type, and Complexity of Variables in Linked Atomic Subcharts

Verify that the size, type, and complexity of variables in a subchart match the settings of the
corresponding variables in the main chart. For more information, see “Map Variables for Atomic
Subcharts and Boxes” on page 19-11.

Do Not Use Variable-Size Data in Atomic Subcharts

Atomic subcharts do not support variable-sized arrays. If you select the Variable Size property of a
subchart data object, an error occurs when you try to update the diagram or simulate the model.

Do Not Change the First Index of Local Data to a Nonzero Value

When a data store memory in an atomic subchart maps to chart-level local data, the First index
property of the local data must remain zero. If you change First index to a nonzero value, an error
occurs when you try to update the diagram or simulate the model.

Do Not Log Signals from Atomic Subcharts That Map Variables with Different Scopes

If an atomic subchart maps variables to variables at the main chart level with a different scope, you
cannot log signals for the chart.

Restrict Use of Machine-Parented Data

If your chart contains atomic subcharts, do not use machine-parented data with the following
properties:

• Imported or exported
• Is 2-D or higher, or uses fixed-point type

Machine-parented data with these properties prevent reuse of generated code and other code
optimizations.

Avoid Using the Names of Subsystem Parameters in Atomic Subcharts

If a parameter in an atomic subchart matches the name of a Simulink built-in subsystem parameter,
the only mapping allowed for that parameter is Inherited. Specifying any other parameter mapping
in the Mappings tab of the properties dialog box causes an error. You can, however, change the
parameter value at the MATLAB prompt so that all instances of that parameter have the same value.

To get a list of Simulink subsystem parameters, enter:
param_list = sort(fieldnames(get_param('built-in/subsystem', 'ObjectParameters')));

Events in Atomic Subcharts
Do Not Mix Edge-Triggered and Function-Call Input Events in The Same Atomic Subchart

Input events in an atomic subchart must all use edge-triggered type, or they must all use function-call
type. This restriction is consistent with the behavior for the container chart. For more information,
see “Best Practices for Using Events in Stateflow Charts” on page 14-4.

Do Not Use Outgoing Transitions When an Atomic Subchart Uses Top-level Local Events

You cannot use outgoing transitions from an atomic subchart that uses local events at the top level of
the subchart. Using this configuration causes a simulation error.
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Match the Trigger Type When Mapping Input Events

Each input event in an atomic subchart must map to an input event of the same trigger type in the
container chart.

Do Not Map Multiple Input Events in an Atomic Subchart to the Same Input Event in the
Container Chart

Each input event in an atomic subchart must map to a unique input event in the container chart. You
can verify unique mappings of input events by opening the properties dialog box for the atomic
subchart and checking the Input Event Mapping section of the Mappings tab.

Functions and Atomic Subcharts
Export Chart-Level Functions If Called from an Atomic Subchart

If your atomic subchart contains a function call to a chart-level function, export that function by
selecting Export Chart Level Functions. Do not export graphical functions from an atomic subchart
that maps variables to variables at the main chart level with a different scope. For more information,
see “Export Stateflow Functions for Reuse” on page 8-15.

Restrictions for Converting to Atomic Subcharts
Supertransitions

Supertransitions cannot cross the boundary of atomic subcharts. Before converting a state or
subchart to an atomic subchart, replace any supertransitions that cross the boundary with an entry or
exit port. For more information, see “Create Entry and Exit Connections Across State Boundaries” on
page 2-48 and “Isolate the Transition Logic for Entering and Exiting an Atomic Subchart” on page 19-
24.

Data, Graphical Functions, and Events

To convert a state or subchart to an atomic subchart, access to objects not parented by the state or
subchart must be one of the following:

• Chart-level data
• Chart-level graphical functions
• Input events

If the state or subchart accesses a chart-level graphical function, the chart must export that function.
For more information, see “Export Stateflow Functions for Reuse” on page 8-15.

Do not export graphical functions from an atomic subchart that maps variables to variables at the
main chart level with a different scope.

Local Data with a Nonzero First Index

The state or subchart that you want to convert to an atomic subchart cannot access local data where
the First index property is nonzero. For the conversion process to work, the First index property of
the local data must be zero, which is the default value.
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Machine-Parented Data

The state or subchart that you want to convert to an atomic subchart cannot reside in a chart that
uses machine-parented data with the following properties:

• Imported or exported
• Is 2-D or higher, or uses a fixed-point type

Machine-parented data with these properties prevent reuse of generated code and other code
optimizations.

Strong Data Typing with Simulink Inputs and Outputs

To convert a state or subchart to an atomic subchart, your chart must use strong data typing with
Simulink inputs and outputs. For more information, see “Use strong data typing with Simulink I/O” on
page 28-6.

Event Broadcasts

The state or subchart that you want to convert to an atomic subchart cannot refer to:

• Local events that are outside the scope of that state or subchart
• Output events

The state or subchart you want to convert can refer to input events.

Masked Library Chart

You cannot use a masked library chart containing mask parameters as an atomic subchart.

See Also

More About
• “Create Reusable Subcomponents by Using Atomic Subcharts” on page 19-2
• “Model an Elevator System by Using Atomic Subcharts” on page 19-52
• “Model a Redundant Sensor Pair by Using Atomic Subcharts” on page 19-48
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Map Variables for Atomic Subcharts and Boxes
An atomic subchart is a graphical object that helps you create reusable subcomponents in a Stateflow
chart. An atomic box is a graphical object that helps you share graphical, truth table, MATLAB, and
Simulink functions across several charts. Atomic subcharts and boxes are not supported in
standalone Stateflow charts in MATLAB. For more information, see “Create Reusable Subcomponents
by Using Atomic Subcharts” on page 19-2 and “Reuse Functions by Using Atomic Boxes” on page 8-
19.

To ensure that each symbol in your atomic subchart or box accesses the correct symbol in the main
chart, edit the mapping of subchart symbols. Right-click the subchart or box and select Subchart
Mappings. In the Mappings tab of the properties dialog box, use the Main chart symbol drop-
down list to specify which symbol in the main chart corresponds to each symbol in the subchart.
Alternatively, you can type an expression specifying:

• A field of a Stateflow structure. See “Index and Assign Values to Stateflow Structures” on page 29-
7.

• An element of a vector or matrix. See “Supported Operations for Vectors and Matrices” on page
21-4.

• Any valid combination of structure fields or matrix indices, such as struct.field(1,2) or
struct.field[0][1].

If you leave the Main chart symbol field empty, then Stateflow attempts to map the atomic subchart
symbol to a main chart symbol with the same name.

You can map a symbol in the atomic subchart to a symbol in the main chart that has a different scope.
This table lists the possible mappings.

Atomic Subchart Symbol Scope Main Chart Symbol Scope
Input Input, Output, Local, Parameter
Output Output, Local
Parameter Parameter
Data Store Memory Data Store Memory, Local
Input Event Input Event

When you map data store memory in an atomic subchart to local data of enumerated type, you have
two options for specifying the initial value of the data store memory:

• In the Data properties dialog box, set the Initial value field for the chart-level local data.
• To apply the default value of the enumerated type, leave the Initial value field empty.

Map Input and Output Data for an Atomic Subchart
This model contains two Sine Wave blocks that supply input signals to a chart.
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The chart consists of two linked atomic subcharts from the same library.

Both atomic subcharts contain saturator logic to convert an input sine wave to an output square wave
of the same frequency.

If you simulate the model, the output for y2 is zero.
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Because the symbols in atomic subchart A have the same name as the symbols u1 and y1 in the main
chart, they map to the correct variables. The symbols in atomic subchart B do not map to u2 and y2
in the main chart, so you must edit the mapping.

1 Right-click subchart B and select Subchart Mappings.
2 Under Input Mapping, specify the main chart symbol for u1 to be u2.
3 Under Output Mapping, specify the main chart symbol for y1 to be y2.
4 Click OK.
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When you run the model again, you get these results.
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Map Atomic Subchart Variables to Bus Elements
This model contains two Sine Wave blocks that supply signals through a bus to a chart.

The chart consists of two linked atomic subcharts from the same library. Both atomic subcharts
contain saturator logic to convert an input sine wave to an output square wave of the same frequency.

If you simulate the model, you get an error because the u1 inputs in each subchart do not map to any
variables in the main chart. To edit the mapping for u1 in each subchart:

1 Right-click subchart A and select Subchart Mappings.
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2 Under Input Mapping, specify the main chart symbol for u1 to be the first element in the bus:
BusIn.u1.

3 Click OK.
4 Repeat for subchart B, specifying the main chart symbol for u1 to be the second element in the

bus: BusIn.u2.

When you run the model again, you get these results.

Map Atomic Subchart Variables to the Elements of a Matrix
When referring to elements of a vector or matrix, regardless of the action language of the chart, use:

• One-based indexing delimited by parentheses and commas. For example, A(4,5).
• Zero-based indexing delimited by brackets. For example, A[3][4].

Indices can be numbers or parameters in the chart. The use of other expressions as indices is not
supported.

For example, this model contains two Sine Wave blocks that supply signals through a diagonal matrix
to a chart.
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The chart consists of two linked atomic subcharts from the same library. Both atomic subcharts
contain saturator logic to convert an input sine wave to an output square wave of the same frequency.

If you simulate the model, you get an error because the u1 inputs in each subchart do not map to any
variables in the main chart. To edit the mapping for u1 in each subchart:

1 Right-click subchart A and select Subchart Mappings.
2 Under Input Mapping, specify the main chart symbol for u1 to be the top-left element in the

matrix. The zero-based indexing format for this element is M[0][0].
3 Click OK.
4 Repeat for subchart B, specifying the main chart symbol for u1 to be the bottom-right element in

the matrix. The one-based indexing format for this element is M(2,2).

When you run the model again, you get these results.

 Map Variables for Atomic Subcharts and Boxes

19-17



Map Atomic Subchart Parameters to Expressions
For parameters in an atomic subchart, you can specify an expression that combines constants,
variables in the base workspace, and parameters in the main chart.

For example, this model contains two Sine Wave blocks that supply input signals to a chart.

The chart consists of two linked atomic subchart from the same library. Both atomic subcharts
contain saturator logic to convert an input sine wave to an output square wave of the same frequency.

If you simulate the model, you get an error because the parameter T is undefined. To fix this error,
specify an expression for T to evaluate in the main chart:
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1 Right-click subchart A and select Subchart Mappings.
2 Under Parameter Mapping, as the value for T, enter -1.
3 Click OK.
4 Repeat for subchart B, specifying the value of T as 2.

When you run the model again, you get these results.
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Map Input Events for an Atomic Subchart
This model contains a Mux block that supplies input events to a chart.

The chart contains two superstates: Active and Inactive. The Active state uses input events to
guard transitions between different substates.
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To convert the Active state to an atomic subchart:

1 Right-click the Active state and select Group & Subchart > Atomic Subchart.
2 Right-click the atomic subchart and select Subchart Mappings.
3 Under Input Event Mapping, map each atomic subchart symbol to the corresponding input

event in the main chart.
4 Click OK.
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Disable Input Events for Atomic Subcharts

Not every input event in an atomic subchart has to correspond to an event in the main chart. For
example, you can create a linked atomic subchart that does not use the entire set of events that are
defined in the library chart. To disable an input event in an atomic subchart:

1 Right-click the atomic subchart and select Subchart Mappings.
2 Under Input Event Mapping, in the Main chart symbol drop-down list, select <disabled>.
3 Click OK.
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See Also

More About
• “Create Reusable Subcomponents by Using Atomic Subcharts” on page 19-2
• “Reuse Functions by Using Atomic Boxes” on page 8-19
• “Index and Assign Values to Stateflow Structures” on page 29-7
• “Supported Operations for Vectors and Matrices” on page 21-4
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Isolate the Transition Logic for Entering and Exiting an Atomic
Subchart

This example shows how to use entry and exit ports to create multiple connections into and out of
linked atomic subcharts. Entry and exit ports enable your chart to transition across boundaries in the
Stateflow® hierarchy while isolating the logic for entering and exiting atomic subcharts. For more
information about entry and exit ports, see “Create Entry and Exit Connections Across State
Boundaries” on page 2-48.

In this example, a Simulink® model simulates a robot that maneuvers through an obstacle course in
search of a docking station. The model contains three Stateflow charts:

• Route Control defines the strategy used by the robot to search for the dock and navigate the
obstacle course.

• Robot defines the physical characteristics of the robot, such as position and direction of motion,
in relation to the dock and the obstacles that surround it.

• Plot Trajectory creates a visual representation of the path that the robot takes as it avoids
obstacles and searches for the dock.

Define Search Strategy

The Route Control chart defines the strategy that the robot uses to search for the docking station.
The chart consists of a combination of linked atomic subcharts from the Simulink library model
sfRobotExampleLib.slx. The linked atomic subcharts behave as macros that instruct the robot to
move forward, rotate left or right, and make radio contact with the dock. You can combine one or
more instances of these subcharts to program your own search strategy.
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In this example, the robot moves in a straight line and makes radio contact with the dock at regular
intervals. If the robot senses that it is moving away from the dock, it rotates 45 degrees to the right
and continues searching. If the robot runs into an obstacle, it rotates 45 degrees to the left and
continues searching. Initially, the robot moves with a speed of 0.5 meters per second. When the robot
comes within 2 meters of the dock, it slows down to a speed of 0.1 meters per second. When the robot
comes close to the docking station, the simulation stops. Otherwise, after tMax seconds, the
simulation stops and returns a warning.

Create Multiple Entry Connections into Subchart

In the Route Control chart, the linked atomic subchart Rotate contains two entry ports labeled
Left and Right. During simulation, the Rotate subchart becomes active when the chart takes a
transition that leads to one of these entry ports.

Inside the subchart, each entry port has a matching entry junction. The transitions that connect from
these entry junctions to the state Rotate set the value of the local data object direction to 1 or -1.
This value tells the robot whether to turn clockwise or counterclockwise. Then, the state entry
action calls the rotate function in the Robot chart. This function changes the direction of motion for
the robot by an angle of direction*angle. The parameter angle is specified as pi/4 in the
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Mappings tab of the properties dialog box for the subchart. For more information, see “Map
Variables for Atomic Subcharts and Boxes” on page 19-11.

Create Multiple Exit Connections Out of Subchart

The linked atomic subchart Move contains two exit ports labeled Done and HIT. Inside the subchart,
each exit port has a matching exit junction. During simulation, the state actions in the substate
Forward call the move function in the Robot chart. This function changes the position of the robot
by a distance of step, which is specified as 0.1 in the Mappings tab of the properties dialog box for
the subchart. If the function obstacle indicates that the robot collided with an obstacle, the robot
returns to the last safe position and the chart transitions out of the subchart by using the exit port
HIT. Otherwise, the robot continues to move forward for a full second and the chart transitions out of
the subchart by using the exit port Done.

Similarly, the linked atomic subchart ContactDock contains two exit ports, CloserToDock and
FartherFromDock. Inside the subchart, each exit port has a matching exit junction. During
simulation, the state actions in the substate ContactDock call the distanceToDock function in the
Robot chart. This function determines the distance from the robot to the docking station. If this
distance decreased in the last time step, the chart transitions out of the subchart by using the exit
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port CloserToDock. Otherwise, the chart transitions out of the subchart by using the exit port
FartherFromDock.

Model Physical Environment and Obstacle Course

The Robot chart maintains the position and direction of the robot. The chart also exports several
functions to move and rotate the robot, determine the distance from the robot to the dock, and detect
obstacles. By calling these functions, the Route Control chart never interacts directly with position
and direction of the robot.

The mask parameters Starting Position (x,y) and Starting direction (o'clock) specify the values
of startPos and startDir. To modify these values, open the Block Parameters dialog box by
double-clicking the Robot chart. For more information, see “Create a Mask to Share Parameters with
Simulink” on page 28-13.
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The workspace variables dock, dockWidth, circles, and boxes specify the position and size of the
docking station and the obstacles around it.

• dock is a two-element vector that specifies the horizontal and vertical coordinates of the dock.
• dockWidth is a scalar that specifies the width of the dock.
• circles is an -by-3 matrix that specifies the horizontal coordinate, the vertical coordinate, and

the radius of each circular obstacle, where  is the number of circular obstacles.
• boxes is an -by-4 matrix that specifies the horizontal coordinate, the vertical coordinate, the

width, and the height of each rectangular obstacle, where  is the number of rectangular
obstacles.

The obstacle course can contain arbitrarily many obstacles, but it must contain at least one circular
and one rectangular obstacle. By default, the PreLoadFcn callback for the model in this example
defines an obstacle course with three circular obstacles and three rectangular obstacles.

Package Reusable Components in a Library

The Robot chart is a library chart that is linked from the Simulink library model
sfRobotExampleLib.slx. This library includes an all-in-one toolkit that defines this chart as well
as the linked atomic subcharts for programming your own robot simulation. For more information,
see “Custom Libraries” (Simulink).

Plot Robot Trajectory

The chart Plot Trajectory reads the workspace variables dock, dockWidth, circles, and
boxes, as well as the output signals x and y from the Robot chart and done from the Route
Control chart to produce a visual representation of the obstacle course and the path that the robot
takes as it searches for the dock.
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When you start the simulation, the chart calls the helper function sfRobotScene to create a
MATLAB® figure that shows the docking station in green and the obstacles in red. The code for this
function appears at the end of this example. Then, at each step of the simulation, the chart plots the
location of the robot by using a blue circle. When the input signal done indicates the end of the
simulation, the chart disables the hold state for the figure and sets the value of the output signal
stop to true, causing the Stop block to end the simulation.

To call sfRobotScene, plot, and hold as extrinsic functions, the chart uses the coder.extrinsic
(Simulink) function. For more information, see “Call Extrinsic MATLAB Functions in Stateflow
Charts” on page 31-30.
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Display Elements of Obstacle Course

The helper function sfRobotScene creates a MATLAB figure that shows the docking station in green
and the obstacles in red.

function sfRobotScene(dock,width,boxes,circles)

plot(nsidedpoly(8,Center=dock,Radius=2*width),FaceColor="green");
daspect([1 1 1])
hold on

for i = 1:height(circles)
    center = circles(i,1:2);
    radius = circles(i,3);
    plot(nsidedpoly(20,Center=center,Radius=radius),FaceColor="red");
end

for i = 1:height(boxes)
    box = boxes(i,:);
    X = [box(1) box(1)+box(3) box(1)+box(3) box(1)];
    Y = [box(2) box(2) box(2)-box(4) box(2)-box(4)];
    plot(polyshape(X,Y),FaceColor="red");
end

fig = gcf;
fig.Name = "Robot Obstacle Course";
fig.NumberTitle = 'off';
figure(fig)

end

See Also
plot | hold | coder.extrinsic

Related Examples
• “Create Entry and Exit Connections Across State Boundaries” on page 2-48
• “Map Variables for Atomic Subcharts and Boxes” on page 19-11
• “Create a Mask to Share Parameters with Simulink” on page 28-13
• “Call Extrinsic MATLAB Functions in Stateflow Charts” on page 31-30
• “Custom Libraries” (Simulink)
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Reuse a State Multiple Times in a Chart
This example shows how to use linked atomic subcharts to repeat the same configuration of states
and transitions multiple times in a Stateflow® chart. Atomic subcharts are not supported in
standalone Stateflow charts in MATLAB®. For more information, see “Create Reusable
Subcomponents by Using Atomic Subcharts” on page 19-2.

Original Model Without Atomic Subcharts

This model contains two Sine Wave (Simulink) blocks: one with a frequency of 1 radian per second,
and the other with a frequency of 2 radians per second.

In the chart, each state uses saturator logic to convert the input sine wave to an output square wave
of the same frequency. The states perform the same actions and differ only in the names of their input
and output data.

Simulating the model produces these results.
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Because this example does not use atomic subcharts, you have to maintain each subcomponent
manually. For example, if you change the logic in state A, then you must make the same change in
state B.

In contrast, if you replace the states in this example with atomic subcharts, you can reuse the same
object in your model and retain the same simulation results. You can save state A as an atomic
subchart in a library model and then use multiple linked instances of that subchart in your chart.
Changes in the library model propagate to all linked instances of the subchart.

Edit Model to Use Atomic Subcharts

Step 1: Convert a State to an Atomic Subchart

Right-click state A and select Group & Subchart > Atomic Subchart. State A changes to an atomic
subchart and displays the label Atomic in the upper-left corner.
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Step 2: Create a Library for the Atomic Subchart

1 Create a new library model.
2 Copy the atomic subchart and paste it in your library model.
3 Save your library model.

In the library model, the atomic subchart appears as an independent chart with an input port and an
output port.

Step 3: Replace States with Linked Atomic Subcharts

1 Delete both states in the chart.
2 Copy the atomic subchart in your library and paste it in your chart twice.
3 Change the name of the second atomic subchart to B.

Each linked atomic subchart appears opaque and contains the label Link in the upper-left corner.
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Step 4: Edit the Mapping of Input and Output Variables

If you simulate the model now, the output for y2 is zero. You also see warnings about unused data.
These warnings appear because atomic subchart B uses u1 and y1 instead of u2 and y2.

To fix these warnings, you must edit the mapping of input and output variables.

1 Right-click subchart B and select Subchart Mappings.
2 Under Input Mapping, specify the main chart symbol for u1 to be u2.
3 Under Output Mapping, specify the main chart symbol for y1 to be y2.
4 Click OK.
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Run the New Model

When you simulate the new model, the results match those of the original design.
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Propagate a Change in the Library Chart

Suppose that, in the library chart, you edit the transition from Pos to Neg.

This change propagates to all linked atomic subcharts in your main chart. You do not have to update
each state individually.

See Also
Sine Wave

More About
• “Create Reusable Subcomponents by Using Atomic Subcharts” on page 19-2
• “Map Variables for Atomic Subcharts and Boxes” on page 19-11
• “Model an Elevator System by Using Atomic Subcharts” on page 19-52
• “Model a Redundant Sensor Pair by Using Atomic Subcharts” on page 19-48
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Reduce the Compilation Time of a Chart
This example shows how to use atomic subcharts to reduce the compilation time when testing a
sequence of changes in a Stateflow® chart. Atomic subcharts are not supported in standalone
Stateflow charts in MATLAB®. For more information, see “Create Reusable Subcomponents by Using
Atomic Subcharts” on page 19-2.

Original Model Without Atomic Subcharts

This model contains two Sine Wave (Simulink) blocks: one with a frequency of 1 radian per second,
and the other with a frequency of 2 radians per second.

In the chart, each state uses saturator logic to convert the input sine wave to an output square wave
of the same frequency.

Because this example does not use atomic subcharts, every time that you make a change to the chart
and start simulation, recompilation occurs for the entire chart.

In contrast, you can convert state A to an atomic subchart. When you modify the atomic subchart,
recompilation occurs for only the subchart and not for the entire chart. As a result, incremental
builds for simulation require less time to recompile.
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Edit Model to Use Atomic Subcharts

Step 1: Convert a State to an Atomic Subchart

Right-click state A and select Group & Subchart > Atomic Subchart. State A changes to an atomic
subchart and displays the label Atomic in the upper-left corner.

Step 2: Start the Simulation

Before simulating, compilation occurs for the entire chart.
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Step 3: Modify the Atomic Subchart

1 Double-click the atomic subchart A. The contents of the subchart appear in the Stateflow Editor.
2 In the state Pos, change the entry action to y1 = 2;
3 In the state Neg, change the entry action to y1 = -2;

Step 4: Restart the Simulation

After the changes to A, recompilation occurs only for the atomic subchart and not the entire chart.

See Also
Sine Wave

More About
• “Create Reusable Subcomponents by Using Atomic Subcharts” on page 19-2
• “Reuse a State Multiple Times in a Chart” on page 19-31
• “Model an Elevator System by Using Atomic Subcharts” on page 19-52
• “Model a Redundant Sensor Pair by Using Atomic Subcharts” on page 19-48
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Divide a Chart into Separate Units
This example shows how to use linked atomic subcharts to break a Stateflow® chart into
subcomponents so that multiple people can work on different parts of the chart. Atomic subcharts are
not supported in standalone Stateflow charts in MATLAB®. For more information, see “Create
Reusable Subcomponents by Using Atomic Subcharts” on page 19-2.

Original Model Without Atomic Subcharts

This model contains two Sine Wave (Simulink) blocks: one with a frequency of 1 radian per second,
and the other with a frequency of 2 radians per second.

In the chart, each state uses saturator logic to convert the input sine wave to an output square wave
of the same frequency.

Because this example does not use atomic subcharts, only one person at a time can edit the model. If
you edit state A while someone else edits state B, you must merge those changes at submission time.

In contrast, you can store different parts of this example as linked atomic subcharts. Because atomic
subcharts behave as independent objects, different people can work on different parts of a chart
without affecting the other parts of the chart. At submission time, no merge is necessary because the
changes exist in separate models.
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Edit Model to Use Atomic Subcharts

Step 1: Convert a State to an Atomic Subchart

Right-click state A and select Group & Subchart > Atomic Subchart. State A changes to an atomic
subchart and displays the label Atomic in the upper-left corner.

Step 2: Create a Library for the Atomic Subchart

1 Create a new library model.
2 Copy the atomic subchart and paste it in your library model.
3 Save your library model.

In the library model, the atomic subchart appears as an independent chart with an input port and an
output port.

Step 3: Replace State with Linked Atomic Subchart

1 Delete state A in the chart.
2 Copy the atomic subchart in your library and paste it in your chart.

The linked atomic subchart appears opaque and contains the label Link in the upper-left corner.
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Propagate a Change in the Library Chart

Suppose that, in the library chart, you edit the transition from Pos to Neg.

This change propagates to the linked atomic subchart in the main chart. If someone else edits the
main chart, the changes are merged automatically.

See Also
Sine Wave

More About
• “Create Reusable Subcomponents by Using Atomic Subcharts” on page 19-2
• “Reuse a State Multiple Times in a Chart” on page 19-31
• “Model an Elevator System by Using Atomic Subcharts” on page 19-52
• “Model a Redundant Sensor Pair by Using Atomic Subcharts” on page 19-48
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Generate Separate Code for an Atomic Subchart
This example shows how to use atomic subcharts to generate code for individual parts of a
Stateflow® chart. When you generate code for your chart, a separate file stores the code for the
atomic subchart. Atomic subcharts are not supported in standalone Stateflow charts in MATLAB®.
For more information, see “Create Reusable Subcomponents by Using Atomic Subcharts” on page 19-
2.

Original Model Without Atomic Subcharts

This model contains two Sine Wave (Simulink) blocks: one with a frequency of 1 radian per second,
and the other with a frequency of 2 radians per second.

In the chart, each state uses saturator logic to convert the input sine wave to an output square wave
of the same frequency.

Because this example does not use atomic subcharts, generated code for the entire model is stored in
one file. To find code for a specific part of the chart, you have to look through the entire file.

In contrast, you can convert state A to an atomic subchart and specify that the code for the subchart
appears in a separate file. This method of code generation enables unit testing for a specific part of a
chart. You avoid searching through unrelated code and focus only on the code that interests you.
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Edit Model to Use Atomic Subcharts

Step 1: Convert a State to an Atomic Subchart

Right-click state A and select Group & Subchart > Atomic Subchart. State A changes to an atomic
subchart and displays the label Atomic in the upper-left corner.

Step 2: Set Up a Standalone C File for the Atomic Subchart

1 Open the properties dialog box for subchart A by right-clicking the subchart and selecting
Properties.

2 Set the Code generation function packaging property to Reusable function.
3 Set the Code generation file name options property to User specified.
4 In the Code generation file name box, enter saturator as the name of the file.
5 Click OK.

Step 3: Set Up the Code Generation Report

1 In the Modeling tab, click Chart Properties > Model Settings to open the Configuration
parameters dialog box.

2 In the Code Generation tab, set the System target file parameter to ert.tlc.
3 Under Code Generation > Report, select Create code generation report.
4 Under Advanced parameters, select Model-to-code.
5 Click Apply.

Step 4: Customize the Generated Function Names

In the Configuration Parameters dialog box, in the Code Generation > Identifiers tab, set the
Subsystem methods parameter to the format scheme $R$N$M$F, where:
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• $R is the root model name.
• $N is the block name.
• $M is the mangle token.
• $F is the type of interface function for the atomic subchart.

Generate Code

To generate code for your model by using Embedded Coder®, press Ctrl+B.

The code generation report contains links to the code generated from the chart (Model files) and the
atomic subchart (Subsystem files). To inspect the code for the subchart, click the saturator.c
hyperlink.
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Line 31 shows that the during function generated for the atomic subchart has the name
ex_reuse_states_A_during. This name follows the format scheme $R$N$M$F specified for
Subsystem methods:

• The root model name is ex_reuse_states.
• The block name is A.
• The mangle token is empty.
• The type of interface function for the atomic subchart is during.
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Note: The line numbers that appear in your code generation report can differ from the numbers
shown.

See Also
Sine Wave

More About
• “Create Reusable Subcomponents by Using Atomic Subcharts” on page 19-2
• “Reuse a State Multiple Times in a Chart” on page 19-31
• “Generate Code from Atomic Subcharts” on page 32-15
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Model a Redundant Sensor Pair by Using Atomic Subcharts
This model shows how to model a redundant pair of sensors. By using atomic subcharts, you can
compose a large Stateflow® chart from other charts that reside in a library file.

Main Chart

In this model, the chart RedundantSensors contains two linked atomic subcharts (Sensor1 and
Sensor2) and a state (Alarm).

At the start of the simulation, the subchart Sensor1 is active. This atomic subchart reads the input
u1. If the input value remains between 75 and -75, Sensor1 passes this value as the output of y.
Otherwise, the sensor fails and subchart Sensor2 becomes active.

In a similar way, Sensor2 reads the input u2 and checks that its value remains between 100 and
-100. Sensor2 passes this value as the output of y. Otherwise, the sensor fails and the chart
transitions to the Alarm state.

Library Chart

The logic for both Sensor1 and Sensor2 is defined in a library model. In this model, the chart
SingleSensor accepts an input u and provides a filtered sensor output y.
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The chart detects out-of-range errors in the sensor input u. Initially, the sensor is in the state OK. If u
goes out of range, the chart takes the transition from OK to the state FailOnce. If u stays out of
range for longer than one second, then the chart transitions to the state Fail. In this case, the
sensor outputs a constant value of zero. This pattern allows the sensor to ignore transient spikes in
the sensor reading.

Map Inputs, Outputs, and Parameters

The chart RedundantSensors has two inputs (u1 and u2), while the library chart that defines the
atomic subcharts has only one input (u). To enable the atomic subcharts to access a different chart
input, right-click each subchart and select Subchart Mappings. In the Mappings tab of the
properties dialog box, you can:

• Specify which symbol in the main chart corresponds to each symbol in the subchart.
• Assign values to parameters defined in the subchart.

For example, in the case of subchart Sensor1:

• The subchart input u is mapped to the main chart input u1.
• The subchart output u is mapped to the main chart output y.
• The subchart parameters HIGH and LOW are assigned the values 75 and -75.
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In the case of subchart Sensor2:

• The subchart input u is mapped to the main chart input u2.
• The subchart output u is mapped to the main chart output y.
• The subchart parameters HIGH and LOW are assigned the values 100 and -100.

Simulation Behavior

Initially, both inputs and both outputs to the chart are zero. To change the value of the chart inputs,
double-click the Gain blocks and drag the slider.
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As long as the value of u1 is between -75 and 75, the output value y tracks the input value u1. If the
value of u1 exceeds these bounds, the value of y begins to track the input value u2. If the value of u2
falls outside the range from -100 to 100, y returns a value of zero and Alarm returns a value of one.

See Also

More About
• “Create Reusable Subcomponents by Using Atomic Subcharts” on page 19-2
• “Map Variables for Atomic Subcharts and Boxes” on page 19-11
• “Reuse Logic Patterns by Defining Graphical Functions” on page 8-10
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Model an Elevator System by Using Atomic Subcharts
This example shows how to model a two-car elevator system by using linked atomic subcharts in
Stateflow®. The elevator system consists of a Simulink® model and a user interface (UI). The model
contains two Stateflow charts:

• Elevator System models the core logic that delegates incoming requests from the UI to the
nearest available elevator car. This chart contains a pair of atomic subcharts that implement
identical logic for the cars.

• UI Controller processes information from the Elevator System chart and updates the UI display. In
this chart, each atomic subchart determines when to move an elevator car and when to open its
doors.

At the start of simulation, the model opens the UI. The UI shows two elevator cars that can stop at
nine floors. At the bottom of the UI, two yellow rectangles represent the interior of the elevator cars.
While the example is running, you call an elevator car, request a stop at a floor, or set off a fire alarm
by clicking the buttons on each floor hallway and inside the elevator cars. The UI responds by
modifying the input values and triggering input events for the Elevator System chart.
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Manage Requests from User Interface

The Elevator System chart consists of three parallel subcharts. Each of these subcharts manages a
queue of requests from the UI:

• The Elevator_Manager subchart implements the main control logic for the elevator system. This
subchart manages the hall queue, which holds all the requests that are generated when you click
a button in one of the floor hallways. The subchart processes these requests and delegates them to
one of the elevator cars, depending on availability and proximity to the request.

• Elevator_A and Elevator_B represent the logic for the two elevator cars. Each car has its own
queue that holds all of its floor requests. Floor requests are generated when you click a button
inside the elevator car or when the Elevator_Manager delegates a request from the hall queue
to the car.
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Reuse Logic Patterns by Using Atomic Subcharts

The elevator cars use identical logic to process their individual request queues. The Elevator System
chart models their behavior by using linked atomic subcharts from a library model.
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In the library model, the chart Elevator implements the logic for a generic elevator car. To program
the subcharts Elevator_A and Elevator_B so that they control the appropriate car, you map data
and events in each subchart to the corresponding data and events in the main chart. For instance, for
Elevator_B:

• The subchart input floor_request maps to the chart input CarB_floor_request.
• The subchart output position maps to the chart output B_position.
• The subchart output doorOpen maps to the chart output doorBOpen.
• The subchart event CAR_CALL maps to the chart event CAR_CALL_B.

To see the mappings for each atomic subchart, right-click the subchart and select Subchart
Mappings.
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To control the UI display of each elevator car, the UI Controller chart uses two atomic subcharts
linked from a library model.
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For more information about using atomic subcharts to encapsulate and reuse logic, see “Create
Reusable Subcomponents by Using Atomic Subcharts” on page 19-2.

Incorporate Atomic Subcharts in Your Design

The model in this example is a redesigned version of an older model that does not use atomic
subcharts. The original model uses separate subcharts to manage floor requests (subcharts
Elevator_A and Elevator_B of the Elevator System chart) and to control the UI display of elevator
cars (subcharts CarA_Controller and CarB_Controller of the UI Controller chart). In each case,
the subcharts are nearly identical copies of one another. They differ only in the names of the data and
events that they use.

To convert the duplicate subcharts to atomic subcharts, first make a library atomic subchart out of
one of the subcharts. Then use linked instances of this library to replace the duplicate subcharts. For
example, consider the duplicate elevator car subcharts of the Elevator System chart. These subcharts
call several functions and local variables that are defined in the Elevator_Manager subchart.
Before creating an atomic subchart, you must make these subcharts independent and self-contained
units.

1. Migrate these functions from the Elevator_Manager subchart into the parent chart:

• exists_in_queue
• deregister
• dequeue

Rename these functions to distinguish them from the functions inside the elevator car subcharts.

2. Using the Model Explorer, migrate these variables from the Elevator_Manager subchart into the
parent chart:

• hall_call_queue
• hall_call_status

3. In the Elevator System chart, set the Export Chart Level Functions chart property to true. For
more information, see “Export Stateflow Functions for Reuse” on page 8-15.

4. Modify the Elevator_Manager and Elevator_A subcharts to use the migrated functions and
variables.

5. Create a library atomic subchart from the Elevator_A subchart, as described in “Reuse a State
Multiple Times in a Chart” on page 19-31.

 Model an Elevator System by Using Atomic Subcharts

19-57



6. To enable the atomic subchart to pass the position of the elevator car to the containing chart,
change the Scope of the subchart data position from Local to Output.

7. Replace the two elevator subcharts with the linked atomic subchart. For each linked atomic
subchart, map data and events to the parent chart. For more information, see “Map Variables for
Atomic Subcharts and Boxes” on page 19-11.

See Also

More About
• “Create Reusable Subcomponents by Using Atomic Subcharts” on page 19-2
• “Export Stateflow Functions for Reuse” on page 8-15
• “Reuse a State Multiple Times in a Chart” on page 19-31
• “Map Variables for Atomic Subcharts and Boxes” on page 19-11
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Save and Restore Simulations with
Operating Point

• “Using Operating Points in Stateflow” on page 20-2
• “Divide a Long Simulation into Segments” on page 20-4
• “Test a Unique Chart Configuration” on page 20-8
• “Test a Chart with Fault Detection and Redundant Logic” on page 20-15
• “Methods for Interacting with the Operating Point of a Chart” on page 20-27
• “Guidelines for Using the Operating Point of a Chart” on page 20-30
• “Best Practices for Saving the Operating Point of a Chart” on page 20-33
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Using Operating Points in Stateflow
An operating point is a snapshot of the complete state of a Simulink model at a specific time during
simulation. For a Stateflow chart, an operating point includes:

• Activity of chart states
• Values of chart local data
• Values of chart output data
• Values of persistent data in MATLAB functions and Truth Table blocks

An operating point lists Stateflow objects in hierarchical order:

• Graphical objects grouped by type (box, function, or state) and in alphabetical order within each
group

• Chart data grouped by scope (block output or local) and in alphabetical order within each group

For example, the following operating point illustrates the hierarchical structure of Stateflow objects.

c = 

  Block:    "shift_logic"    (handle)    (active)
  Path:     sf_car/shift_logic

  Contains:

    + gear_state         "State (AND)"          (active)
    + selection_state    "State (AND)"          (active)
      gear               "State output data"    gearType [1, 1]
      down_th            "Local scope data"     double [1, 1]
      up_th              "Local scope data"     double [1, 1]

The tree structure maps graphical and nongraphical objects to their respective locations in the chart
hierarchy. If name conflicts exist, one or more underscores appear at the end of a name so that all
objects have unique identifiers in the operating point hierarchy. Stateless flow charts have an empty
operating point, because they do not contain states or persistent data.

For information about using an operating point for other blocks in a Simulink model, see “Save and
Restore Simulation Operating Point” (Simulink).

Division of a Long Simulation into Segments
You can save the complete operating point of a model at any time during a long simulation. Then you
can load that operating point and run specific segments of that simulation without starting from time
t = 0, which saves time.

For directions, see “Divide a Long Simulation into Segments” on page 20-4.

Test of a Chart Response to Different Settings
You can modify and load the operating point of a chart to test the response of a chart to different
settings. You can change the value of chart local or output data midway through a simulation or
change state activity and then test how a chart responds.
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Loading and modifying the operating point provides these benefits:

• Enables testing of a hard-to-reach chart configuration by loading a specific operating point
• Enables testing of the same chart configuration with different settings

For directions, see:

• “Test a Unique Chart Configuration” on page 20-8
• “Test a Chart with Fault Detection and Redundant Logic” on page 20-15

See Also

More About
• “Divide a Long Simulation into Segments” on page 20-4
• “Methods for Interacting with the Operating Point of a Chart” on page 20-27
• “Best Practices for Saving the Operating Point of a Chart” on page 20-33
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Divide a Long Simulation into Segments
This example shows how to use operating points with Stateflow charts. An operating point is a
snapshot of the state of a Simulink® model at a specific time during simulation. For a Stateflow®
chart, an operating point includes:

• Activity of chart states
• Values of chart local data
• Values of chart output data
• Values of persistent data in MATLAB® functions and Truth Table blocks

For more information, see “Using Operating Points in Stateflow” on page 20-2.

Goal of the Tutorial

Suppose that you want to simulate this model without starting from time t = 0.

This model simulates for 1400 seconds, but the output that interests you occurs sometime between t
= 400 and 600. You can simulate the model, save the operating point at time t = 400, and then load
that operating point for simulation between t = 400 and 600.

Step 1: Define the Operating Point

1. Open the sf_boiler model.

2. Enable saving of an operating point.

   a. Open the Model Configuration Parameters dialog box and go to the Data Import/Export pane.

   b. Select the Final states check box.

   c. Enter a name, such as sf_boiler_ctx01.

   d. Select the Save final operating point check box.

   e. Click Apply.

To complete this step programmatically, enter:
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set_param('sf_boiler', ...
    'SaveFinalState','on', ...
    'FinalStateName','sf_boiler_ctx01', ...
    'SaveOperatingPoint','on');

For details about setting model parameters, see set_param (Simulink).

3. Define the start and stop times for this simulation segment.

   a. In the Model Configuration Parameters dialog box, go to the Solver pane.

   b. For Start time, enter 0.

   c. For Stop time, enter 400.

   c. Click OK.

To complete this step programmatically, enter:

set_param('sf_boiler', ...
    'StartTime','0', ...
    'StopTime','400');

4. Start simulation. When you simulate the model, you save the complete operating point at t = 400 in
the variable sf_boiler_ctx01 in the MATLAB base workspace.
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5. Disable saving of an operating point. This step prevents you from overwriting the operating point
you saved in the previous step.

   a. Open the Model Configuration Parameters dialog box and go to the Data Import/Export pane.

   b. Clear the Save final operating point check box.

   c. Clear the Final states check box.

   d. Click OK.

To complete this step programmatically, enter:

set_param('sf_boiler', ...
    'SaveOperatingPoint','off', ...
    'SaveFinalState','off');

Step 2: Load the Operating Point

1. Enable loading of an operating point.

   a. Open the Model Configuration Parameters dialog box and go to the Data Import/Export pane.

   b. Select the Initial state check box.

   c. Enter the variable that contains the operating point of your chart, sf_boiler_ctx01.

   d. Click Apply.

To complete this step programmatically, enter:

set_param('sf_boiler', ...
    'LoadInitialState','on', ...
    'InitialState','sf_boiler_ctx01');

2. Define the new stop time for this simulation segment. You do not need to enter a new start time
because the simulation continues from where it left off.

   a. In the Model Configuration Parameters dialog box, go to the Solver pane.

   b. For Stop time, enter 600.

   c. Click OK.

To complete this step programmatically, enter:

set_param('sf_boiler','StopTime','600');

Step 3: Simulate the Specific Segment

When you simulate the model, the following output appears in the Scope (Simulink) block.
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See Also
set_param | Scope

More About
• “Using Operating Points in Stateflow” on page 20-2
• “Methods for Interacting with the Operating Point of a Chart” on page 20-27
• “Best Practices for Saving the Operating Point of a Chart” on page 20-33
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Test a Unique Chart Configuration
An operating point is a snapshot of the state of a Simulink model at a specific time during simulation.
For a Stateflow chart, an operating point includes:

• Activity of chart states
• Values of chart local data
• Values of chart output data
• Values of persistent data in MATLAB functions and Truth Table blocks

For more information, see “Using Operating Points in Stateflow” on page 20-2.

Goal of the Tutorial
Suppose that you want to test the response of the old_sf_car model to a sudden change in value for
gear.

This model simulates for 30 seconds, but you want to see what happens when the value of gear
changes at t = 10. You can simulate the model, save the operating point at t = 10, load and modify
the operating point, and then simulate again between t = 10 and 20.

Step Task Reference
1 Define the operating point for your chart. “Define the Operating Point” on page 20-9
2 Load the operating point and modify values. “Load the Operating Point and Modify

Values” on page 20-10
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Step Task Reference
3 Test the modified operating point by running

the model.
“Test the Modified Operating Point” on page
20-13

Define the Operating Point
1 Open the model old_sf_car.
2 Enable saving of an operating point.

a Open the Model Configuration Parameters dialog box and go to the Data Import/Export
pane.

b Select the Final states check box.
c Enter a name, such as old_sf_car_ctx01.
d Select the Save final operating point check box.
e Click Apply.

Programmatic equivalent

You can programmatically enable saving of an operating point:

set_param('old_sf_car','SaveFinalState','on', ...
'FinalStateName', 'old_sf_car_ctx01', ...
'SaveOperatingPoint','on');

For details about setting model parameters, see set_param.
3 Define the start and stop times for this simulation segment.

a In the Model Configuration Parameters dialog box, go to the Solver pane.
b For Start time, enter 0.
c For Stop time, enter 10.
d Click OK.

Programmatic equivalent

You can programmatically set the start and stop times:

set_param('old_sf_car','StartTime','0', ...
'StopTime','10');

4 Start simulation.

When you simulate the model, you save the complete operating point at t = 10 in the variable
old_sf_car_ctx01 in the MATLAB base workspace.

At t = 10, the engine is operating at a steady-state value of 2500 RPM.
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5 Disable saving of an operating point.

This step prevents you from overwriting the operating point you saved in the previous step.

a Open the Model Configuration Parameters dialog box and go to the Data Import/Export
pane.

b Clear the Save final operating point check box.
c Clear the Final states check box.
d Click OK.

Programmatic equivalent

You can programmatically disable saving of an operating point:

set_param('old_sf_car','SaveOperatingPoint','off', ...
'SaveFinalState','off');

Load the Operating Point and Modify Values
1 Enable loading of an operating point.

a Open the Model Configuration Parameters dialog box and go to the Data Import/Export
pane.

b Select the Initial state check box.
c Enter the variable that contains the operating point of your chart: old_sf_car_ctx01.
d Click OK.
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Programmatic equivalent

You can programmatically enable loading of an operating point:

set_param('old_sf_car','LoadInitialState','on', ...
'InitialState', 'old_sf_car_ctx01');

2 Define an object handle for the operating point values of the shift_logic chart.

At the command prompt, type:

blockpath = 'old_sf_car/shift_logic';
c = old_sf_car_ctx01.get(modelOperatingPoint, 'blockpath');

Tip If the chart appears highlighted in the model window, you can specify the block path using
gcb:

c = old_sf_car_ctx01.get(gcb);

Copy and reference operating points with the get method

The get method:

• Makes a copy of the operating point of your chart, which is stored in the final state data of the
model.

• Provides a root-level handle or reference to the copy of the operating point, which is a
hierarchical tree of graphical and nongraphical chart objects.

Each node in this tree is also a handle to a state, data, or other chart object.

Note Because the entire tree consists of object handles, the following assignment statements do
not work:

• stateCopy = c.state
• dataCopy = c.data
• operatingPointCopy = c

These assignments create copies of the object handles, not operating point values. The only way
to copy operating point values is to use the clone method. For details, see “Methods for
Interacting with the Operating Point of a Chart” on page 20-27 and “Guidelines for Using the
Operating Point of a Chart” on page 20-30.

3 Look at the contents of the operating point.

c = 

  Block:    "shift_logic"    (handle)    (active)
  Path:     old_sf_car/shift_logic

  Contains:

    + gear_state         "State (AND)"          (active)
    + selection_state    "State (AND)"          (active)
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      gear               "Block output data"    double [1, 1]
      

The operating point of your chart contains a list of states and data in hierarchical order.
4 Highlight the states that are active in your chart at t = 10.

At the command prompt, type:

c.highlightActiveStates;

In the chart, all active states appear highlighted.

Tip To check if a single state is active, you can use the isActive method. For example, type:

c.gear_state.fourth.isActive

This command returns true (1) when a state is active and false (0) otherwise. For information on
other methods, see “Methods for Interacting with the Operating Point of a Chart” on page 20-
27.

5 Change the active substate of selection_state to downshifting.

Use this command:

c.selection_state.downshifting.setActive;

The newly active substate appears highlighted in the chart.
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6 Change the value of output data gear.

When you type c.gear at the command prompt, you see a list of data properties similar to this:

>> c.gear

ans = 

      Description: 'Block output data'
         DataType: 'double'
             Size: '[1, 1]'
            Range: [1x1 struct]
     InitialValue: [1x0 double]
            Value: 4
 

You can change the value of gear from 4 to 1 by typing

c.gear.Value = 1;

However, you cannot change the data type or size of gear. Also, you cannot specify a new value
that falls outside the range set by the Minimum and Maximum parameters. For details, see
“Rules for Modifying Data Values” on page 20-30 .

7 Save the modified operating point.

Use this command:

old_sf_car_ctx01 = old_sf_car_ctx01.set(blockpath, c);

Test the Modified Operating Point
1 Define the new stop time for the simulation segment to test.
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a In the Model Configuration Parameters dialog box, go to the Solver pane.
b For Stop time, enter 20.
c Click OK.

You do not need to enter a new start time because the simulation continues from where it left off.

Programmatic equivalent

You can programmatically set the stop time:

set_param('old_sf_car','StopTime','20');
2 Start simulation.

The engine reacts as follows:

See Also

More About
• “Using Operating Points in Stateflow” on page 20-2
• “Methods for Interacting with the Operating Point of a Chart” on page 20-27
• “Best Practices for Saving the Operating Point of a Chart” on page 20-33
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Test a Chart with Fault Detection and Redundant Logic
An operating point is a snapshot of the state of a Simulink model at a specific time during simulation.
For a Stateflow chart, an operating point includes:

• Activity of chart states
• Values of chart local data
• Values of chart output data
• Values of persistent data in MATLAB functions and Truth Table blocks

For more information, see “Using Operating Points in Stateflow” on page 20-2.

Goal of the Tutorial
Suppose that you want to test the response of the sf_aircraft model to one or more actuator
failures in an elevator system. For details of how this model works, see “Detect Faults in Aircraft
Elevator Control System” on page 30-19.

The Mode Logic chart monitors the status of actuators for two elevators. Each elevator has an outer
(primary) actuator and an inner (secondary) actuator. In normal operation, the outer actuators are
active and the inner actuators are on standby.
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When the four actuators are working correctly, the left and right elevators reach steady-state
positions in 3 seconds.
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Suppose that you want to see what happens at t = 3 when at least one actuator fails. You can simulate
the model, save the operating point at t = 3, load and modify the operating point, and then simulate
again between t = 3 and 10.

Step Task Reference
1 Define the operating point for your chart. “Define the Operating Point” on page 20-18
2 Load the operating point and modify values

for one actuator failure.
“Modify Operating Point Values for One
Actuator Failure” on page 20-19

3 Test the modified operating point by running
the model.

“Test the Operating Point for One Failure” on
page 20-22

4 Modify operating point values for two
actuator failures.

“Modify Operating Point Values for Two
Actuator Failures” on page 20-24

5 Test the modified operating point by running
the model again.

“Test the Operating Point for Two Failures”
on page 20-25
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Define the Operating Point
1 Open the sf_aircraft model.
2 Enable saving of an operating point.

a Open the Model Configuration Parameters dialog box and go to the Data Import/Export
pane.

b Select the Final states check box.
c Enter a name, such as xFinal.
d Select the Save final operating point check box.
e Click Apply.

Programmatic equivalent

You can programmatically enable saving of an operating point:

set_param('sf_aircraft','SaveFinalState','on', ...
'FinalStateName', ['xFinal'], ...
'SaveOperatingPoint','on');

For details about setting model parameters, see set_param.
3 Define the stop time for this simulation segment.

a In the Model Configuration Parameters dialog box, go to the Solver pane.
b For Stop time, enter 3.
c Click OK.

Programmatic equivalent

You can programmatically set the stop time:

set_param('sf_aircraft','StopTime','3');
4 Start simulation.

When you simulate the model, you save the complete operating point at t = 3 in the variable
xFinal in the MATLAB base workspace.

5 Disable saving of an operating point.

This step prevents you from overwriting the operating point you saved in the previous step.

a Open the Model Configuration Parameters dialog box and go to the Data Import/Export
pane.

b Clear the Save final operating point check box.
c Clear the Final states check box.
d Click OK.

Programmatic equivalent

You can programmatically disable saving of an operating point:

set_param('sf_aircraft','SaveOperatingPoint','off', ...
'SaveFinalState','off');
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Modify Operating Point Values for One Actuator Failure
1 Enable loading of an operating point.

a Open the Model Configuration Parameters dialog box and go to the Data Import/Export
pane.

b Select the Initial state check box.
c Enter the variable that contains the operating point of your chart: xFinal.
d Click OK.

Programmatic equivalent

You can programmatically enable loading of an operating point:

set_param('sf_aircraft','LoadInitialState','on', ...
'InitialState', ['xFinal']);

2 Define an object handle for the operating point values of the Mode Logic chart.

At the command prompt, type:

blockpath = 'sf_aircraft/Mode Logic';
c = xFinal.get(blockpath);

Tip If the chart appears highlighted in the model window, you can specify the block path using
gcb:

c = xFinal.get(gcb);

Use the get method for Operating Points

The get method:

• Makes a copy of the operating point of your chart, which is stored in the final state data of the
model.

• Provides a root-level handle or reference to the copy of the operating point, which is a
hierarchical tree of graphical and nongraphical chart objects.

Each node in this tree is also a handle to a state, data, or other chart object.

Note Because the entire tree consists of object handles, the following assignment statements do
not work:

• stateCopy = c.state
• dataCopy = c.data
• operatingPointCopy = c

These assignments create copies of the object handles, not operating point values. The only way
to copy operating point values is to use the clone method. For details, see “Methods for
Interacting with the Operating Point of a Chart” on page 20-27 and “Guidelines for Using the
Operating Point of a Chart” on page 20-30.
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3 Look at the contents of the operating point.

c = 

  Block:    "Mode Logic"    (handle)    (active)
  Path:     sf_aircraft/Mode Logic

  Contains:

    + Actuators          "State (OR)"          (active)
    + LI_act             "Function"
    + LO_act             "Function"
    + L_switch           "Function"
    + RI_act             "Function"
    + RO_act             "Function"
    + R_switch           "Function"
    + LI_mode            "State output data"        sf_aircraft_ModeType [1,1]
    + LO_mode            "State output data"        sf_aircraft_ModeType [1,1]
    + RI_mode            "State output data"        sf_aircraft_ModeType [1,1]
    + RO_mode            "State output data"        sf_aircraft_ModeType [1,1]

The operating point of your chart contains a list of states, functions, and data in hierarchical
order.

4 Highlight the states that are active in your chart at t = 3.

At the command prompt, type:

c.highlightActiveStates;

Active states appear highlighted. By default, the two outer actuators are active and the two inner
actuators are on standby.
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Tip To check if a single state is active, you can use the isActive method. For example, type:

c.Actuators.LI.L1.Standby.isActive

This command returns true (1) when a state is active and false (0) otherwise. For information on
other methods, see “Methods for Interacting with the Operating Point of a Chart” on page 20-
27.

5 Change the state activity in the chart to reflect one actuator failure.

Assume that the left outer (LO) actuator fails. To change the state, use this command:

c.Actuators.LO.Isolated.setActive;

The newly active substate appears highlighted in the chart.
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The setActive method ensures that the chart exits and enters the appropriate states to
maintain state consistency. However, the method does not perform entry actions for the newly
active substate. Similarly, the method does not perform exit actions for the previously active
substate.

6 Save the modified operating point by using this command:

xFinal = xFinal.set(blockpath, c);

Test the Operating Point for One Failure
1 Define the new stop time for the simulation segment to test.

a Go to the Solver pane of the Model Configuration Parameters dialog box.
b For Stop time, enter 10.
c Click OK.
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You do not need to enter a new start time because the simulation continues from where it left off.

Programmatic equivalent

You can programmatically set the stop time:

set_param('sf_aircraft','StopTime','10');
2 Start simulation.

Chart animation shows that the other three actuators react appropriately to the failure of the left
outer (LO) actuator.
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This actuator... Switches from... Because...
Left inner (LI) Standby to active The left elevator must compensate

for the left outer (LO) actuator
failure.

Right inner (RI) Standby to active The same hydraulic line connects
to both inner actuators.

Right outer (RO) Active to standby Only one actuator per elevator can
be active.

Both elevators continue to maintain steady-state positions.

Modify Operating Point Values for Two Actuator Failures
1 Change the state activity in the chart to reflect two actuator failures.

Assume that the left inner (LI) actuator also fails. To change the state, use this command:

c.Actuators.LI.Isolated.setActive;
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2 Save the modified operating point by using this command:

xFinal = xFinal.set(blockpath, c);

Test the Operating Point for Two Failures
1 In the Model Configuration Parameters dialog box, verify that the stop time is 10.
2 Restart simulation.

Because of failures in both actuators, the left elevator stops working. The right elevator
maintains a steady-state position.

If you modify the operating point of your chart to test the response of the right elevator to actuator
failures, you get similar results.
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See Also

More About
• “Using Operating Points in Stateflow” on page 20-2
• “Methods for Interacting with the Operating Point of a Chart” on page 20-27
• “Best Practices for Saving the Operating Point of a Chart” on page 20-33
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Methods for Interacting with the Operating Point of a Chart
An operating point is a snapshot of the state of a Simulink model at a specific time during simulation.
For a Stateflow chart, an operating point includes:

• Activity of chart states
• Values of chart local data
• Values of chart output data
• Values of persistent data in MATLAB functions and Truth Table blocks

For more information, see “Using Operating Points in Stateflow” on page 20-2.

You can use the following methods to interact with the operating point of a chart. Assume that ch is a
handle to the operating point of your chart, which you obtain using the get method.

Type of
Object

Method Description Example

All chart
objects

open For graphical
objects, highlights
the object in the
Stateflow Editor.

For nongraphical
objects, highlights
the object in the
Model Explorer.

Note For persistent
data in MATLAB
functions, this
method opens the
function editor and
highlights the
persistent data at
the exact line in the
script.

ch.data.open
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Type of
Object

Method Description Example

Chart checkStateConsistency Verifies that all
states in a chart are
consistent.

• If a state is
inactive, no
substates are
active.

• If a state with
parallel
decomposition is
active, all
substates are
active.

• If a state with
exclusive
decomposition is
active, only one
substate is
active.

ch.checkStateConsistency

Chart clone Copies the entire
chart operating
point to a new
variable.

newOperatingPoint = ch.clone

Chart highlightActiveStates Highlights all active
states in the
Stateflow Editor.

ch.highlightActiveStates

Chart isStateConsistent Returns true (1) if
all states pass a
consistency check
and false (0)
otherwise.

ch.isStateConsistent

Chart removeHighlighting Removes all
highlighting in the
Stateflow Editor.

ch.removeHighlighting

State isActive Returns true (1) if a
state is active and
false (0) otherwise.

ch.state.isActive

State

Must be an
exclusive
leaf state

setActive Sets a state to be
active.

This method
ensures that no
other exclusive
states at that level
are active.

ch.state.substate.setActive
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Type of
Object

Method Description Example

State

Must have
a history
junction
and
exclusive
substates

getPrevActiveChild Returns the
previously active
substate.

ch.state.getPrevActiveChild

State

Must be
inactive;
must have
a history
junction
and
exclusive
substates

setPrevActiveChild Sets the previously
active substate.

ch.state.setPrevActiveChild('B')

Note The argument must be the name of a
substate (in quotes), or the full operating
point path to a substate (without quotes).

See Also

More About
• “Using Operating Points in Stateflow” on page 20-2
• “Divide a Long Simulation into Segments” on page 20-4
• “Best Practices for Saving the Operating Point of a Chart” on page 20-33

 Methods for Interacting with the Operating Point of a Chart

20-29



Guidelines for Using the Operating Point of a Chart
An operating point is a snapshot of the state of a Simulink model at a specific time during simulation.
For a Stateflow chart, an operating point includes:

• Activity of chart states
• Values of chart local data
• Values of chart output data
• Values of persistent data in MATLAB functions and Truth Table blocks

For more information, see “Using Operating Points in Stateflow” on page 20-2.

Limitations on Values You Can Modify
An operating point does not include information about these elements:

• Machine-parented data
• Persistent data in custom C code
• Persistent data in external MATLAB code

Therefore, you cannot modify the values of those elements.

Rules for Modifying Data Values
These rules apply when you modify data values:

• You cannot change the data type or size. Scalar data must remain scalar. Vector and matrix data
must keep the same dimensions. The only exception to this rule is Stateflow data of ml type (see
“ml Data Type” on page 16-22 for details).

• For enumerated data types, you can choose only enumerated values from the type definition. For
other data types, new values must fall within the range that you specify in the Minimum and
Maximum parameters.

• Use one-based indexing to define rows and columns of a matrix.

Suppose that you want to change the value of an element in a 21-by-12 matrix. To modify the
element in the first row and second column, type:

c.state_name.data_name.Value(1,2) = newValue;

Rules for Modifying State Activity
These rules apply when you use the setActive method on an exclusive (OR) leaf state:

• State-parented local data does not reinitialize.
• The newly active state does not execute any entry actions. Similarly, the previously active state

does not execute any exit actions.

If you want these state actions to occur, you must execute them separately. For example, if your
state actions assign values to data, you must assign the values explicitly.
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• The setActive method tries to maintain state consistency by:

• Updating state activity for parent, grandparent, and sibling states
• Resetting temporal counters for newly active states
• Updating values of state output data (read-only)
• Enabling or disabling function-call subsystems and Simulink functions that bind to states

• The highlightActiveStates method also executes when these conditions are true:

• The model is open.
• The chart is visible.
• The highlightActiveStates method has executed at least once, but not the

removeHighlighting method.

Restriction on Continuous-Time Charts
After you load an operating point for a continuous-time chart, you can restart simulation from a
nonzero time. However, you cannot modify the state activity or any data values, because the
operating point for a continuous-time chart is read-only. For more information, see “Continuous-Time
Modeling in Stateflow” on page 25-2.

Restriction on Charts That Use Edge Detection
Stateflow charts that use edge detection operators do not support operating points. For more
information, see “Detect Changes in Data and Expression Values” on page 16-62.

No Partial Loading of an Operating Point
When you load an operating point, the complete operating point is available as a variable in the
MATLAB base workspace. You cannot perform partial loading of an operating point for a subset of
chart objects.

Restriction on Copying Operating Point Values
Use the clone method to copy an entire operating point to a new variable (see “Methods for
Interacting with the Operating Point of a Chart” on page 20-27). You cannot copy a subset of
operating point values, because the clone method works only at the chart level.

Suppose that you obtain a handle to the operating point of your chart using these commands:

blockpath = 'model/chart';
c = xFinal.get(modelOperatingPoint, blockpath);

Assignment statements such as stateCopy = c.state, dataCopy = c.data, and
operatingPointCopy = c do not work. These assignments create copies of object handles, not
operating point values.
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See Also

More About
• “Using Operating Points in Stateflow” on page 20-2
• “Divide a Long Simulation into Segments” on page 20-4
• “Best Practices for Saving the Operating Point of a Chart” on page 20-33
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Best Practices for Saving the Operating Point of a Chart
An operating point is a snapshot of the state of a Simulink model at a specific time during simulation.
For a Stateflow chart, an operating point includes:

• Activity of chart states
• Values of chart local data
• Values of chart output data
• Values of persistent data in MATLAB functions and Truth Table blocks

For more information, see “Using Operating Points in Stateflow” on page 20-2.

Use MAT-Files to Save a Operating Point for Future Use
To save an operating point from the MATLAB base workspace, save the variable with final state data
in a MAT-file.

For example, type at the command prompt:

save('sf_car_ctx01.mat', 'sf_car_ctx01')

For more information, see save in the MATLAB documentation.

Use Scripts to Save Operating Point Commands for Future Use
To save a list of operating point commands for future use, copy them from a procedure and paste
them in a MATLAB script.

For example, to reuse the commands in “Divide a Long Simulation into Segments” on page 20-4, you
can store them in a script named sf_boiler_operatingpoint_commands.m:

% Open the model.
sf_boiler;

% Set parameters to save the operating point at the desired time.
set_param('sf_boiler','SaveFinalState','on','FinalStateName',...
'sf_boiler_ctx01','SaveOperatingPoint','on');

% Specify the start and stop times for the simulation segment.
set_param('sf_boiler','StartTime','0','StopTime','400');

% Simulate the model.
sim('sf_boiler');

% Disable saving of the operating point to avoid overwriting.
set_param('sf_boiler','SaveOperatingPoint','off', ...
'SaveFinalState','off');

% Load the operating point.
set_param('sf_boiler', 'LoadInitialState', 'on', ...
'InitialState', 'sf_boiler_ctx01');

% Specify the new stop time for the simulation segment.
set_param('sf_boiler','StopTime','600');
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% Simulate the model.
sim('sf_boiler');

The start time does not change, but the operating point restore fast forwards the simulation to the
time of the snapshot.

See Also

More About
• “Using Operating Points in Stateflow” on page 20-2
• “Divide a Long Simulation into Segments” on page 20-4
• “Guidelines for Using the Operating Point of a Chart” on page 20-30

20 Save and Restore Simulations with Operating Point

20-34



Vectors and Matrices in Stateflow
Charts

• “Vectors and Matrices in Stateflow Charts” on page 21-2
• “Supported Operations for Vectors and Matrices” on page 21-4
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Vectors and Matrices in Stateflow Charts
Vectors and matrices combine scalar data into a single, multidimensional data object. You can modify
individual elements or perform arithmetic on entire vectors and matrices. For more information, see
“Supported Operations for Vectors and Matrices” on page 21-4.

Define Vector and Matrix Data
1 Add a data object to your chart, as described in “Add Stateflow Data” on page 12-2.
2 Set the Size property for the data object as the dimensions of the vector or matrix. See “Specify

Size of Stateflow Data” on page 12-33. For example:

• To specify a 4-by-1 column vector, enter 4.
• To specify a 1-by-4 row vector, enter [1 4].
• To specify a 3-by-3 matrix, enter [3 3].

3 Set the Initial value property for the data object. See “Initial Value” on page 12-8.

• To specify a value of zero for all elements of the vector or matrix, leave the Initial value
empty. If you do not specify an initial value, all elements are initialized to 0.

• To specify the same value for all elements of the vector or matrix, enter a scalar value. All
elements are initialized to the scalar value you specify.

• To specify a different value for each element of the vector or matrix, enter an array of real
values. For example:

• To initialize a 4-by-1 column vector, you can enter [1; 2; 3; 4].
• To initialize a 1-by-4 row vector, you can enter [1 2 3 4].
• To initialize a 3-by-3 matrix, you can enter [1 2 3; 4 5 6; 7 8 9].

4 Set the name, scope, base type, and other properties for the data object, as described in “Set
Data Properties” on page 12-5.

You can specify the size and initial value of a vector or matrix by using an expression. Expressions
can contain a mix of numeric values, constants, parameters, variables, arithmetic operations, and
calls to MATLAB functions. For more information, see “Specify Data Properties by Using MATLAB
Expressions” on page 12-18.

Where You Can Use Vectors and Matrices
You can define vectors and matrices at these levels of the Stateflow hierarchy:

• Charts
• Subcharts
• States
• Functions

You can use vectors and matrices to define:

• Input data
• Output data
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• Local data
• Function inputs
• Function outputs

You can also use vectors and matrices as arguments for:

• State actions
• Transition actions
• MATLAB functions
• Truth table functions
• Graphical functions
• Simulink functions
• Change detection operators

Rules for Vectors and Matrices in Stateflow Charts
Use Operands of Equal Dimensions for Element-Wise Operations

If you perform element-wise operations on vectors or matrices with unequal dimensions, the chart
generates a size mismatch error when you simulate the model. For more information, see “Supported
Operations for Vectors and Matrices” on page 21-4.

Do Not Define Vectors and Matrices with the ml Base Type

The ml base type supports only scalar data. If you define a vector or matrix with the ml base type, the
chart generates an error when you simulate the model. For more information, see “ml Data Type” on
page 16-22.

Do Not Use Complex Numbers to Set the Initial Values of Vectors and Matrices

If you initialize an element of a vector or matrix by using a complex number, the chart generates an
error when you simulate the model. You can set the values of vectors and matrices to complex
numbers after initialization. For more information, see “Complex Data in Stateflow Charts” on page
27-2.

Do Not Use Vectors and Matrices in Temporal Logic Operators

Because time is a scalar quantity, you cannot use a vector or matrix as an argument for a temporal
logic operator. For more information, see “Control Chart Execution by Using Temporal Logic” on page
16-34.

See Also

More About
• “Supported Operations for Vectors and Matrices” on page 21-4
• “Specify Size of Stateflow Data” on page 12-33
• “Reuse MATLAB Code by Defining MATLAB Functions” on page 9-2
• “Declare Variable-Size Data in Stateflow Charts” on page 22-2
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Supported Operations for Vectors and Matrices
Stateflow charts in Simulink models have an action language property that defines the syntax that
you use to compute with vectors and matrices. The action language properties are:

•
 MATLAB as the action language.

•
 C as the action language.

For more information, see “Differences Between MATLAB and C as Action Language Syntax” on page
17-5.

Indexing Notation
In charts that use MATLAB as the action language, refer to elements of a vector or matrix by using
one-based indexing delimited by parentheses. Separate indices for different dimensions with commas.

In charts that use C as the action language, refer to elements of a vector or matrix by using zero-
based indexing delimited by brackets. Enclose indices for different dimensions in their own pair of
brackets.

Example MATLAB as the Action
Language

C as the Action Language

The first element of a vector V V(1) V[0]
The ith element of a vector V V(i) V[i-1]
The element in row 4 and
column 5 of a matrix M

M(4,5) M[3][4]

The element in row i and
column j of a matrix M

M(i,j) M[i-1][j-1]

Binary Operations
This table summarizes the interpretation of all binary operations on vector and matrix operands
according to their order of precedence (1 = highest, 3 = lowest). Binary operations are left
associative so that, in any expression, operators with the same precedence are evaluated from left to
right. Except for the matrix multiplication and division operators in charts that use MATLAB as the
action language, all binary operators perform element-wise operations.

Operation Precedenc
e

MATLAB as the Action Language C as the Action Language

a * b 1 Matrix multiplication. Element-wise multiplication. For
matrix multiplication, use the *
operation in a MATLAB function. See
“Perform Matrix Arithmetic by Using
MATLAB Functions” on page 21-7.

a .* b 1 Element-wise multiplication. Not supported. Use the operation a
* b.
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Operation Precedenc
e

MATLAB as the Action Language C as the Action Language

a / b 1 Matrix right division. Element-wise right division. For
matrix right division, use the /
operation in a MATLAB function. See
“Perform Matrix Arithmetic by Using
MATLAB Functions” on page 21-7.

a ./ b 1 Element-wise right division. Not supported. Use the operation
a / b.

a \ b 1 Matrix left division. Not supported. Use the \ operation
in a MATLAB function. See “Perform
Matrix Arithmetic by Using MATLAB
Functions” on page 21-7.

a .\ b 1 Element-wise left division. Not supported. Use the .\ operation
in a MATLAB function. See “Perform
Matrix Arithmetic by Using MATLAB
Functions” on page 21-7.

a + b 2 Addition. Addition.
a - b 2 Subtraction. Subtraction.
a == b 3 Comparison, equal to. Comparison, equal to.
a ~= b 3 Comparison, not equal to. Comparison, not equal to.
a != b 3 Not supported. Use the operation a

~= b.
Comparison, not equal to.

a <> b 3 Not supported. Use the operation a
~= b.

Comparison, not equal to.

Unary Operations and Actions
This table summarizes the interpretation of all unary operations and actions on vector and matrix
operands. Unary operations:

• Have higher precedence than the binary operators.
• Are right associative so that, in any expression, they are evaluated from right to left.
• Perform element-wise operations.

Example MATLAB as the Action Language C as the Action Language
~a Logical NOT. For bitwise NOT, use the

bitcmp function.
• Bitwise NOT (default). Enable this

operation by selecting the Enable C-
bit operations chart property.

• Logical NOT. Enable this operation by
clearing the Enable C-bit operations
chart property.

For more information, see “Bitwise
Operations” on page 16-8 and “Enable C-
bit operations” on page 28-5.
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Example MATLAB as the Action Language C as the Action Language
!a Not supported. Use the operation ~a. Logical NOT.
-a Negative. Negative.
a++ Not supported. Increment all elements of the vector or

matrix. Equivalent to a = a+1.
a-- Not supported. Decrement all elements of the vector or

matrix. Equivalent to a = a-1.

Assignment Operations
This table summarizes the interpretation of assignment operations on vector and matrix operands.

Operation MATLAB as the Action Language C as the Action Language
a = b Simple assignment. Simple assignment.
a += b Not supported. Use the expression a = a

+b.
Equivalent to a = a+b.

a -= b Not supported. Use the expression a =
a-b.

Equivalent to a = a-b.

a *= b Not supported. Use the expression a =
a*b.

Equivalent to a = a*b.

a /= b Not supported. Use the expression a =
a/b.

Equivalent to a = a/b.

Assign Values to Individual Elements of a Matrix

You can assign a value to an individual entry of a vector or matrix by using the indexing syntax
appropriate to the action language of the chart.

Example MATLAB as the Action
Language

C as the Action Language

Assign the value 10 to the first
element of the vector V.

V(1) = 10; V[0] = 10;

Assign the value 77 to the
element in row 2 and column 9
of the matrix M.

M(2,9) = 77; M[1][8] = 77;

Assign Values to All Elements of a Matrix

In charts that use MATLAB as the action language, you can use a single action to specify all of the
elements of a vector or matrix. For example, this action assigns each element of the 2-by-3 matrix A
to a different value:

A = [1 2 3; 4 5 6];

In charts that use C as the action language, you can use scalar expansion to set all of the elements of
a vector or matrix to the same value. Scalar expansion converts scalar data to match the dimensions
of vector or matrix data. For example, this action sets all of the elements of the matrix A to 10:

A = 10;
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Scalar expansion applies to all graphical, truth table, MATLAB, and Simulink functions. Suppose that
you define the formal arguments of a function f as scalars. This table describes the rules of scalar
expansion for the function call y = f(u).

Output y Input u Result
Scalar Scalar No scalar expansion occurs.
Scalar Vector or matrix The chart generates a size

mismatch error.
Vector or matrix Scalar The chart uses scalar expansion

to assign the scalar output value
of f(u) to every element of y:

y[i][j] = f(u)

Vector or matrix Vector or matrix The chart uses scalar expansion
to compute an output value for
each element of u and assign it
to the corresponding element of
y:

y[i][j] = f(u[i][j])

If y and u do not have the same
size, the chart generates a size
mismatch error.

For functions with multiple outputs, the same rules apply unless the outputs and inputs are all vectors
or matrices. In this case, the chart generates a size mismatch error and scalar expansion does not
occur.

Charts that use MATLAB as the action language do not support scalar expansion.

Perform Matrix Arithmetic by Using MATLAB Functions
In charts that use C as the action language, the operations * and / perform element-wise
multiplication and division. To perform standard matrix multiplication and division in a C chart, use a
MATLAB function.

Suppose that you want to perform these operations on the square matrices u1 and u2:

• Compute the standard matrix product y1 = u1 * u2.
• Solve the equation u1 * y2 = u2.
• Solve the equation y3 * u1 = u2.

To complete these calculations in a C chart, add a MATLAB function that runs this code:

function [y1, y2, y3] = my_matrix_ops(u1, u2)
%#codegen

y1 = u1 * u2;  % matrix multiplication
y2 = u1 \ u2;  % matrix division from the right
y3 = u1 / u2;  % matrix division from the left
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Before calling the function, specify the properties for the input and output data, as described in “Set
Data Properties” on page 12-5.

In charts that use MATLAB as the action language, the operations *, /, and \ perform standard
matrix multiplication and division. You can use these operations directly in state and transition
actions.

See Also

More About
• “Vectors and Matrices in Stateflow Charts” on page 21-2
• “Specify Size of Stateflow Data” on page 12-33
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Variable-Size Data in Stateflow Charts

• “Declare Variable-Size Data in Stateflow Charts” on page 22-2
• “Compute Output Based on Size of Input Signal” on page 22-4
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Declare Variable-Size Data in Stateflow Charts
Variable-size data is data whose size can change at run time. In contrast, fixed-size data is data whose
size is known and locked at compile time and does not change at run time. Use variable-size data if
the output from a Stateflow chart in a Simulink model is an array whose size depends on the state of
the chart.

Enable Support for Variable-Size Data
Support for variable-size data is enabled by default. To enable or disable this option for individual
charts,modify the chart property Support variable-size arrays, as described in “Specify Properties
for Stateflow Charts” on page 28-2.

Declare Variable-Size Data
After enabling support at the chart level, you can declare variable-size data by following these steps:

1 Add a data object to the chart, as described in “Add Stateflow Data” on page 12-2.
2 Set Scope property as Local, Input, or Output.

Note Charts that use C as the action language do not support variable-size local data.
3 Select the Variable size check box.
4 Use the Size property to explicitly specify the maximum size for the data. For example, to specify

a 2-D matrix where the maximum size is 2 for the first dimension and 4 for the second dimension,
in the Size field, enter [2 4].
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Guidelines for Using Variable-Size Data
Stateflow charts that use MATLAB as the action language can access and modify variable-size input,
output, and local data in state and transition actions.

In contrast, charts that use C as the action language can only exchange variable-size input and output
data with other charts and Simulink blocks by using:

• MATLAB functions
• Simulink functions
• Truth tables that use MATLAB as the action language

When you use variable-size data in a C chart, these guidelines apply:

• Declare variable-size data as chart inputs and outputs only, and not as local data.
• To define variable-size chart inputs that inherit their size from the Simulink model, set the Size

property to -1.
• All computations with variable-size data must occur inside functions, and not directly in states or

transitions.
• You can pass variable-size data as inputs and outputs to these functions from state and transition

actions. In addition, MATLAB functions can access the chart-level, variable-size data directly.

See Also

More About
• “Compute Output Based on Size of Input Signal” on page 22-4
• “Reuse MATLAB Code by Defining MATLAB Functions” on page 9-2
• “Reuse Simulink Functions in Stateflow Charts” on page 11-2
• “Use Truth Tables to Model Combinatorial Logic” on page 10-2
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Compute Output Based on Size of Input Signal
This example shows how to modify the size of output data in a Stateflow® chart during simulation.

In this model, a Stateflow chart called VarSizeSignalSource uses temporal logic to generate a
variable-size signal. A second chart called SizeBasedProcessing computes the output based on the
size of the signal generated by the first chart. Display blocks show the values and size of the signals.

Generate Variable-Size Output Data

The Stateflow chart VarSizeSignalSource uses MATLAB® as the action language. The temporal
logic in this chart triggers the transitions between four states. Each state generates an output value
with a different size: a scalar, a two-element column vector, a four-element row vector, and a 2-by-4
matrix.

The chart behaves like a source block. It has no input and one variable-size output, y. For variable-
size outputs, you must explicitly specify the size and upper bounds for each dimension. In this case,
the Variable size property for y is enabled and its Size property is set to [2 4], the maximum size
for the signal.

22 Variable-Size Data in Stateflow Charts

22-4



In charts that use MATLAB as the action language, state and transition actions can read and write
directly to variable-size data. For example, the entry actions of the states in this chart explicitly
compute the value of y.

Process Variable-Size Input Data

The Stateflow chart SizeBasedProcessing uses C as the action language. These charts can
exchange variable-size data with other charts and blocks in the model. However, state and transition
actions in C charts cannot read from or write to variable-size data directly. All computations involving
variable-size data must occur in MATLAB functions, Simulink® functions, and MATLAB truth tables in
the chart.

This chart has two variable-size data objects:
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• Input u is the variable-size signal generated by the VarSizeSignalSource chart. The Size
property for u is set to -1 to indicate that this input inherits its size from the Simulink model.
Note that only inputs to C charts can inherit their size.

• Output y is a variable-size signal whose size and value depends on whether u is a scalar, a vector,
or a matrix. The Size property for u is set to [2 4], the maximum size for the signal.

Because this chart uses C as the action language, the names of the variable-size data do not appear in
the state actions or transition logic. Instead, the transition logic in the chart calls the MATLAB
function readInputSize to determine the size of the input u. Similarly, the actions in the states call
the MATLAB function computeOutput to produce values of various size for the variable-size output
y. Because MATLAB functions can access chart-level data directly, you do not have to pass the
variable-size data as inputs or outputs to these functions.

Determine Size of Input

The MATLAB function isScalarInput determines the size of the chart input u. This signal, which is
generated by chart VarSizeSignalSource, can be a scalar, a 2-by-1 column vector, a 1-by-4 row
vector, or a 2-by-4 matrix. The function stores the dimensions of u as the chart-level output z.

function readInputSize
%#codegen
z = size(u);
end

Produce Variable-Size Output

The MATLAB function computeOutput computes the value of the chart output y based on the size
and value of the chart input u.
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• If u is a scalar, the function assigns to y a scalar value of zero.
• If u is a column vector, the function computes of the sine of each of its elements and stores them

in y.
• If u is a row vector, the function computes of the cosine of each of its elements and stores them in

y.
• If u is a matrix, the function computes of the square root of each of its elements and stores them

in y.

In each case, the value of the output y has the same size as the input u.

function computeOutput(key)
%#codegen
switch key
    case 0 % scalar
        y = 0;
    case 1 % column vector
        y = sin(u);
    case 2 % row vector
        y = cos(u);
    case 3 % matrix
        y = sqrt(u);
end
end

Simulate the Model

The tabs located above the Explorer Bar enable you to switch between the Simulink model and the
two Stateflow charts. During simulation:

• The chart animations show the active state for each chart cycling between the Scalar,
ColumnVector, RowVector, and VectorPartial, and Matrix states.

• In the Simulink model, the display blocks Signal Source and Processed Signal periodically
show between one and eight values for the variable-size signals.

• The display block Size of Signal and the Scope block show the number of rows and columns
in the variable-size signals.
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See Also
after

More About
• “Declare Variable-Size Data in Stateflow Charts” on page 22-2
• “Control Chart Execution by Using Temporal Logic” on page 16-34
• “Reuse MATLAB Code by Defining MATLAB Functions” on page 9-2
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Enumerated Data in Charts

• “Reference Values by Name by Using Enumerated Data” on page 23-2
• “Define Enumerated Data Types” on page 23-5
• “Best Practices for Using Enumerated Data” on page 23-8
• “Assign Enumerated Values in a Chart” on page 23-11
• “Model Media Player by Using Enumerated Data” on page 23-15
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Reference Values by Name by Using Enumerated Data
To enhance the readability of a Stateflow chart, use enumerated data. With enumerated data, you
can:

• Create a restricted set of values and refer to those values by name.
• Group related values into separate data types.
• Avoid defining a long list of constants.

Enumerated data is supported in Stateflow charts in Simulink models.

Example of Enumerated Data
An enumerated data type is a finite collection of enumerated values consisting of a name and an
underlying integer value. For example, this chart uses enumerated data to refer to a set of colors.

The enumerated data output is restricted to a finite set of values. You can refer to these values by
their names: Red, Yellow, and Green.

Enumerated Value Name Integer Value
Red(0) Red 0
Yellow(1) Yellow 1
Green(2) Green 2

This MATLAB file defines the enumerated data type BasicColors referenced by the chart.

classdef BasicColors < Simulink.IntEnumType
  enumeration
    Red(0)
    Yellow(1)
    Green(2)
  end
end

Computation with Enumerated Data
An enumerated data type does not function as a numeric type despite the existence of the underlying
integer values. You cannot use enumerated values directly in a mathematical computation. You can
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use enumerated data to control chart behavior based on assignments and comparisons. To assign or
compare enumerated data, use the operations listed in this table.

Example Description
a = exp Assignment of exp to a. exp must evaluate to an enumerated value.
a == b Comparison, equality.
a != b Comparison, inequality.

In a chart that uses C as the action language, you can compare enumerated data with different data
types. Before the comparison, the chart casts the enumerated data to their underlying integer values.

Charts that use MATLAB as the action language cannot compare enumerated data with different data
types.

Notation for Enumerated Values
To refer to an enumerated value, use prefixed or nonprefixed identifiers.

Prefixed Identifiers

To prevent name conflicts when referring to enumerated values in Stateflow charts, you can use
prefixed identifiers of the form Type.Name. Type is an enumerated data type and Name is an
enumerated value name. For example, suppose that you define three data types (Colors, Temp, and
Code) that contain the enumerated name Red. By using prefixed notation, you can distinguish
Colors.Red from Temp.Red and Code.Red.

Nonprefixed Identifiers

To minimize identifier length when referring to unique enumerated values, you can use nonprefixed
enumerated value names. For example, suppose that the enumerated name Red belongs only to the
data type Colors. You can then refer to this value with the nonprefixed identifier Red.

If your chart uses data types that contain identical enumerated names (such as Colors.Red and
Temp.Red), use prefixed identifiers to prevent name conflicts.

Where to Use Enumerated Data
Use enumerated data at these levels of the Stateflow hierarchy:

• Chart
• Subchart
• State

Use enumerated data as arguments for:

• State actions
• Condition and transition actions
• Vector and matrix indexing
• MATLAB functions
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• Graphical functions
• Simulink functions
• Truth Table blocks and truth table functions

If you have Simulink Coder installed, you can use enumerated data for simulation and code
generation.

See Also

More About
• “Define Enumerated Data Types” on page 23-5
• “Assign Enumerated Values in a Chart” on page 23-11
• “Best Practices for Using Enumerated Data” on page 23-8
• “Simulink Enumerations” (Simulink)
• “Use Enumerated Data in Simulink Models” (Simulink)
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Define Enumerated Data Types
To enhance the readability of a Stateflow chart, use enumerated data. With enumerated data, you
can:

• Create a restricted set of values and refer to those values by name.
• Group related values into separate data types.
• Avoid defining a long list of constants.

Enumerated data is supported in Stateflow charts in Simulink models. For more information, see
“Reference Values by Name by Using Enumerated Data” on page 23-2.

Before you can add enumerated data to a Stateflow chart, you must define an enumerated data type
in a MATLAB class definition file. Create a different file for each enumerated type.

Elements of an Enumerated Data Type Definition
The enumerated data type definition consists of three sections of code.

Section of Code Required? Purpose
classdef Yes Provides the name of the enumerated data type
enumeration Yes Lists the enumerated values that the data type allows
methods No Provides methods that customize the data type

Define an Enumerated Data Type
1 Open a new file in which to store the data type definition. From the Home tab on the MATLAB

toolstrip, select New > Class.
2 Complete the classdef section of the definition.

classdef BasicColors < Simulink.IntEnumType
  ...
end

The classdef section defines an enumerated data type with the name BasicColors. Stateflow
derives the data type from the built-in type Simulink.IntEnumType. The enumerated data type
name must be unique among data type names and workspace variable names.

3 Define enumerated values in an enumeration section.

classdef BasicColors < Simulink.IntEnumType
  enumeration
    Red(0)
    Yellow(1)
    Green(2)
  end
end

An enumerated type can define any number of values. The enumeration section lists the set of
enumerated values that this data type allows. Each enumerated value consists of a name and an
underlying integer value. Each name must be unique within its type, but can also appear in other

 Define Enumerated Data Types

23-5



enumerated types. The default value is the first one in the list, unless you specify otherwise in the
methods section of the definition.

4 (Optional) Customize the data type by using a methods section. The section can contain these
methods:

• getDefaultValue specifies a default enumerated value other than the first one in the list of
allowed values.

• getDescription specifies a description of the data type for code generated by Simulink
Coder.

• getHeaderFile specifies custom header file that contains the enumerated type definition in
code generated by Simulink Coder.

• getDataScope enables exporting or importing the enumerated type definition to or from a
header file in code generated by Simulink Coder.

• addClassNameToEnumNames enhances readability and prevents name conflicts with
identifiers in code generated by Simulink Coder.

For example, this MATLAB file presents a customized definition for the enumerated data type
BasicColors that:

• Specifies that the default enumerated value is the last one in the list of allowed values.
• Includes a short description of the data type for code generated by Simulink Coder.
• Imports the definition of the data type from a custom header file to prevent Simulink Coder

from generating the definition.
• Adds the name of the data type as a prefix to each enumeration member name in code

generated by Simulink Coder.

classdef BasicColors < Simulink.IntEnumType
  enumeration
    Red(0)
    Yellow(1)
    Green(2)
  end

  methods (Static = true)
    function retVal = getDefaultValue()
      % GETDEFAULTVALUE Specifies the default enumeration member.
      % Return a valid member of this enumeration class to specify the default.
      % If you do not define this method, Simulink uses the first member.
      retVal = BasicColors.Green;
    end

    function retVal = getDescription()
      % GETDESCRIPTION Specifies a string to describe this enumerated type.
      retVal = 'This defines an enumerated type for colors';
    end

    function retVal = getHeaderFile()
      % GETHEADERFILE Specifies the file that defines this type in generated code.
      % The method getDataScope determines the significance of the specified file.
      retVal = 'imported_enum_type.h';
    end

    function retVal = getDataScope()
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      % GETDATASCOPE Specifies whether generated code imports or exports this type.
      % Return one of these strings:
      % 'Auto':     define type in model_types.h, or import if header file specified
      % 'Exported': define type in a generated header file
      % 'Imported': import type definition from specified header file
      % If you do not define this method, DataScope is 'Auto' by default.
      retVal = 'Imported';
    end

    function retVal = addClassNameToEnumNames()
      % ADDCLASSNAMETOENUMNAMES Specifies whether to add the class name
      % as a prefix to enumeration member names in generated code.
      % Return true or false.
      % If you do not define this method, no prefix is added.
      retVal = true;
    end % function
  end % methods
end % classdef

5 Save the file on the MATLAB path. The name of the file must match exactly the name of the data
type. For example, the definition for the data type BasicColors must reside in a file named
BasicColors.m.

Tip To add a folder to the MATLAB search path, type addpath pathname at the command
prompt.

Specify Data Type in the Property Inspector
When you add enumerated data to your chart, specify its type in the Property Inspector.

1 In the Type field, select Enum: <class name>.
2 Replace <class name> with the name of the data type. For example, you can enter Enum:

BasicColors in the Type field.
3 (Optional) Enter an initial value for the enumerated data by using a prefixed identifier. The initial

value must evaluate to a valid MATLAB expression. For more information on prefixed and
nonprefixed identifiers, see “Notation for Enumerated Values” on page 23-3.

See Also

More About
• “Assign Enumerated Values in a Chart” on page 23-11
• “Best Practices for Using Enumerated Data” on page 23-8
• “Use Enumerated Data in Simulink Models” (Simulink)
• “Customize Simulink Enumeration” (Simulink)
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Best Practices for Using Enumerated Data
To enhance the readability of a Stateflow chart, use enumerated data. With enumerated data, you
can:

• Create a restricted set of values and refer to those values by name.
• Group related values into separate data types.
• Avoid defining a long list of constants.

Enumerated data is supported in Stateflow charts in Simulink models. For more information, see
“Reference Values by Name by Using Enumerated Data” on page 23-2.

Guidelines for Defining Enumerated Data Types
Use Unique Name for Each Enumerated Type

To avoid name conflicts, the name of an enumerated data type cannot match the name of:

• Another data type
• A data object in the Stateflow chart
• A variable in the MATLAB base workspace

Use Same Name for Enumerated Type and Class Definition File

To enable resolution of enumerated data types for Simulink models, the name of the MATLAB file that
contains the type definition must match the name of the data type.

Apply Changes in Enumerated Type Definition

When you update an enumerated data type definition for an open model, the changes do not take
effect immediately. To see the effects of updating a data type definition:

1 Save and close the model.
2 Delete all instances of the data type from the MATLAB base workspace. To find these instances,

type whos at the command prompt.
3 Open the model and start simulation or generate code by using Simulink Coder.

Guidelines for Referencing Enumerated Data
Ensure Unique Name Resolution for Nonprefixed Identifiers

If you use nonprefixed identifiers to refer to enumerated values in a chart, ensure that each
enumerated name belongs to a unique enumerated data type.

Use Unique Identifiers for Enumerated Values

If an enumerated value uses the same identifier as a data object or a bus field, the chart does not
resolve the identifier correctly. For example, this diagram shows the stages in which a chart tries to
resolve the identifier Colors.Red.
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Set Initial Values of Enumerated Data by Using Prefixed Identifiers

If you choose to set an initial value for enumerated data, you must use a prefixed identifier in the
Initial value field of the Property Inspector. For example, BasicColors.Red is a valid identifier, but
Red is not. The initial value must evaluate to a valid MATLAB expression.

Enhance Readability of Generated Code by Using Prefixed Identifiers

If you add prefixes to enumerated names in the generated code, you enhance readability and avoid
name conflicts with global symbols. For details, see “Use Enumerated Data in Generated Code”
(Simulink Coder).
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Guidelines and Limitations for Enumerated Data
Do Not Enter Minimum or Maximum Values for Enumerated Data

For enumerated data, leave the Minimum and Maximum fields of the Property Inspector empty. The
chart ignores any values that you enter in these fields.

Whether these fields appear in the Property Inspector depends on which Type field option you use to
define enumerated data.

Type Field Option Appearance of the Minimum and Maximum
Fields

Enum: <class name> Not available
<data type expression> or Inherit from
Simulink

Available

Do Not Assign Enumerated Values to Constant Data

Because enumerated values are constants, assigning these values to constant data is redundant and
unnecessary. If you try to assign enumerated values to constant data, an error appears.

Do Not Use ml Namespace Operator to Access Enumerated Data

The ml operator does not support enumerated data.

Do Not Define Enumerated Data at Machine Level of Hierarchy

Machine-parented data is not supported for enumerated types.

See Also

More About
• “Reference Values by Name by Using Enumerated Data” on page 23-2
• “Define Enumerated Data Types” on page 23-5
• “Assign Enumerated Values in a Chart” on page 23-11
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Assign Enumerated Values in a Chart
To enhance the readability of a Stateflow chart, use enumerated data. With enumerated data, you
can:

• Create a restricted set of values and refer to those values by name.
• Group related values into separate data types.
• Avoid defining a long list of constants.

Enumerated data is supported in Stateflow charts in Simulink models. For more information, see
“Reference Values by Name by Using Enumerated Data” on page 23-2.

Chart Behavior
This example shows how to build a chart that uses enumerated values to issue a status keyword.

During simulation, the chart action alternates between states A and B.

Execution of State A

• At the start of the simulation, state A is entered.
• State A executes the entry action by assigning the value RED to the enumerated data color.
• The data y increments once per time step (every 0.2 seconds) until the condition [y > 6] is true.
• The chart takes the transition from state A to state B.

Execution of State B

• After the transition from state A occurs, state B is entered.
• State B executes the entry action by assigning the value GREEN to the enumerated data color.
• The data y decrements once per time step (every 0.2 seconds) until the condition [y < 3] is true.
• The chart takes the transition from state B back to state A.
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Build the Chart
Add States and Transitions to the Chart

1 To create a Simulink model with an empty chart, at the MATLAB command prompt, enter sfnew.
2 In the empty chart, add states A and B. At the text prompt, enter the appropriate action

statements.
3 Add a default transition to state A and transitions between states A and B.
4 Double-click each transition. At the text prompt, enter the appropriate condition.

Define an Enumerated Data Type for the Chart

1 To create a file in which to store the data type definition, from the Home tab on the MATLAB
toolstrip, select New > Class.

2 In the MATLAB Editor, enter:

classdef TrafficColors < Simulink.IntEnumType
  enumeration
    RED(0)
    GREEN(10)
  end
end  

The classdef section defines an integer-based enumerated data type named TrafficColors.
The enumeration section contains the enumerated values that this data type allows followed by
their underlying numeric value.

3 Save your file as TrafficColors.m in a folder on the MATLAB search path.

Define Chart Data

1 To resolve the undefined data, in the Symbols pane, click the Resolve undefined symbols icon

. The Stateflow Editor assigns an appropriate scope to each symbol in the chart.

Symbol Scope
color Output Data
y Local Data
GREEN Parameter Data
RED Parameter Data

2 To specify color as enumerated data, in the Property Inspector:

• In the Type field, select Enum: <class name>. Replace <class name> with
TrafficColors, the name of the data type that you defined previously.

• Under Logging, select the Log signal data check box.
3 To set the scope and type of y, in the Property Inspector:

• In the Scope field, select Output.
• In the Type field, select uint8.
• Under Logging, select the Log signal data check box.
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4 In the Symbols pane, delete the symbols GREEN and RED. The Stateflow Editor incorrectly
identified these symbols as parameters before you specified color as enumerated data.

View Simulation Results
1

When you simulate the model, the Simulation Data Inspector icon  is highlighted to
indicate that it has new simulation data. To open the Simulation Data Inspector, click the icon.

2 In the Simulation Data Inspector, select the check boxes for the color and y signals so that they
are displayed on separate axes.

3 To access the logged data in the MATLAB workspace, call the signal logging object logsout. For
example, at the command prompt, enter:
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losgout = out.logsout;
colorLog = logsout.getElement('color');
Tbl = table(colorLog.Values.Time,colorLog.Values.Data);
Tbl.Properties.VariableNames = {'SimulationTime','Color'}

Tbl =

  9×2 table

    SimulationTime    Color
    ______________    _____

           0          RED
         1.6          GREEN
         2.8          RED
           4          GREEN
         5.2          RED
         6.4          GREEN
         7.6          RED
         8.8          GREEN
          10          RED

See Also

More About
• “Define Enumerated Data Types” on page 23-5
• “Log Simulation Output for States and Data” on page 33-47
• “View Data in the Simulation Data Inspector” (Simulink)
• “Export Signal Data Using Signal Logging” (Simulink)
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Model Media Player by Using Enumerated Data
This example shows how to model a media player by using enumerated data in Stateflow®. The
media player consists of a Simulink® model and a MATLAB® user interface (UI). The model has
these components:

• User Request is a Stateflow chart that reads and stores user inputs from UI.
• Media Player Mode Manager is a Stateflow chart that determines whether the media player

operates in AM radio, FM radio, or CD player mode.
• CD Player Behavior Model is a Stateflow chart that describes the behavior of the CD player

component.

These charts use enumerated data to group related values into separate data types, reduce the
amount of data, and enhance readability. For more information, see “Reference Values by Name by
Using Enumerated Data” on page 23-2.

Create Groups of Related Data Values

The model uses two enumerated data types to group the possible operating modes for the media
player and for its CD player component. The Media Player Helper UI separates these modes into two
groups of buttons.
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The Radio Request section contains buttons for selecting an operating mode for the media player.
The enumerated values for the data type RadioRequestMode correspond to these media player
operating modes:

• OFF(0)
• CD(1)
• FM(2)
• AM(3)

The CD Request section contains buttons for selecting an operating mode for the CD player
component. The Insert Disc and Eject Disc buttons also affect this operating mode. The enumerated
values for the data type CdRequestMode correspond to these CD player operating modes:

• EMPTY(-2)
• DISCINSERT(-1)
• STOP(0)
• PLAY(1)
• REW(3)
• FF(4)
• EJECT(5)

At the start of the model simulation, the Display blocks show the default settings of the media player.
To change the enumerated values in the Display blocks, use the Media Player Helper to select other
operating modes. For example:

1 In the Radio Request section, click CD. The Display blocks for enumerated data RR and
CurrentRadioMode change from OFF to CD.
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2 Click Insert Disc. The Display block for enumerated data CdStatus changes from EMPTY to
DISCINSERT to STOP.

3 In the CD Request section, click PLAY. The Display blocks for enumerated data CR, MechCmd,
and CdStatus change from STOP to PLAY.

Read Input from User Interface

The User Request chart reads requests from the Media Player Helper UI and stores the information
as these outputs:

• RR: Enumerated data representing a Radio Request button.
• CR: Enumerated data representing a CD Request button.
• DiscInsert: Boolean data representing the Insert Disc button.
• DiscEject: Boolean data representing the Eject Disc button.

To read the input from the UI, the chart uses the ml namespace operator to call the function
sfcdplayerhelper on the MATLAB path. For more information, see “Access MATLAB Functions and
Workspace Data in C Charts” on page 16-19.

Select Mode Based on Changes in Enumerated Data

The Media Player Mode Manager chart activates a subcomponent of the media player depending on
the input from the User Request chart.
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At the start of the model simulation, the ModeManager state is active. If the Boolean input data
DiscEject becomes true, a transition to the Eject state occurs, followed by a transition back to
the ModeManager state.

When ModeManager is active, the previously active substate (Standby or ON, as recorded by the
history junction) becomes active. Subsequent transitions between the Standby and ON substates
depend on the enumerated input data RadioReq:

• If RadioReq is OFF, the Standby substate is activated.
• If RadioReq is not OFF, the ON substate is activated.

In the ON substate, three subcharts represent the operating modes of the media player: CD player,
AM radio, and FM radio. Each subchart corresponds to a different value of enumerated input data
RadioReq:

• If RadioReq is CD, the CDMode subchart is activated. The subchart outputs PLAY, REW, FF, and
STOP commands to the CD Player Behavior Model chart.

• If RadioReq is AM, the AMMode subchart is activated. The subchart outputs a STOP command to
the CD Player Behavior Model chart.

• If RadioReq is FM, the FMMode subchart is activated. The subchart outputs a STOP command to
the CD Player Behavior Model chart.

To scan for changes in the value of RadioReq, the inner transition inside the ON state calls the
change detection operator hasChanged at every time step.

Control Timing of Transitions

The CD Player Behavior Model chart implements the behavior of the CD player mechanism depending
on the input from the User Request and Media Player Mode Manager charts. To model the
mechanical delays in the CD player, the chart uses the absolute-time temporal logic operator after.
For instance:

• At the start of the model simulation, the Empty state is activated. If the Boolean input data
DiscInsert is true, a transition to the Inserting state occurs. After a one-second delay, a
transition to the DiscPresent state occurs.

• The DiscPresent state remains active until the input data CMD becomes EJECT. At that point, a
transition to the Ejecting state occurs. After a one-second delay, a transition to the Empty state
occurs.
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Whenever a state transition occurs, the enumerated output data CdStatus changes value to reflect
the status of the CD player:

• CdStatus = EMPTY when the active substate is Empty (CD player is empty).
• CdStatus = DISCINSERT when the active substate is Inserting (CD player is loading a disc).
• CdStatus = EJECT when the active substate is Ejecting (CD player is ejecting a disc).
• CdStatus = STOP when the active substate is DiscPresent.STOP (CD player is stopped).
• CdStatus = PLAY when the active substate is DiscPresent.PLAY (CD player is playing).
• CdStatus = REW when the active substate is DiscPresent.REW (CD player is rewinding).
• CdStatus = FF when the active substate is DiscPresent.FF (CD player is fast-forwarding).

See Also
after | hasChanged
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More About
• “Reference Values by Name by Using Enumerated Data” on page 23-2
• “Access MATLAB Functions and Workspace Data in C Charts” on page 16-19
• “Detect Changes in Data and Expression Values” on page 16-62
• “Control Chart Execution by Using Temporal Logic” on page 16-34
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String Data in Charts

• “Manage Textual Information by Using Strings” on page 24-2
• “Log String Data to the Simulation Data Inspector” on page 24-5
• “Send Messages with String Data” on page 24-9
• “Share String Data with Custom C Code” on page 24-11
• “Simulate a Media Player” on page 24-15
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Manage Textual Information by Using Strings
You can control chart behavior and output easy-to-read text by using strings to create textual data.

Creating Strings in Statelfow
In Stateflow, a string is a piece of text surrounded by double-quotes ("..."). In addition, single-quoted
strings ( '...') are supported in charts that use C as the action language. For example, this chart
takes string data as input. Based on that input, the chart produces a corresponding string output.

To specify a string symbol, first open the Property Inspector. In the Symbols pane, select the data that
you want to convert to a string. In the Property Inspector pane, set the Type to string. Stateflow
dynamically allocates memory space for this type of data.

Computation with Strings
To manipulate string data in a Stateflow chart, use the operators in this table. For a complete list of
string operators, see “MATLAB Action Language Operators” and “C Action Language Operators”.

Goal MATLAB Action
Language
Function

Example C Action
Langua
ge
Funtion

Example

Concate
nate two
strings

plus h = "Hello,"
w = " world!"
x = plus(h,w)

strcat s1 = "State";
s2 = "flow";
dest = strcat(s1,s2);

Determi
ne the
length of
a string

strlength h = "Hello, world!"
x = strlength(h)

strlen L = strlen("Stateflow");

Convert
a string
to a
double

str2double X = str2double("-12.345");str2dou
ble

X = str2double("-12.345");

Convert
numeric,
Boolean,
or
enumera
ted data
to string

string a = [1307];
str = string(a)

tostrin
g

dest = tostring(RED);
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String Truncation
You can also create string data with a maximum number of characters. To specify symbol as a string
with a buffer size of n characters, set the Type field of the symbol to stringtype(n). The text of the
string can be shorter than the buffer, but if the string length exceeds the buffer size, then the text in
the string is truncated. For example, if the Type property of the symbol output in the previous chart
is stringtype(10), then its value in the state On is truncated to "All system".

In charts that use C as the action language, you can enable the String truncation checking
parameter to choose whether to stop simulation or generate a warning when a string exceeds the
length specified by stringtype(n).

String Truncation Checking Description
error Simulation stops with an error.
warning String is truncated. Simulation continues with a warning.
none String is truncated. Simulation continues with no error or warning.

For charts that use MATLAB as the action language, String truncation checking parameter is not
supported, and the simulation always stops with an error if the string exceeds the buffer size.

Note Unlike C or C++, Stateflow interprets escape sequences as literal characters. For example, the
string "\n" contains two characters, backslash and n, and not one newline character.

Differences Between Charts That Use MATLAB and C as the Action
Language
Key differences between strings in charts that use C as the action language and charts that use
MATLAB include:

• Charts that use MATLAB as the action language support only strings enclosed with double-quotes.
In charts that use C as the action language, strings can use double quotes or single quotes.

• In charts that use MATLAB as the action language,strcmp returns 1 (true) when the strings
match. In charts that use C as the action language, strcmp returns 0.

• In charts that use MATLAB as the action language, strcmp returns a boolean. In charts that use C
as the action language, strcmp returns a double.

• To return the length of the string, use strlength in charts that use MATLAB as the action
language and strlen in charts that use C as the action language.

• To concatenate a string, use the + operation in charts that use MATLAB as the action language
and strcat in charts that use C as the action language.

• Charts that use MATLAB as the action language enforce complexity on the output variable when
using str2double.

• Charts that use MATLAB as the action language support all comparison operations, such as >, <,
or ==.

Limitations
Parameter data cannot be strings.
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The following limitations exist for charts that use MATLAB as the action language:

• Constant data cannot be strings.
• These operators are not supported:

• strcat
• extract
• extractBetween
• sscanf
• compose
• append
• pad
• count
• sfprint
• forward
• hasChangedFrom
• hasChangedTo

• State Transition Tables and Truth Table blocks do not support strings.
• Structures can only use these operators:

• isstring
• strcmp
• string
• strlength

For more information about Stateflow structures, see “Access Bus Signals Through Stateflow
Structures” on page 29-2.

See Also
ascii2str | str2ascii | str2double | strcat | strcmp | strcpy | strlen | substr | tostring

More About
• “Log String Data to the Simulation Data Inspector” on page 24-5
• “Send Messages with String Data” on page 24-9
• “Share String Data with Custom C Code” on page 24-11
• “Simulate a Media Player” on page 24-15
• “Simulink Strings” (Simulink)
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Log String Data to the Simulation Data Inspector
This example shows how to build a Stateflow chart that, based on numeric input data, concatenates
string data into natural language output text. You can view the output text in the Simulation Data
Inspector and the MATLAB workspace. For more information about string data, see “Manage Textual
Information by Using Strings” on page 24-2.

Chart Behavior
The model in this example uses Sine Wave blocks to provide the latitude and longitude of a point
moving along a closed path. The chart examines these coordinates and assigns the strings q1 and q2
according to the information in this table.

Latitude Longitude q1 q2
positive positive "North" "east"
positive negative "North" "west"
negative positive "South" "east"
negative negative "South" "west"

Then, the statement

sout = strcat("Location in ",q1,q2," Quadrant");

concatenates these strings into an output string.

Create the Model
Add Junctions and Transitions

1 To create a Simulink model with an empty chart, at the MATLAB command prompt, enter

sfnew
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2 In the empty chart, place a default transition. A junction appears. Click and drag from the edge
of the junction to add other transitions and junctions.

3 Double-click each transition. At the text prompt, enter the appropriate condition or action
statement.

Define Chart Data

1 To resolve the undefined data, in the Symbols pane, click the Resolve undefined symbols icon

. The Stateflow Editor assigns an appropriate scope to each symbol in the chart.

Symbol Scope
latitude Input Data
longitude Input Data
q1 Local Data
q2 Local Data
sout Output Data

2 To specify q1 as string data, click q1 and, in the Property Inspector, set Type to string.
3 Repeat that specification for q2 and sout.

Alternatively, to create string data with a maximum number of characters, specify each string as
stringtype(n), where n is a suitable buffer size that avoids truncating the contents of the
string. For instance, this table lists suitable buffer sizes for the string data in the chart.

Symbol Number of Characters String Data Type
q1 5 stringtype(5)
q2 5 stringtype(5)
sout 30 stringtype(30)

Add Sources and Sinks to the Model

1 In the Simulink model, add two Sine Wave blocks and a Display block. Connect the blocks to the
chart input and output ports.
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2 Set the Sine Wave block parameters as indicated in this table.

Block Amplitude Bias Frequency Phase
Latitude 50 0 1 0
Longitude 50 0 1 pi/2

3 Label the signals in the model as latitude, longitude, and sout.
4 Right-click each signal and select Log Selected Signals.

View Simulation Results
1

When you simulate the model, the Data Inspector button  is highlighted to indicate that it
has new simulation data. To open the Simulation Data Inspector, click the button.

2 In the Simulation Data Inspector, select the check boxes for the latitude, longitude, and
sout signals to display the signals on the same set of axes. The latitude and longitude
signals appear as sinusoidal curves. The sout signal is a transition plot. The transition plot
displays the value of the string inside a band and criss-crossed lines mark the changes in value.

3 To access the logged data in the MATLAB workspace, call the signal logging object logsout.
Stateflow exports the string data sout as a MATLAB string scalar. For example, at the command
prompt, enter:

logsout = out.logsout;
Tbl = table(logsout.get('latitude').Values.Data, ...
   logsout.get('longitude').Values.Data, ...
   logsout.get('sout').Values.Data);
Tbl.Properties.VariableNames = ...
   {'Latitude','Longitude','QuadrantInfo'};
Tbl([4:8:30],:)

ans =

  4×3 table
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    Latitude    Longitude              QuadrantInfo          
    ________    _________    ________________________________

     28.232       41.267     "Location in Northeast Quadrant"
     40.425      -29.425     "Location in Northwest Quadrant"
    -30.593      -39.548     "Location in Southwest Quadrant"
    -38.638       31.735     "Location in Southeast Quadrant"

See Also
plus | get | table

More About
• “Manage Textual Information by Using Strings” on page 24-2
• “Log Simulation Output for States and Data” on page 33-47
• “View Data in the Simulation Data Inspector” (Simulink)
• “Export Signal Data Using Signal Logging” (Simulink)
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Send Messages with String Data
This example shows how to configure a pair of Stateflow charts that communicate by sending
messages that carry string data. For more information, see “Communicate with Stateflow Charts by
Sending Messages” on page 15-2.

This model contains two Stateflow charts. During simulation, the Emitter chart reads an input string
key from the String Constant block and sends a message to the Receiver chart. The message data
consists of the input string key. The Receiver chart compares the string with a constant keyword
and returns an output string that grants or denies access.

Emitter Chart
The Emitter chart consists of a single state, A. When the state becomes active, it sets the data for
the message M to the input value key and sends the message to the Receiver chart.

This table lists the scope and type for the symbols in the chart.

Symbol Scope Type
key Input Data Inherit: Same as

Simulink
M Output Message string

Receiver Chart
The Receiver chart consists of two states joined by a transition. The input message M guards the
transition. If there is a message present and its data value equals the constant string lock, then the
state activity transitions from Off to On. The chart outputs the string value 'Access Granted'. If
there is no message present, or if the data value does not equal lock, the chart does not take the
transition and the output value is 'Access Denied'.

This table lists the scope and type for the symbols in the chart.
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Symbol Scope Type
M Input Message Inherit: Same as

Simulink
lock Constant Data string
sout Output Data string

The constant string lock contains a secret password, initially set to 'Open Sesame'. You can
change the value of lock in the Value field of the Property Inspector.

View Simulation Results
During simulation, the model responds to the password that you enter in the String Constant block:

• If you enter an incorrect password, such as "Abracadabra", then the model displays the output
string "Access Denied".

• If you enter the correct password, in this case, "Open Sesame", then the model displays the
output string "Access Granted".

See Also
send

More About
• “Manage Textual Information by Using Strings” on page 24-2
• “Log String Data to the Simulation Data Inspector” on page 24-5
• “Share String Data with Custom C Code” on page 24-11
• “Simulate a Media Player” on page 24-15
• “Communicate with Stateflow Charts by Sending Messages” on page 15-2
• “View Differences Between Stateflow Messages, Events, and Data” on page 15-14
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Share String Data with Custom C Code
This example shows how to share string data between a Stateflow® chart and custom C code. You
can export string data from a Stateflow chart to a C function by using the str2ascii operator. You
can import the output of your C code as string data in a Stateflow chart by using the ascii2str
operator. By sharing data with custom code, you can augment the capabilities of Stateflow and
leverage the software to take advantage of your preexisting code. For more information, see “Reuse
Custom Code in Stateflow Charts” on page 31-2.

This model contains a Stateflow chart that calls two functions from custom C code. During simulation,
the chart takes as its input a string that contains text representing a floating-point number in
exponential form. The chart consists of three states that:

• Search the input string for leading zeroes, a decimal point, and an e.
• Parse the string into double-precision numbers representing the significand and exponent parts of

the input.
• Merge the numeric information into an output string expressing the input in scientific notation.

For example, if the input string is "0123.456e789", then the chart outputs the string
"0123.456e789 means 1.23456 times ten to the 791th power".
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Export String Data from Stateflow to C

You can use the str2ascii operator to convert string data into an array that you can export from a
Stateflow chart to a custom C code function.

1 In the custom code function, declare the input variable as having type char*.
2 In the Stateflow chart, convert the string to an array of type uint8 by calling the operator

str2ascii.
3 Call the custom code function by passing the uint8 array as an input.

For example, in the previous chart, the Search state converts the input string str to the uint8
array Asrt. The Search state passes this array as an input to the custom code function searchfun:

extern void searchfun(int* nout, char* strin)
{
   nout[0] = strspn(strin,"0");
   nout[1] = strcspn(strin,".e");
   nout[2] = strcspn(strin,"e");
   nout[3] = strlen(strin);
}
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The Search state calls this function with the command searchfun(n,Astr). The function
populates the integer array n with these values:

• n[0] contains the number of leading zeroes in the input string str.
• n[1] contains the number of characters before the first instance of a decimal point or e. This

result provides the number of characters before the decimal point in str.
• n[2] contains the number of characters before the first instance of e. This result provides the

number of characters in the significand in str.
• n[3] contains the length of the input string str.

The Parse state uses these results to extract the values of the significand and exponent parts of the
input.

Import String Data from C to Stateflow

You can import string data to a Stateflow chart by passing a pointer to an array of type uint8 as an
input to a custom C function.

1 In the custom code function, declare the input variable containing the pointer as having type
char*.

2 Save the output string data from the custom code function at the location indicated by the
pointer.

3 In the Stateflow chart, convert the uint8 array to a string by calling the operator ascii2str.

For example, in the previous chart, the Merge state consolidates the numeric information obtained by
the Parse state into an output string by calling the custom code function mergefun:

extern void mergefun(char* strout, char* strin, int in0, double in1, double in2)
{
   sprintf(strout, "%s means %1.*f times ten to the %dth power", strin, in0, in1, (int) in2);
}

The Merge state calls the mergefun function with the command
mergefun(Asout,Astr,y0,y1,y2):

• Asout is an array of type uint8 pointing to the output of the custom function.
• Astr is an array of type uint8 corresponding to the input string to the chart.
• y0 is an integer containing the number of digits to the right of the decimal point in the significand.
• y1 and y2 are double-precision numbers representing the significand and exponent parts of the

input.

The function mergefun calls the C library function sprintf, merging the contents of Astr, y1, and
y2 and storing the result in the memory location indicated by Aout. The chart uses the operator
ascii2str to convert this output to the string sout. In this way, the model imports the string
constructed by the custom code function back into Stateflow.

See Also
ascii2str | str2ascii | str2double | strcat | substr
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More About
• “Manage Textual Information by Using Strings” on page 24-2
• “Log String Data to the Simulation Data Inspector” on page 24-5
• “Send Messages with String Data” on page 24-9
• “Simulate a Media Player” on page 24-15
• “Reuse Custom Code in Stateflow Charts” on page 31-2
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Simulate a Media Player
This example shows how to create an interface between a Stateflow® chart that uses C as the action
language and a MATLAB® app created in App Designer. For more information on connecting a
Stateflow chart that uses MATLAB as the action language to a MATLAB app, see “Model a Power
Window Controller” on page 30-51.

In this example, a MATLAB app models the front end of a media player. During simulation, you can
choose between the AM radio, FM radio, and CD player components of the media player. When the
CD player is on, you can also select the playback mode.

The Stateflow chart App Interface provides a bidirectional connection between the MATLAB app
and the control and plant systems in the Simulink® model. When you interact with the widgets in the
app, the chart sends a corresponding command to the other charts in the model. These charts use
strings to control the behavior of the media player and to provide natural language output messages
that indicate its status. When the status of the media player changes, the chart changes the color of
the buttons and updates the text field at the bottom of the app.
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Run the Media Player Model

1 Open the Simulink model and click Run. The Media Player Helper app opens. The text field at
the bottom of the app shows the status of the media player, Standby (OFF).

2 In the Radio Request section, click CD. The media player status changes to CD Player:
Empty.

3 Click Insert Disc. The media player status briefly says Reading: Handel's Greatest Hits
before changing to CD Player: Stopped.

4 In the CD Request section, click PLAY. The media player status changes to Playing:
Handel's Greatest Hits and music begins to play.

5 In the CD Request section, click FF. The music stops and chirping sounds begin. The media
status changes to Forward >> Handel's Greatest Hits. The album name in this message
scrolls forward across the display.

6 Use the Media Player Helper app to select other operating modes or to enter a different album
name. For example, try playing to the albums Training Deep Networks or Fun With State
Machines. To stop the simulation, close the Media Player Helper app.

Connect Chart to MATLAB App

The chart App Interface is already configured to communicate with the MATLAB app
sf_mediaplayer_app. To create a bidirectional connection between your MATLAB app and a
Stateflow chart that uses C as the action language, follow these steps. In the MATLAB app:

1 Create a custom property to interface with the chart during simulation. The app uses this
property to access chart inputs, chart outputs, and local data. For more information, see “Share
Data Within App Designer Apps”.

2 Modify the startupFcn callback for the app by adding a new input argument and storing its
value as the property that you created in the previous step. For more information, see “Write
Callbacks in App Designer”.

In the Stateflow chart:

1 Create a local data object to interface with the app. The chart uses this local data object as an
argument when it calls helper functions in the app.

2 Set the type of the local data object you created in the previous step to ml. For more information,
see “Specify Type of Stateflow Data” on page 12-27.

3 Run the app using the ml namespace operator to indicate that the app is extrinsic MATLAB code.
Pass the keyword this as an argument to give the app access to the chart during simulation.
Store the value returned by the function call to the app as the local data object that you created
to interface with the app. For more information, see “Access MATLAB Functions and Workspace
Data in C Charts” on page 16-19.

In this example, the Media Player Helper app uses a property called chart to interface with the chart
App Interface. The app callbacks use this property to write to the chart outputs:

• When you insert or eject a disc, the EjectButtonPushed callback sets the values of insert,
eject, and Album.

• When you click a button in the Radio Request section of the app, the corresponding callbacks set
the value of RadioReq.

• When you click a button in the CD Request section of the app, the corresponding callbacks set
the value of CDReq.
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• When you close the app, the UIFigureCloseRequest callback sets the value of Stop to true.

Conversely, in the chart, the entry actions in the InterfaceWithApp state run the app
sf_mediaplayer_app and store the returned value as the local data object app. The chart uses this
local data object when it calls the helper functions updateButtons and updateStatus. In the app,
these helper functions change the color of the buttons and update the text field at the bottom of the
app based on the value of the chart inputs RadioMode, CDMode, and CDStatus.

Manage Media Player Modes

The Mode Manager chart activates the appropriate subcomponent of the media player (AM radio,
FM radio, or CD player) depending on the inputs received from the App Interface chart. The chart
inputs RadioReq and CDReq contain string data that control the behavior of the chart. To evaluate
the string data, the chart uses the string operator strcmp and its equivalent shorthand form ==. The
chart output CurrentRadioMode provides natural language output to the app, while MechCmd
controls the behavior of the CD player subcomponent. To assign values to these outputs, the chart
uses the string operator strcpy and its equivalent shorthand form =.
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At the start of simulation, the NormalOperation state becomes active. If the Boolean data
DiscEject is true, a transition to the Eject state occurs, followed by a transition back to the
NormalOperation state.

When NormalOperation is active, the previously active substate (Standby or ON) recorded by the
history junction becomes active. Subsequent transitions between the Standby and ON substates
depend on the value of the expression strcmp(RadioReq,"OFF"):

• If strcmp returns a value of zero, then RadioReq is "OFF" and the Standby substate is
activated.

• If strcmp returns a nonzero value, then RadioReq is not "|OFF|" and the ON substate is activated.

In the ON substate, three substates represent the operating modes of the media player: CD player, AM
radio, and FM radio. Each substate corresponds to a different value of the input RadioReq. The inner
transition inside the ON state uses the operator hasChanged to continually scan for changes in the
value of RadioReq.

• If the value of RadioReq is "CD", then the substate CDMode becomes active and the media player
switches to CD player mode. The Mode Manager chart outputs "PLAY", "REW", "FF", and
"STOP" commands to the CD Player chart through the string data MechCmd.

24 String Data in Charts

24-18



• If the value of RadioReq is "AM", then the substate AMMode becomes active and the media player
switches to AM radio mode. The Mode Manager chart outputs a "STOP" command to the CD
Player chart through the string data MechCmd.

• If the value of RadioReq is "FM", then the substate FMMode becomes active and the media player
switches to FM radio mode. The Mode Manager chart outputs a "STOP" command to the CD
Player chart through the string data MechCmd.

Manage CD Player Modes

The CD Player chart activates the appropriate operating mode for the CD player depending on the
input received from the App Interface and Mode Manager charts. The chart inputs Cmd and
Album contain string data that control the behavior of the chart. The chart output AlbumName
provides natural language output to the app. To assign and compare the values of string data, the
chart uses the shorthand operations = (see strcpy) and == (see strcmp). To produce text in the output
string CDStatus, the chart uses the string operators strcat, strlen, and substr.
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At the start of simulation, the Empty state is activated.
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If the Boolean data DiscInsert is true, a transition to the Inserting state occurs. After a short
time delay, a transition to the DiscPresent state occurs. The DiscPresent state remains active
until the data Cmd becomes "EJECT". At that point, a transition to the Ejecting state occurs. After a
short time delay, a transition to the Empty state occurs. The temporal logic operator after controls
the timing of the transitions during disc insertion and ejection.

When a state transition occurs, the entry action in the new state changes the value of CDStatus to
reflect the status of the CD player. In the FF or REW substates, the during actions continually change
the value of CDStatus to produce a scrolling motion effect.

• When the active state is Empty, the value of CDStatus is "CD Player: Empty".
• When the active state is Inserting, the value of CDStatus is "Reading: AlbumName".
• When the active state is Ejecting, the value of CDStatus is "Ejecting: AlbumName".
• When the active state is DiscPresent.STOP, the value of CDStatus is "CD Player:

Stopped".
• When the active state is DiscPresent.PLAY, the value of CDStatus is "Playing:

AlbumName".
• When the active state is DiscPresent.REW, the value of CDStatus is "Reverse <<

AlbumName", where AlbumName scrolls backward across the display.
• When the active state is DiscPresent.FF, the value of CDStatus is "Forward >>

AlbumName", where AlbumName scrolls forward across the display.

See Also
after | hasChanged | strcat | strcmp | strcpy | strlen | substr

More About
• “Manage Textual Information by Using Strings” on page 24-2
• “Detect Changes in Data and Expression Values” on page 16-62
• “Control Chart Execution by Using Temporal Logic” on page 16-34
• “Access MATLAB Functions and Workspace Data in C Charts” on page 16-19
• “Record and Play Audio”
• “Simulink Strings” (Simulink)
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Continuous-Time Systems in Stateflow
Charts

• “Continuous-Time Modeling in Stateflow” on page 25-2
• “Store Continuous State Information in Local Variables” on page 25-6
• “Model a Bouncing Ball in Continuous Time” on page 25-8
• “Model a DC Motor in Stateflow” on page 25-12
• “Model the Dynamics of Moving Billiard Balls” on page 25-14
• “Model Newton's Cradle” on page 25-19
• “Modeling Newton's Cradle with Virtual Reality” on page 25-23
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Continuous-Time Modeling in Stateflow
Hybrid systems use modal logic to transition from one mode to another in response to physical events
and conditions. In these systems, continuous-time dynamics govern each mode. A simple example of
this type of hybrid system is a bouncing ball. The ball moves continuously through the air until it hits
the ground, at which point a mode change or discontinuity occurs. As a result, the ball suddenly
changes direction and velocity. For more information, see “Model a Bouncing Ball in Continuous
Time” on page 25-8.

Simulate hybrid systems that respond to continuous and discrete mode changes by configuring
Stateflow charts for continuous-time modeling. In a Stateflow chart, you can represent modal logic
succinctly and intuitively as a series of states, transitions, or flow charts. You can also represent state
information as continuous local variables with automatic access to time derivatives.

Continuous-time simulation is supported only in Stateflow charts in Simulink models. If your
continuous system does not contain modal logic, consider using a Simulink model. For more
information, see “Model a Continuous System” (Simulink).

Configure a Stateflow Chart for Continuous-Time Simulation
To enable continuous updating in a Stateflow chart, set the Update method chart property to
Continuous, as described in “Specify Properties for Stateflow Charts” on page 28-2.

By default, zero-crossing detection is enabled. To disable this option, clear the Enable zero-crossing
detection check box. For more information, see “Disable Zero-Crossing Detection” on page 25-3.

Note You cannot use Moore charts for continuous-time modeling.

Interaction with Simulink Solver
Maintain Mode in Minor Time Steps

During continuous-time simulation, a Stateflow chart updates its mode only in major time steps. In a
minor time step, the chart computes outputs based on the state of the chart during the last major
time step. For more information, see “Continuous Sample Time” (Simulink).

Compute Continuous State at Each Time Step

When you define local continuous variables, the Stateflow chart provides programmatic access to
their derivatives. The Simulink solver computes the continuous state of the chart at the current time
step based on the values of these variables and their derivatives at the previous time step. For more
information, see “Continuous Versus Discrete Solvers” (Simulink).

Register Zero Crossings on State Transitions

To determine when a state transition occurs, a Stateflow chart registers a zero-crossing function with
the Simulink solver. When Simulink detects a change of mode, the solver searches forward from the
previous major time step to detect when the state transition occurred. For more information, see
“Zero-Crossing Detection” (Simulink).
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Disable Zero-Crossing Detection
Zero-crossing detection on state transitions can present a tradeoff between accuracy and
performance. When detecting zero crossings, a Simulink model accurately simulates mode changes
without unduly reducing step size. For systems that exhibit chattering, or frequent fluctuations
between two modes of continuous operation, zero-crossing detection can potentially impact
simulation time. Chattering requires a Simulink model to check for zero crossings in rapid
succession, which can slow simulation. In these situations, you can:

• Disable zero-crossing detection.
• Choose a different zero-crossing detection algorithm for your chart.
• Modify parameters that control the frequency of zero crossings in your Simulink model.

You can choose from different zero-crossing detection algorithms on the Solver pane in the Model
Configuration Parameters dialog box. For more information, see “Zero-Crossing Detection”
(Simulink).

Guidelines for Continuous-Time Simulation
To maintain the integrity and smoothness of the results of a continuous-time simulation, constrain
your charts to a restricted subset of Stateflow chart semantics. By restricting the semantics, the
inputs do not depend on unpredictable factors such as:

• The number of minor intervals that the Simulink solver uses in each major time step.
• The number of iterations required to stabilize the integration and zero-crossings algorithms.

By minimizing these side effects, a Stateflow chart can maintain its state at minor time steps and
update its state only during major time steps. Therefore, a Stateflow chart can compute outputs
based on a constant state for continuous time.

Continuous-Time Charts Must Have at Least One State

During continuous-time simulation, a chart updates its outputs at minor time steps corresponding to
the during actions of the active state. A chart with no states produces no output. To mimic the
behavior of a stateless chart in continuous time, create a single state that calls a graphical function in
its during action.

Update Local Data in entry, exit, and Transition Actions

To maintain precision in continuous-time simulation, update discrete and continuous local data only
during major time steps corresponding to state transitions. During state transitions, only these types
of actions occur:

• State exit actions, which occur before leaving the state at the beginning of the transition.
• State entry actions, which occur after entering the new state at the end of the transition.
• Transition actions, which occur during the transition.
• Condition actions on a transition, but only if the transition directly reaches a state. For example,

this chart executes the action n++ even when conditions c2 and c3 are false. Because there is no
state transition, the condition action updates n in a minor time step and results in an error.

 Continuous-Time Modeling in Stateflow

25-3



Do not write to local continuous data in state during actions because these actions occur in minor
time steps.

Compute Derivatives in State during Actions

In minor time steps, a continuous-time chart executes only state during actions. Because Simulink
models read continuous-time derivatives during minor time steps, compute derivatives in during
actions to provide the most current calculation.

Do Not Read Outputs or Derivatives in State during Actions or in Transition Conditions

In minor time steps, it is possible that outputs and derivatives do not reflect their most current
values. To provide smooth outputs, compute values from local discrete data, local continuous data,
and chart inputs.

Do Not Call Simulink Functions in State during Actions or in Transition Conditions

You cannot call Simulink functions during minor time steps. Instead, call Simulink functions only in
actions that occur during major time steps: state entry or exit actions and transition actions.
Calling Simulink functions in state during actions or in transition conditions results in an error
during simulation. For more information, see “Reuse Simulink Functions in Stateflow Charts” on page
11-2.

Use Discrete Variables to Govern Conditions in during Actions

To prevent mode changes between major time steps, conditions that affect control flow in during
actions depend on discrete variables. Discrete variables do not change value between major time
steps.

Do Not Use Input Events

The presence of input events makes a chart behave like a triggered subsystem and unable to simulate
in continuous time. For example, this model generates an error if the chart uses a continuous update
method.
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To mimic the behavior of an input event, pass the input signal through a Hit Crossing block as an
input to the continuous-time chart.

Do Not Use Inner Transitions

When a mode change occurs during continuous-time simulation, the entry action of the destination
state indicates to the Simulink model that a state transition occurred. With an inner transition, the
chart never executes the entry action. For more information, see “Inner Transitions” on page 3-27.

Limit Use of Temporal Logic

Do not use event-based temporal logic because in continuous-time simulation, there is no concept of a
tick. Use only absolute-time temporal logic for continuous-time simulation. For more information, see
“Control Chart Execution by Using Temporal Logic” on page 16-34.

Do Not Use Change Detection Operators

To implement change detection, Stateflow buffers variables in a way that affects the behavior of
charts between a minor time step and the next major time step.

Do Not Modify Operating Point Values

Modifying the operating point of a continuous-time chart is not supported. If you load the operating
point for a continuous-time chart, you cannot modify the activity of states or any values of local or
output chart data. For more information, see “Guidelines for Using the Operating Point of a Chart” on
page 20-30.

See Also

More About
• “Model a Bouncing Ball in Continuous Time” on page 25-8
• “Store Continuous State Information in Local Variables” on page 25-6
• “Compare Solvers” (Simulink)
• “Zero-Crossing Detection” (Simulink)
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Store Continuous State Information in Local Variables
To compute a continuous state, you must determine its time derivative. You can represent this
information by using local variables that are updated in continuous time. Continuous-time simulation
is supported only in Stateflow charts in Simulink models. For more information, see “Continuous-Time
Modeling in Stateflow” on page 25-2.

Define Continuous-Time Variables
1 Configure the chart to update in continuous time, as described in “Configure a Stateflow Chart

for Continuous-Time Simulation” on page 25-2.
2 Add a data object to your chart, as described in “Add Stateflow Data” on page 12-2.
3 Set the Scope property for the data object to Local.
4 Set the Update Method property for the data object to Continuous.

In a Stateflow chart, continuous-time variables always have type double.

Compute Implicit Time Derivatives
For each continuous-time variable, Stateflow implicitly creates a variable to represent its time
derivative. A chart denotes time derivative variables as variable_name_dot. For example, data_dot
represents the time derivative of a continuous variable data. You can write to the time derivative
variable in the during action of a state. The time derivative variable does not appear in the Symbols
pane or in the Model Explorer.

Note Do not explicitly define variables with the suffix _dot in a chart configured for continuous-time
simulation.

Expose Continuous State to a Simulink Model
In a Stateflow chart, you represent the continuous state by using local variables rather than inputs or
outputs. To expose the continuous state to a Simulink model, you must explicitly assign the local
variables to Stateflow outputs in the during action of a state.

Guidelines for Continuous-Time Variables
• Scope for continuous-time variables can be Local or Output.
• Define continuous-time variables at the chart level or below in the Stateflow hierarchy.
• Expose the continuous state of a chart by assigning the local continuous-time variable to a
Stateflow output.

See Also

More About
• “Continuous-Time Modeling in Stateflow” on page 25-2
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• “Model a Bouncing Ball in Continuous Time” on page 25-8
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Model a Bouncing Ball in Continuous Time
This example shows how to configure a Stateflow® chart that simulates a bouncing ball in continuous
time. The ball moves continuously through the air until it hits the ground, at which point a
discontinuity occurs. As a result, the ball suddenly changes direction and velocity. For more
information, see “Continuous-Time Modeling in Stateflow” on page 25-2.

The model sf_bounce contains a chart that updates in continuous time. Local variables describe the
dynamics of a free-falling ball in terms of position and velocity. During simulation, the model uses
zero-crossing detection to determine when the ball hits the ground.

Dynamics of a Bouncing Ball

You can specify how a ball falls freely under the force of gravity in terms of position p and velocity v
with this system of first-order differential equations:

When p <= 0, the ball hits the ground and bounces. You can model the bounce by updating the
position and velocity of the ball:

• Reset the position to p = 0.
• Reset the velocity to the negative of its value just before the ball hit the ground.
• To account for energy loss, multiply the new velocity by a coefficient of distribution (-0.8).

Configure Chart for Continuous-Time Simulation

In the model, the BouncingBall chart implements modal logic to simulate the continuous dynamics of
free fall and the discrete changes associated with bouncing. In the Chart properties dialog box, these
settings enable the BouncingBall chart to simulate in continuous time:

• Update method is Continuous so the chart employs continuous-time simulation to model the
dynamics of the bouncing ball.

• Enable zero-crossing detection is selected so the Simulink® solver can determine exactly when
the ball hits the ground. Otherwise, the Simulink model cannot simulate the physics accurately
and the ball appears to descend below ground.

Define Continuous-Time Variables

The BouncingBall chart has two continuous-time variables: p for position and v for velocity. For each
of these variables:
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• Scope is Local.
• Type is double.
• Update Method is Continuous.

To expose the continuous state of the chart to the Simulink model, the BouncingBall chart has two
output variables: p_out and v_out. For each of these variables:

• Scope is Output.
• Type is double.
• Update Method is Discrete.

The chart defines the time derivative of continuous-time variables implicitly:

• p_dot is the derivative of position p.
• v_dot as the derivative of velocity v.

In the Model Explorer, you can view the continuous-time local variables and the corresponding
outputs in the chart. Implicit derivative variables do not appear in the Model Explorer or in the
Symbols pane.

Model Continuous Dynamics of Free Fall

The BouncingBall chart consists of a single state named Falling that numerically solves the
differential equations for free fall. The default transition into the state sets the initial position to 10 m
and the initial velocity to 15 m/s. The during actions in the state:

• Define the derivatives of position and velocity
• Assign the values of the position and velocity of the ball to the output variables p_out and v_out

 Model a Bouncing Ball in Continuous Time

25-9



Model Discrete Effects of the Bounce

The Falling state has a self-loop transition that models the discontinuity of the bounce as an
instantaneous mode change when the ball suddenly reverses direction. The condition on the
transition calls the edge detection operator falling. This operator determines when the ball hits the
ground by detecting when the position crosses a threshold of zero and becomes negative. If the
condition is valid, the condition action resets the position and velocity when the ball hits the ground.

Validate Chart Semantics

The BouncingBall chart meets the design requirements defined in “Guidelines for Continuous-Time
Simulation” on page 25-3. In particular, the chart:

• Initializes the local variables p and v on the default transition
• Assigns values to the derivatives p_dot and v_dot in a during action
• Writes to local variables p and v in a transition action
• Does not contain events, inner transitions, event-based temporal logic, or change detection

operators

View Simulation Results

After you run the model, the Scope block graphs the position and the velocity of the ball. The position
graph exhibits the expected bounce pattern.
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See Also

More About
• “Continuous-Time Modeling in Stateflow” on page 25-2
• “Store Continuous State Information in Local Variables” on page 25-6
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Model a DC Motor in Stateflow
This example shows the model of a permanent magnet DC motor. The mode logic and dynamics of the
DC motor are both modeled using Stateflow®.

The DC motor state chart consists of two superstates: powerOn and powerOff. If the motor is
powered on, it can be in one of two substates: up or down, signifying the direction of movement.

Note: This is a simplistic model of a DC motor. You can build more sophisticated DC motor models
using Simscape™, which extends Simulink® with tools for modeling and simulating multidomain
physical systems, such as those with mechanical, hydraulic, and electrical components.

The dynamics of the motor are defined directly in the state chart using graphical functions and
change depending on the state of the motor. For example, when the motor is in the powerOff state,
the voltage applied is equal to zero. When the motor is in the powerOn state, the voltage applied is
either positive or negative, depending on the direction of the motor.

To review, the differential equations defining a permanent magnet DC motor are as follows:

where
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See Also

More About
• “Continuous-Time Modeling in Stateflow” on page 25-2
• “Reuse Logic Patterns by Defining Graphical Functions” on page 8-10
• “Simscape”
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Model the Dynamics of Moving Billiard Balls
This example shows how to model the opening shot in a billiards game by using continuous-time
matrix variables. In the model, a Stateflow® chart simulates the dynamics of a hybrid system that has
a large number of discontinuities. For more information, see “Continuous-Time Modeling in
Stateflow” on page 25-2.

When the simulation starts, a MATLAB® user interface (UI) shows a pool table with 15 billiard balls
arranged in a triangular rack. The UI then prompts you to select the initial position and velocity of
the cue ball. When the cue ball is released, the UI animates the motion of the billiard balls as they
undergo a sequence of rapid collisions.

The model consists of:

• The Stateflow chart Init, which calls the function sf_pool_plotter.m to initialize the position
and velocity of the cue ball based on the input from the UI.

• The Stateflow chart Pool, which calculates the two-dimensional dynamics of each billiard ball.
• The MATLAB Function block Plot, which calls the function sf_pool_plotter.m to animate the

motion of the billiard balls during the simulation.
• The Scope block Vel, which displays the velocity of each billiard ball during the opening shot.

Calculate Continuous-Time Dynamics

To represent the dynamics of the billiard balls, the Pool chart makes several assumptions.

Continuous-Time Variables

The chart ignores the spin of the balls, so the state of the system is described completely by the
positions and velocities of the balls. Each ball is assumed to have unit mass, so its position and
velocity are described by the system of differential equations

where  and  are the forces caused by friction with the pool table and by collisions
with other balls.
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To track the positions and velocities of the balls, the chart stores a pair of 16-by-2 matrices in the
continuous-time variables p and v. In each matrix, the  row represents the two-dimensional
position or velocity of the  ball.

Friction Model

To calculate the force of friction acting on each ball, the chart calls the MATLAB function
frictionForce. This function implements a simplified friction model. Friction acts on each moving
ball with a constant force opposite to the direction of motion. Because friction does not act on
stationary balls, the force of friction on each ball is inherently modal:

where  is the coefficient of friction and  is the acceleration due to gravity.

Collision Dynamics
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To determine the interactions caused by collisions between balls, the chart calls the MATLAB function
interactionForce. This function implements a simple restoring force model when two balls come
in contact with each other. The interaction force between the  and  balls is modal:

where:

•  is the radius of each ball.
•  and  are constants of elasticity.
•  is the relative separation of the centers of the two balls.
•  is the relative difference in velocity between the two balls.

Because the balls are free to move in two dimensions, the chart uses the 16-by-16 Boolean matrix
ball_interaction to account for all potential collisions. For example, when the  and  balls are
touching, the value of ball_interaction(i,j) is true. Otherwise, this value is false. Because
collisions are symmetric in nature, the chart uses only the upper triangular portion of the matrix.

Perform Matrix Calculations in MATLAB Functions

To compute the two-dimensional dynamics of the billiard balls, the Pool chart calls several MATLAB
functions that perform matrix calculations.

• initBalls initializes the position and velocity of every ball on the pool table.
• frictionForce calculates the friction force acting on each ball.
• interactionForce calculates the interaction force acting on each ball.
• isAnyBallGoingToStop returns a value of 1 if any ball stops moving. Otherwise, the function

returns a value of 0.
• hasBallInteractionChanged returns a value of 1 if any ball interactions change. Otherwise,

the function returns a value of 0.
• isAnyBallNewlyPocketed returns a value of 1 if any ball falls in a pocket. Otherwise, the

function returns a value of 0.
• isAnyBallOutOfBounds returns a value of true if any ball lies outside the boundary of the pool

table. Otherwise, the function returns a value of false.
• nearHole returns a value of true if a ball is near a pocket on the pool table. Otherwise, the

function returns a value of false.
• getBallInteraction returns a Boolean matrix that specifies whether any balls are in contact

with each other.
• updateStopFlags keeps track of which balls have stopped moving and stores the result in the

vector stopped.
• pocketNewBalls sets the velocity of each pocketed ball to 0.
• resetBallsPosAndVel resets the position and velocity of any ball that lies outside the boundary

of the pool table.
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View the Simulation Results

When you start the simulation, a UI shows a pool table with 15 billiard balls arranged at one end of
the table. To specify the initial position of the cue ball, click anywhere on the pool table.

To specify the initial velocity of the cue ball, click a different spot on the pool table.

The model simulates the dynamics of the system and animates the motion of the billiard balls.
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To stop the simulation, close the UI.

See Also

More About
• “Continuous-Time Modeling in Stateflow” on page 25-2
• “Vectors and Matrices in Stateflow Charts” on page 21-2
• “Supported Operations for Vectors and Matrices” on page 21-4
• “Reuse MATLAB Code by Defining MATLAB Functions” on page 9-2
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Model Newton's Cradle
This example shows how to model a popular toy called "Newton's cradle" which consists of a row of
seven identical balls which are hung from a common height. At rest they are arranged such that they
just touch each other. One or more balls from one end are then raised from their rest position and
released.

An interesting consequence of elastic collisions between the balls is that the balls which are released
seem to come to a stop and an equal number of balls from the other end get released (with almost the
same energy as the incoming balls). The balls in the middle do not seem to move, although they are
responsible for transferring momentum from one end to another.

This model uses a simple elastic collision model to describe the interactions between the balls. The
Stateflow® chart uses local variables to depict the continuous states of the system, namely the
position p and the velocity v. Note that both these local variables are defined to have Update
method as continuous. This allows you to refer to their derivatives as p_dot and v_dot
respectively. Since the nominal dynamics of all the balls are identical, this example uses these vector
assignments to represent the motion of all of the balls:

p_dot = v;
v_dot = -g/l*sin(p);

Note that p_dot and v_dot are not chart local variables. They are automatically created because p
and v are defined to be continuous.
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The model uses a simple for-loop to detect collisions between balls. In a one-dimensional setting, the
chart only models collisions between successive balls with a single for loop.

The response to a collision is also expressed simply. Each collision is treated as a perfectly elastic
instantaneous collision. The position and velocity are exchanged for each of the balls involved in the
collision.
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Simulating this model brings up a simple UI that shows the motion of the balls.

 Model Newton's Cradle

25-21



See Also

More About
• “Continuous-Time Modeling in Stateflow” on page 25-2
• “Reuse Logic Patterns by Defining Graphical Functions” on page 8-10
• “Modeling Newton's Cradle with Virtual Reality” on page 25-23
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Modeling Newton's Cradle with Virtual Reality
This example shows how to model a popular toy called "Newton's cradle" which consists of a row of
seven identical balls which are hung from a common height. At rest they are arranged such that they
just touch each other. One or more balls from one end are then raised from their rest position and
released.

An interesting consequence of elastic collisions between the balls is that the balls which are released
seem to come to a stop and an equal number of balls from the other end get released (with almost the
same energy as the incoming balls). The balls in the middle do not seem to move, although they are
responsible for transferring momentum from one end to another.

This example uses a simple elastic collision model to describe the interactions between the balls. The
Stateflow® chart uses local variables to depict the continuous states of the system, namely the
position p and the velocity v. Note that both these local variables are defined to have Update
method as continuous, so you can refer to their derivatives as p_dot and v_dot respectively.
Since the nominal dynamics of all the balls are identical, this example uses these vector assignments
to represent the motion of all of the balls:

p_dot = v;
v_dot = -g/l*sin(p);

Note that p_dot and v_dot are not chart local variables. They are automatically created because p
and v are defined to be continuous.
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The model uses a simple for-loop to detect collisions between balls. In a one-dimensional setting, the
chart only models collisions between successive balls with a single for loop.
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The response to a collision is also expressed simply. Each collision is treated as a perfectly elastic
instantaneous collision. The position and velocity are exchanged for each of the balls involved in the
collision.

Simulating this model creates a Simulink® 3D Animation™ which shows the motion of the balls.
Double-click on any ball to start the simulation.
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See Also

More About
• “Continuous-Time Modeling in Stateflow” on page 25-2
• “Reuse Logic Patterns by Defining Graphical Functions” on page 8-10
• “Model Newton's Cradle” on page 25-19
• “Simulink 3D Animation”
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Fixed-Point Data in Stateflow Charts

• “Fixed-Point Data in Stateflow Charts” on page 26-2
• “Build a Low-Pass Filter by Using Fixed-Point Data” on page 26-8
• “Supported Operations for Fixed-Point Data” on page 26-12
• “Fixed-Point Operations in Stateflow Charts” on page 26-19
• “Fixed-Point Mandelbrot Set” on page 26-25
• “Using Multiword Fixed-Point Data” on page 26-26
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Fixed-Point Data in Stateflow Charts
Fixed-point numbers use integers and integer arithmetic to approximate real numbers. They are an
efficient means for performing computations involving real numbers without requiring floating-point
support in underlying system hardware.

Fixed-Point Numbers
Fixed-point numbers represent real numbers by using the encoding scheme:

V ≈ Vapprox = SQ + B.

• V is a precise real-world value that you want to approximate with a fixed-point number.
• Vapprox is the approximate real-world value that results from the fixed-point representation.
• Q is an integer that encodes the fixed-point number. This value is called the quantized integer.
• S is a coefficient that determines the precision of the fixed-point representation. This value is

called the slope.
• B is an additive correction called the bias.

The quantized integer Q is the only part of the fixed-point representation that varies in value. In the
generated code, the quantities S and B are constant and appear only as literal numbers or
expressions. If a fixed-point number changes, its quantized integer Q changes but S and B remain
unchanged.

To determine the quantized integer Q corresponding to a real-world value V, round the quantity (V –
B)/S to an integer. For example, to represent the number V = 15.345 in a fixed-point type with slope S
= 0.5 and bias B = 0.1, you use the quantized integer

Q = round((V – B)/S) = round((15.345 – 0.1)/0.5) = round(30.49) = 30.
Because you round Q to an integer, you lose some precision in representing the number 15.345. The
number that Q actually represents is

Vapprox = SQ + B = 0.5 ⨉ 30 + 0.1 = 15.1.

Using fixed-point numbers to represent real numbers with integers involves the loss of some
precision. However, with a suitable choice of S and B, you can minimize this loss to acceptable levels.
For instance, by changing the coding scheme to use S = 0.25 and B = 0.1, you can represent the
number V = 15.345 with greater precision as:

Q = round((V – B)/S) = round((15.345 – 0.1)/0.25) = round(60.98) = 61
Vapprox = SQ + B = 0.25 ⨉ 61 + 0.1 = 15.35.

The difference between Vapprox and V is always less than the slope S.

Specify Fixed-Point Data
In the Model Explorer, you can specify the fixed-point encoding for a data object by using the Data
Type Assistant, as described in “Fixed-Point Data Properties” on page 12-10. Set the Mode field to
Fixed point and specify these properties:

• Signedness: Choose Signed or Unsigned.
• Word length: Specify the bit size of the word that holds the quantized integer Q.
• Scaling: Choose Binary point or Slope and bias.
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• If you select Binary point, the Data Type Assistant displays the Fraction length field,
which specifies the binary point location. Choosing a Fraction length of n defines a fixed-point
encoding with a slope of S = 2-n and a bias of B = 0 .

• If you select Slope and bias, the Data Type Assistant displays fields for entering the Slope
S and Bias B for the fixed-point encoding scheme.

Alternatively, you can specify the encoding for a fixed-point data object directly by using the fixdt
function. In the Property Inspector or the Model Explorer, in the Type field, enter an expression in
one of these formats:

fixdt(Signed, WordLength, FractionLength)

fixdt(Signed, WordLength, Slope, Bias)

Tip: Some encoding schemes are computationally expensive, particularly in multiplication and
division operations. Selecting a slope that is an integer power of two and a zero bias avoids these
computationally expensive instructions. Using binary point scaling is recommended.

Conversion Operations
Stateflow charts convert real numbers into fixed-point numbers during data initialization and as part
of casting operations in the application. These conversions compute a quantized integer Q from a real
number input. The type of conversion depends on the action language for the chart.

Conversion in Charts That Use MATLAB as the Action Language

In a chart that uses MATLAB as the action language, you define the method for all conversions
through the fixed-point properties for the chart. See “Fixed-Point Properties” on page 28-8.

For example, if you set the MATLAB Chart fimath property to Same as MATLAB, then the chart
rounds the resulting quantized integer to its nearest integer value.

Conversions in Charts That Use C as the Action Language

Charts that use C as the action language employ two methods for converting fixed-point data:

• Offline conversions initialize data during code generation. Offline conversions are designed to
maximize accuracy. These conversions round the resulting quantized integer to its nearest integer
value. Offline conversions are performed for initialization of data (variables and constants) in the
Stateflow hierarchy and from the MATLAB workspace.

• Online conversions perform casting operations during run time. Online conversions are designed
to maximize computational efficiency. They are faster and more efficient, but less precise than
offline conversions. Instead of rounding Q to its nearest integer, online conversions round to the
floor (except for division, which can round to 0, depending on the C compiler).
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For example, this table illustrates the difference between offline and online conversions of real
numbers to fixed-point numbers defined with a slope of S = 2-4 and a bias of B = 0. For each real-
world value V, the chart computes a quantized integer Q by rounding (V-B)/S to the nearest integer
(in offline conversion) or to the floor (in online conversion). For each conversion, Vapprox = QS + B is
the approximate real-world value resulting from Q.

Real-World Value Offline Conversion Online Conversion
V (V-B)/S Q Vapprox Q Vapprox
15.345 245.52 246 15.375 245 15.3125
3.45 55.2 55 3.4375 55 3.4375
1.0375 16.6 17 1.0625 16 1
2.06 32.96 33 2.0625 32 2

Fixed-Point Context-Sensitive Constants
In charts that use C as the action language, you can avoid explicit type casts by using fixed-point
context-sensitive constants. These constants infer their type from the context in which they occur.
They are written like ordinary numbers with the suffix C or c. For example, 4.3C and 123.4c are
valid fixed-point context-sensitive constants that you can use in action statements.

Although fixed-point context-sensitive constants can appear in expressions with any data types
(including integers and floating-point data), their main use is with fixed-point numbers. The algorithm
that interprets the context-sensitive constant computes a type that provides maximum accuracy
without overflow. The algorithm depends on:

• The operations in the expression
• The other data types in the context
• The value of the constant

Fixed-point context-sensitive constants infer their type according to these rules:

• In a casting operation, the constant has the type to which it is being cast.
• In a simple assignment operation of the form a = b:

• If b is a context-sensitive constant, it has the same type as a.
• If b is an addition or subtraction operation, then the constant has the same type as the other

operand.
• If b is a multiplication or division operation with a fixed-point operand, then the constant has

the type that provides the best possible precision for a fixed-point result, as determined by the
fixptbestexp function.

• If b is a multiplication or division operation with a floating-point operand of type double or
single, then the constant has the same type as the floating-point operand.

• In a special assignment operation of the form a := b:

• If b is a context-sensitive constant, it has the same type as a.
• If b is an arithmetic operation with a floating-point operand of type double or single, or if a

is a floating-point data object, then the constant has the same type as the floating-point
number.
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• If b is an addition or subtraction operation with a fixed-point operand and a is a fixed-point
data object, then the constant has the same type as a.

• If b is a multiplication or division operation with a fixed-point operand and a is a fixed-point
data object, then the constant has the type that provides the best possible precision for a fixed-
point result.

• As an argument in a function call, the constant has the same type as the formal argument.

You cannot use context-sensitive constants as both operands of a binary operation or as the leftmost
operand of an assignment operation.

Tips for Using Fixed-Point Data
• Develop and test your application by using double- or single-precision floating-point numbers.

Using double- or single-precision floating-point numbers does not limit the range or precision of
your computations. Once your application works as designed, you can start substituting fixed-
point data for double-precision data.

• In the Model Configuration Parameters dialog box, on the Hardware Implementation pane, set
the integer word size for the simulation environment to the integer size of the intended target
environment. Code generated by Stateflow uses this integer size to select result types for your
fixed-point operations. See “Hardware Implementation Pane” (Simulink).

• When you simulate your model, use overflow detection to warn you when the result of a fixed-
point operation exceeds the numeric capacity of its fixed-point type. In the Model Configuration
Parameters dialog box, on the Diagnostics > Data Validity pane, set Wrap on overflow and
Saturate on overflow to error or warning. If you encounter overflow errors in fixed-point data,
increase the range of your data by:

• Increasing the Word length value for the overflowing fixed-point data. For example, change
the number of bits used to encode the fixed-point data from 16 to 32. This action changes the
base integer type for Q from int16 to int32.

• Decreasing the Fraction length value (if using Binary point scaling) or increasing the
Slope value (if using Slope and bias scaling). For example, decrease the Fraction length
value from 4 to 1 (or, equivalently, increase the Slope value from S = 2-4 = 0.0625 to S = 2-1 =
0.5). This action increases the range of your fixed-point data but decreases the available
precision.

For more information, see “Data Range Violations” on page 33-38.
• If you encounter issues with model behavior stemming from inadequate precision in your fixed-
point data, increase the precision of your data by increasing the Fraction length value (if using
Binary point scaling) or decreasing the Slope value (if using Slope and bias scaling). For
example, increase the Fraction length value from 2 to 3 (or, equivalently, decrease the Slope
value from S = 2-2 = 0.25 to S = 2-3 = 0.125). This action increases the precision of your fixed-
point data but decreases the available range.

• In charts that use C as the action language, you can use a special assignment operation := and
context-sensitive constants to maintain as much precision as possible. See “Override Fixed-Point
Promotion in C Charts” on page 26-15 and “Fixed-Point Context-Sensitive Constants” on page 26-
4.

Note If you do not use context-sensitive constants with fixed-point types, noninteger numeric
constants (constants that have a decimal point) can force fixed-point operations to produce
floating-point results.
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Automatic Scaling of Fixed-Point Data
Automatic scaling tools can change the settings of Stateflow fixed-point data. You can prevent
automatic scaling by selecting the Lock data type setting against changes by the fixed-point
tools option for the fixed-point data object. See “Lock Data Type Against Fixed-Point Tools” on page
12-8. For methods on autoscaling fixed-point data, see “Choosing a Range Collection Method” (Fixed-
Point Designer).

Share Fixed-Point Data with Simulink Models
To share fixed-point data with Simulink models:

• Use the same property values to specify the data in the Stateflow chart and in the Simulink model.
For an example of this method of sharing input data from a Simulink model, see “Model Bang-
Bang Temperature Control System” on page 16-50.

For some Simulink blocks, you can specify the type of input or output data directly. For example,
you can specify the fixed-point data type for a Constant block directly in the Output data type
field by using the fixdt function.

• Define the data as Input or Output in the Stateflow chart and instruct the sending or receiving
block in the Simulink model to inherit its type from the chart data. In many blocks, you can set
data types through inheritance from the driving block, or through back propagation from the next
block. You can set the data type of a Simulink block to match the data type of the Stateflow port to
which it connects.

For example, you can set the Constant block to inherit its type from the Stateflow Input to
Simulink port that it supplies. Set the Output data type block parameter to Inherit via
back propagation.

Implementation of Fixed-Point Data in Stateflow
Stateflow charts define fixed-point data types from the values that you specify for S, B, and the base
integer type for Q.

• For each fixed-point data, the chart defines an integer variable for Q in the generated code. This
integer is the only part of a fixed-point number that changes in value. The available base types for
Q are the unsigned integer types uint8, uint16, and uint32, and the signed integer types int8,
int16, and int32. If a fixed-point number has a slope S = 1 and a bias B = 0, it is equivalent to
its quantized integer Q and behaves exactly as its base integer type.

• The slope S is factored into a coefficient F with 1 ≤ F < 2 and an integer power of two with
exponent E:

S = F ⨉ 2E.
If the fractional slope F is greater than 1, it is converted into a fixed-point number. Encoding
schemes with F > 1 can be computationally expensive, particularly in multiplication and division
operations. Setting F = 1 avoids these computationally expensive instructions. In this setting,
scaling by a power of 2 is implemented as bit shifts, which are more efficient than multiply
instructions. Therefore, using binary-point-only scaling, in which F = 1 and B = 0, is
recommended.

• Operations for fixed-point types are implemented with solutions for the quantized integer as
described in “Arithmetic Operations for Fixed-Point Data” on page 26-19. To generate efficient
code, the fixed-point promotion rules choose values for slope and bias that cancel difficult terms in
the solutions. See “Promotion Rules for Fixed-Point Operations” on page 26-20.
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See Also
fixdt | fixptbestexp

More About
• “Fixed-Point Operations in Stateflow Charts” on page 26-19
• “Supported Operations for Fixed-Point Data” on page 26-12
• “Build a Low-Pass Filter by Using Fixed-Point Data” on page 26-8
• “Set Data Properties” on page 12-5
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Build a Low-Pass Filter by Using Fixed-Point Data
This example shows how to build a Stateflow® chart that uses fixed-point data to implement a low-
pass Butterworth filter. By designing the filter with fixed-point data instead of floating-point data, you
can simulate your model using less memory. For more information, see “Fixed-Point Data in Stateflow
Charts” on page 26-2.

Build the Fixed-Point Butterworth Filter

The Low-Pass Filter chart is a stateless flow chart that accepts one input and provides one output.
The chart contains these data symbols:

• x — Scope: Input, Type: Inherit:Same as Simulink
• y — Scope: Output, Type: fixdt(1,16,10)
• x_n1 — Scope: Local, Type: fixdt(1,16,12)
• y_n1 — Scope: Local, Type: fixdt(1,16,10)
• b0 — Scope: Parameter, Type: fixdt(1,16,15)
• b1 — Scope: Parameter, Type: fixdt(1,16,15)
• a1 — Scope: Parameter, Type: fixdt(1,16,15)

The values of b0, b1, and a1 are the coefficients of the low-pass Butterworth filter.

To build the Low-Pass Filter chart:

1 Create a Simulink® model with an empty Stateflow chart by entering sfnew at the MATLAB®
command prompt.

2 In the Stateflow chart, add a flow chart with a single branch that assigns values to y, x_n1, and
y_n1.

3 Add input, output, local, and parameter data to the chart, as described in “Add Stateflow Data”
on page 12-2.

Define the Model Callback Function

Before loading the model, MATLAB calls the butter (Signal Processing Toolbox) function to compute
the values for the parameters b0, b1, and a1. The function constructs a first-order low-pass
Butterworth filter with a normalized cutoff frequency of (2*pi*Fc/(Fs/2)) radians per second,
where:

• The sampling frequency is Fs = 1000 Hz.
• The cutoff frequency is Fc = 50 Hz.
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The function output B contains the numerator coefficients of the filter in descending powers of z. The
function output A contains the denominator coefficients of the filter in descending powers of z.

Fs = 1000;
Fc = 50;
[B,A] = butter(1,2*pi*Fc/(Fs/2));
b0 = B(1);
b1 = B(2);
a1 = A(2);

To define the preload callback for the model:

1 In the Modeling tab, under Setup, select Model Settings > Model Properties.
2 In the Model Properties dialog box, on the Callbacks tab, select PreLoadFcn.
3 Enter the MATLAB code for the preload function call.
4 Click OK.

To load the parameter values to the MATLAB workspace, save, close, and reopen the model.

Add Other Blocks to the Model

To complete the model, add a Sine Wave (Simulink) block, a Data Type Conversion (Simulink) block,
and a Scope (Simulink) block. Connect and label the blocks according to this diagram.

Sine Wave block

The Sine Wave block outputs a floating-point signal. The block has these settings:

• Sine type: Time based
• Time: Use simulation time
• Amplitude: 1
• Bias: 0
• Frequency: 2*pi*Fc
• Phase: 0
• Sample time: 1/Fs
• Interpret vector parameters as 1-D: On

Data Type Conversion block

The Data Type Conversion block converts the floating-point signal from the Sine Wave block to a
fixed-point signal. By converting the signal to a fixed-point type, you can simulate your model using
less memory. The block has these settings:
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• Output minimum: []
• Output maximum: []
• Output data type: fixdt(1,16,14)
• Lock output data type setting against changes by the fixed-point tools: Off
• Input and output to have equal: Real World Value (RWV)
• Integer rounding mode: Floor
• Saturate on integer overflow: Off
• Sample time: -1

Scope block

The Scope block has two input ports that connect to the input and output signals for the Low-Pass
Filter chart. To display the two signals separately, select a scope layout with two rows and one
column.

Set Model Configuration Parameters

Because none of the blocks in the model have a continuous sample time, use a discrete solver with
these configuration parameters:

• Stop time: 0.1
• Type: Fixed-step
• Solver: discrete (no continuous states)
• Fixed-step size (fundamental sample time): 1/Fs

To configure the model:

1 In the Modeling tab, under Setup, select Model Settings.
2 In the Solver pane, set the discrete solver parameters.
3 Click OK.

Run the Model

When you simulate the model, the Scope block displays two signals. The top signal shows the fixed-
point version of the sine wave input to the chart. The bottom signal corresponds to the filtered output
from the chart. The filter removes high-frequency values from the signal but allows low-frequency
values to pass through the chart unchanged.
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See Also
sfnew | butter | Sine Wave | Data Type Conversion | Scope

More About
• “Fixed-Point Data in Stateflow Charts” on page 26-2
• “Fixed-Point Operations in Stateflow Charts” on page 26-19
• “Supported Operations for Fixed-Point Data” on page 26-12
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Supported Operations for Fixed-Point Data
Stateflow charts in Simulink models have an action language property that defines the syntax that
you use to compute with fixed-point data:

•
 MATLAB as the action language.

•
 C as the action language.

For more information, see “Differences Between MATLAB and C as Action Language Syntax” on page
17-5.

Binary Operations
This table summarizes the interpretation of all binary operations on fixed-point operands according to
their order of precedence (0 = highest, 9 = lowest). Binary operations are left associative so that, in
any expression, operators with the same precedence are evaluated from left to right.

Operation Precedenc
e

MATLAB as the Action Language C as the Action Language

a ^ b 0 Power. Not supported for fixed-point
operands defined by using either a
slope that is not an integer power of
two or a nonzero bias. Exponent
operand must be a constant whose
value is a non-negative integer.

Power. Enable this operation by
clearing the Enable C-bit
operations chart property. See
“Enable C-bit operations” on page
28-5.

a * b 1 Multiplication. For fixed-point
operands defined by using either a
slope that is not an integer power of
two or a nonzero bias, specify a chart
fimath object with ProductMode
set to SpecifyPrecision. See
“Multiplication” on page 26-22.

Multiplication. Not supported for
fixed-point operands defined by using
a nonzero bias. See “Multiplication”
on page 26-22.

a / b 1 Division. Not supported for fixed-
point operands defined by using
either a slope that is not an integer
power of two or a nonzero bias. See
“Division” on page 26-22.

Division. Not supported for fixed-
point operands defined by using a
nonzero bias. See “Division” on page
26-22.

a + b 2 Addition. For fixed-point operands
defined by using either a slope that is
not an integer power of two or a
nonzero bias, specify a chart fimath
object with SumMode set to
SpecifyPrecision. See “Addition
and Subtraction” on page 26-21.

Addition. See “Addition and
Subtraction” on page 26-21.
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Operation Precedenc
e

MATLAB as the Action Language C as the Action Language

a - b 2 Subtraction. For fixed-point operands
defined by using either a slope that is
not an integer power of two or a
nonzero bias, specify a chart fimath
object with SumMode set to
SpecifyPrecision. See “Addition
and Subtraction” on page 26-21.

Subtraction. See “Addition and
Subtraction” on page 26-21.

a > b 3 Comparison, greater than. See
“Relational Operations for Fixed-
Point Data” on page 26-19.

Comparison, greater than. Not
supported for fixed-point operands
with mismatched biases. See
“Relational Operations for Fixed-
Point Data” on page 26-19.

a < b 3 Comparison, less than. See
“Relational Operations for Fixed-
Point Data” on page 26-19.

Comparison, less than. Not supported
for fixed-point operands with
mismatched biases. See “Relational
Operations for Fixed-Point Data” on
page 26-19.

a >= b 3 Comparison, greater than or equal to.
See “Relational Operations for Fixed-
Point Data” on page 26-19.

Comparison, greater than or equal to.
Not supported for fixed-point
operands with mismatched biases.
See “Relational Operations for Fixed-
Point Data” on page 26-19.

a <= b 3 Comparison, less than or equal to.
See “Relational Operations for Fixed-
Point Data” on page 26-19.

Comparison, less than or equal to.
Not supported for fixed-point
operands with mismatched biases.
See “Relational Operations for Fixed-
Point Data” on page 26-19.

a == b 4 Comparison, equal to. See
“Relational Operations for Fixed-
Point Data” on page 26-19.

Comparison, equal to. Not supported
for fixed-point operands with
mismatched biases. See “Relational
Operations for Fixed-Point Data” on
page 26-19.

a ~= b 4 Comparison, not equal to. See
“Relational Operations for Fixed-
Point Data” on page 26-19.

Comparison, not equal to. Not
supported for fixed-point operands
with mismatched biases. See
“Relational Operations for Fixed-
Point Data” on page 26-19.

a != b 4 Not supported. Use the operation a
~= b. See “Relational Operations for
Fixed-Point Data” on page 26-19.

Comparison, not equal to. Not
supported for fixed-point operands
with mismatched biases. See
“Relational Operations for Fixed-
Point Data” on page 26-19.
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Operation Precedenc
e

MATLAB as the Action Language C as the Action Language

a <> b 4 Not supported. Use the operation a
~= b. See “Relational Operations for
Fixed-Point Data” on page 26-19.

Comparison, not equal to. Not
supported for fixed-point operands
with mismatched biases. See
“Relational Operations for Fixed-
Point Data” on page 26-19.

a && b 8 Logical AND. See “Logical
Operations for Fixed-Point Data” on
page 26-20.

Logical AND. See “Logical
Operations for Fixed-Point Data” on
page 26-20.

a || b 9 Logical OR. See “Logical Operations
for Fixed-Point Data” on page 26-20.

Logical OR. See “Logical Operations
for Fixed-Point Data” on page 26-20.

Unary Operations and Actions
This table summarizes the interpretation of all unary operations and actions on fixed-point operands.
Unary operations:

• Have higher precedence than binary operators.
• Are right associative so that, in any expression, they are evaluated from right to left.

Operation MATLAB as the Action Language C as the Action Language
~a Not supported. Use the expression a ==

cast(0,'like',a). See “Logical
Operations for Fixed-Point Data” on page
26-20.

Logical NOT. Enable this operation by
clearing the Enable C-bit operations
chart property. See “Logical Operations
for Fixed-Point Data” on page 26-20 and
“Enable C-bit operations” on page 28-5.

!a Not supported. Use the expression a ==
cast(0,'like',a). See “Logical
Operations for Fixed-Point Data” on page
26-20.

Logical NOT. See “Logical Operations for
Fixed-Point Data” on page 26-20.

-a Negative. See “Unary Minus” on page 26-
23.

Negative. See “Unary Minus” on page 26-
23.

a++ Not supported. Use the expression a = a
+1.

Increment. Equivalent to a = a+1.

a-- Not supported. Use the expression a =
a-1.

Decrement. Equivalent to a = a-1.

Assignment Operations
This table summarizes the interpretation of assignment operations on fixed-point operands.

Operation MATLAB as the Action Language C as the Action Language
a = b Simple assignment. Simple assignment.
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Operation MATLAB as the Action Language C as the Action Language
a := b Not supported. To override fixed-point

promotion rules, use explicit type cast
operations. See “Type Cast Operations” on
page 16-7.

Special assignment that overrides fixed-
point promotion rules. See “Override
Fixed-Point Promotion in C Charts” on
page 26-15.

a += b Not supported. Use the expression a = a
+b.

Equivalent to a = a+b.

a -= b Not supported. Use the expression a =
a-b.

Equivalent to a = a-b.

a *= b Not supported. Use the expression a =
a*b.

Equivalent to a = a*b.

a /= b Not supported. Use the expression a =
a/b.

Equivalent to a = a/b.

Override Fixed-Point Promotion in C Charts

In charts that use C as the action language, a simple assignment of the form a = b calculates an
intermediate value for b according to the fixed-point promotion rules. Then this intermediate value is
cast to the type of a by using an online conversion. See “Promotion Rules for Fixed-Point Operations”
on page 26-20 and “Conversion Operations” on page 26-3. Simple assignments are most efficient
when both types have equal bias and slopes that either are equal or are both powers of two.

In contrast, a special assignment of the form a := b overrides this behavior by initially using the
type of a as the result type for the value of b.

• Constants in b are converted to the type of a by using offline conversions.
• The expression b can contain at most one arithmetic operator (+, -, *, or /). The result is

determined by using an online conversion.
• If b contains anything other than an arithmetic operation or a constant, then the special

assignment operation behaves like the simple assignment operation (=).

Use the special assignment operation := when you want to:

• Avoid an overflow in an arithmetic operation. For example, see “Avoid Overflow in Fixed-Point
Addition” on page 26-15.

• Retain precision in a multiplication or division operation. For example, see “Improve Precision in
Fixed-Point Division” on page 26-16.

Note Using the special assignment operation := can result in generated code that is less efficient
than the code you generate by using the normal fixed-point promotion rules.

Avoid Overflow in Fixed-Point Addition

You can use the special assignment operation := to avoid overflow when performing an arithmetic
operation on two fixed-point numbers. For example, consider a chart that computes the sum a+b
where a = 212-1 = 4095 and b = 1.

Suppose that:
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• Both inputs are signed 16-bit fixed-point numbers with three fraction bits (type fixdt(1,16,3)).
• The output c is a signed 32-bit fixed-point number with three fraction bits (type fixdt(1,32,3)).
• The integer word size for production targets is 16 bits.

Because the target integer size is 16 bits, the simple assignment c = a+b adds the inputs in 16 bits
before casting the sum to 32 bits. The intermediate result is 4096, which, as a type fixdt(1,16,3)
value, results in an overflow.

In contrast, the special assignment c := a+b casts the inputs to 32 bits before computing the sum.
The result of 4096 is safely computed as a type fixdt(1,32,3) value without an overflow.

Improve Precision in Fixed-Point Division

You can use the special assignment operation := to obtain a more precise result when multiplying or
dividing two fixed-point numbers. For example, consider a chart that computes the ratio a/b where a
= 2 and b = 3.

Suppose that:

• The input a is a fixed-point number with four fraction bits (type fixdt(1,16,4)).
• The input b is a fixed-point number with three fraction bits (type fixdt(1,16,3)).
• The output c is a signed 16-bit fixed-point number with six fraction bits (type fixdt(1,16,6)).

The inputs correspond to these slopes and quantized integers:
Sa = 2–4, Qa = 32
Sb = 2–3, Qb = 24.

The simple assignment c = a/b first calculates an intermediate value for a/b according to the fixed-
point promotion rules. The quantized integer is rounded to the floor:

Sint = Sa/Sb = 2-4/2-3 = 2-1

Qint = Qa/Qb = 32/24 ≈ 1.
The intermediate result is then cast as a signed 16-digit fixed-point number with six fraction bits:

Sc = 2-6 = 1/64
Qc = SintQint/Sc = 2-1/2-6 = 25 = 32.

Therefore, the approximate real-world value for c is Vc ≈ ScQc = 32/64 = 0.5. This result is not a
good approximation of the actual value of 2/3.

In contrast, the special assignment c := a/b calculates a/b directly as a signed 16-digit fixed-point
number with six fraction bits. Again, the quantized integer is rounded to the floor:

Sc = 2-6 = 1/64
Qc = (SaQa)/(ScSbQb) = 128/3 ≈ 42.

Therefore, the approximate real-world value for c is Vc ≈ ScQc = 42/64 = 0.6563. This result is a
better approximation to the actual value of 2/3.

Compare Results of Fixed-Point Arithmetic
This example shows the difference between various implementations of fixed-point arithmetic in
Stateflow charts. The model contains three charts that calculate the ratio a/b where a = 19 and b =
24. Both inputs are signed 16-digit fixed-point numbers with one fraction bit (type fixdt(1,16,1)).
They correspond to these slopes and quantized integers:
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The model calculates the value of a/b as a floating-point number of type fixdt(1,16,1) in three
different ways:

• A type casting operation in a chart that uses MATLAB as the action language.
• A simple assignment operation in a chart that uses C as the action language.
• A special assignment operation in a chart that uses C as the action language.

Type Casting in Chart That Uses MATLAB as the Action Language

The chart at the top of the model computes an intermediate value for a/b. The quantized integer for
the intermediate value is rounded to the nearest integer:

The intermediate value is then cast as a signed 16-digit fixed-point number c with one fraction bit:

The output value from this chart is
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Simple Assignment in Chart That Uses C as the Action Language

The middle chart also computes an intermediate value for a/b. In this case, the quantized integer for
the intermediate value is rounded to the floor:

The intermediate value is then cast as a signed 16-digit fixed-point number c with one fraction bit:

The output value from this chart is

Special Assignment in Chart That Uses C as the Action Language

The chart at the bottom of the model uses a special assignment of the form c := a/b. The value of
the division is calculated directly as a signed 16-digit fixed-point number with one fraction bit. The
quantized integer is rounded to the floor:

Therefore, the output value from this chart is

The three results exhibit loss of precision compared to the floating-point answer of 19/24 = 0.7917.
To minimize the loss of precision to an acceptable level in your application, adjust the encoding
scheme in your fixed-point data.

See Also

More About
• “Fixed-Point Data in Stateflow Charts” on page 26-2
• “Fixed-Point Operations in Stateflow Charts” on page 26-19
• “Build a Low-Pass Filter by Using Fixed-Point Data” on page 26-8
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Fixed-Point Operations in Stateflow Charts
Fixed-point numbers use integers and integer arithmetic to approximate real numbers. They enable
you to perform computations involving real numbers without requiring floating-point support in
underlying system hardware. For more information, see “Fixed-Point Data in Stateflow Charts” on
page 26-2.

Arithmetic Operations for Fixed-Point Data
The general equation for a binary arithmetic operation between fixed-point operands is

c = a <op> b

where a and b are fixed-point numbers and <op> refers to addition, subtraction, multiplication, or
division. The result of the operation is a fixed-point number c of the form

Vc ≈ ScQc + Bc.
The fixed-point type for c determines the slope Sc, the bias Bc, and the number of bits used to store
the quantized integer Qc. For each arithmetic operation, this table lists the value of the quantized
integer Qc in terms of the values of the operands (a and b) and the fixed-point type for c.

Operation Slope and Bias Scaling Binary-Point Scaling
Addition c = a+b Qc = round((Sa/Sc)Qa + (Sb/Sc)Qb +

(Ba + Bb – Bc)/Sc)
Qc = round((Sa/Sc)Qa + (Sb/Sc)Qb)

Subtraction c = a-b Qc = round((Sa/Sc)Qa – (Sb/Sc)Qb – (Ba
– Bb – Bc)/Sc)

Qc = round((Sa/Sc)Qa – (Sb/Sc)Qb)

Multiplicati
on

c = a*b Qc = round((SaSb/Sc)QaQb + (BaSb/
Sc)Qa + (BbSa/Sc)Qb + (BaBb – Bc)/Sc)

Qc = round((SaSb/Sc)QaQb)

Division c = a/b Qc = round((SaQa + Ba)/(Sc(SbQb +
Bb)) – (Bc/Sc))

Qc = round((Sa/(SbSc))Qa/Qb)

To simplify these expressions and avoid computationally expensive operations, use binary-point
scaling to encode all your fixed-point data. With this setting, the slope is an integer power of two and
the bias is zero. Then, all fixed-point operations consist of integer arithmetic and bit shifts on the
quantized integers.

Note The result of an arithmetic operation depends on the rounding method that computes the value
of the quantized integer Qc. For more information, see “Conversion Operations” on page 26-3.

Relational Operations for Fixed-Point Data
You can use relational operations to compare fixed-point data. Comparing fixed-point values of
different types can yield unexpected results because each operand is converted to a common type for
comparison. Because of rounding or overflow errors during the conversion, some values that appear
to be equal are not equal as fixed-point numbers.

For example, suppose that a and b represent the real-world value V = 2.2 in two different fixed-point
encoding schemes:

• a is a fixed-point number with slope Sa = 0.3 and bias Ba = 0.1. The quantized integer for a is:
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Qa = (V – Ba)/Sa = (2.2 – 0.1)/0.3 = 7.
• b is a fixed-point number with slope Sb = 0.7 and bias Bb = 0.1. The quantized integer for b is:

Qb = (V – Bb)/Sb = (2.2 – 0.1)/0.7 = 3.

To compare these values, the chart first converts them to a common fixed-point type with slope Scomp
= 1.06811 · 10–5 ≈ Sa/28087 ≈ Sb · 2–16 and bias Bcomp = 0.1. (In this case, the slope Scomp arises from
the approximate value of Sa/Sb = 0.3/0.7 ≈ 28087 · 2–16.) In this common encoding scheme, a and b
correspond to these quantized integers:

Qa' = SaQa/Scomp = Qa(Sa/Scomp) ≈ 7 ⨉ 28087 = 196609
Qb' = SbQb/Scomp = Qb(Sb/Scomp) ≈ 3 ⨉ 216 = 196608.

After the conversion, the quantized integers are different. Although a and b represent the same real-
world value, they are not equal as fixed-point numbers.

Note In charts that use C as the action language, comparisons of fixed-point operands with
mismatched biases are not supported.

Logical Operations for Fixed-Point Data
In a logical operation, a fixed-point operand a is interpreted as false if it corresponds to the real-
world value for zero in the fixed-point type of a. Otherwise, a is interpreted as true.

• In charts that use MATLAB as the action language, using a in a logical operation is equivalent to
the expression a ~= cast(0,'like',a).

• In charts that use C as the action language, using a in a logical operation is equivalent to the
expression a != 0c, where 0c is a fixed-point context-sensitive constant. See “Fixed-Point
Context-Sensitive Constants” on page 26-4.

For example, suppose that a is a fixed-point number with a slope of Sa = 0.25 and a bias of Ba = 5.1.
Using a in a logical operation is equivalent to testing whether the quantized integer Qa satisfies the
condition

Qa = round((0 – Ba)/Sa) = round(–5.1 / 0.25) = round(–20.4) = –20.
Therefore, a is equivalent to false when its real-world approximation is

Va ≈ SaQa + Ba = 0.25 ⨉ ( –20) + 5.1 = 0.1.

Promotion Rules for Fixed-Point Operations
The rules for selecting the numeric type used for the result of an operation on fixed-point numbers
are called fixed-point promotion rules. These rules help to maintain computational efficiency and
usability.

The fixed-point promotion rules determine a result type for an operation c = a <op> b by selecting
the slope Sc, the bias Bc, and the number of bits wc used to store the quantized integer Qc. These
parameters depend on the fixed-point types of the operands a and b, the operation <op> to be
performed, and the action language property for the chart.

• In a chart that uses MATLAB as the action language, you control the fixed-point promotion rules
through the fixed-point properties for the chart. See “Fixed-Point Properties” on page 28-8.

• If you set the MATLAB Chart fimath property to Same as MATLAB, then arithmetic
operations follow the default fixed-point promotion rules for MATLAB. See “Performing Fixed-
Point Arithmetic” (Fixed-Point Designer).
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• If you specify a chart fimath object with SumMode and ProductMode set to
SpecifyPrecision, then you can define the word length, slope, and bias for all sums and
products explicitly. See “fimath Object Properties” (Fixed-Point Designer).

• In a chart that uses C as the action language, the fixed-point promotion rules determine the type
for an intermediate value of the result. This intermediate value is then cast to the type that you
specify for c.

For all arithmetic operations, the default number of bits wc used to store the quantized integer is
the larger value between:

• The maximum number of bits in the operand types (wa and wb).
• The number of bits in the integer word size for the target machine (wint).

To set the value of wint, open the Model Configuration Parameters dialog box. On the
Hardware Implementation pane, select Custom Processor from the Device vendor drop-
down list and enter the target integer word size in the int field. For more information, see
“Hardware Implementation Pane” (Simulink).

You can avoid overflow and improve the precision in your floating-point operations by using the
special assignment operation of the form c := a <op> b. The special assignment operation does
not follow the fixed-point promotion rules. Instead, the chart determines the result of the
operation by using the type that you specify for c. See “Override Fixed-Point Promotion in C
Charts” on page 26-15.

Addition and Subtraction

By default, charts that use MATLAB as the action language support addition and subtraction only on
fixed-point data defined through binary-point scaling. If either operand is a signed fixed-point number,
then the result is also signed. The choice of word length accommodates the integer and fraction parts
of each operand in addition to a possible carry bit. The fraction length of the result is equal to the
fraction length of the most precise operand. To perform addition and subtraction on fixed-point data
defined by using either a slope that is not an integer power of two or a nonzero bias, specify a chart
fimath object with SumMode set to SpecifyPrecision.

Charts that use C as the action language support addition and subtraction for operands of all fixed-
point data types. The result is a signed fixed-point number only if both operands are signed. Mixing
signed and unsigned operands can yield unexpected results and is not recommended. The slope of the
result is equal to the slope of the least precise operand. To simplify calculations and yield efficient
code, the biases of the two inputs are added for an addition operation and subtracted for a
subtraction operation.

 a b MATLAB as the Action
Language

C as the Action Language

Sign sa sb sc = sa||sb sc = sa && sb
Word length wa wb wc = max(wa – fa, wb – fb) +

max(fa, fb) + 1
wc = max(wa, wb, wint)

Fraction
length

fa fb fc = max(fa, fb) fc = min(fa, fb)
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 a b MATLAB as the Action
Language

C as the Action Language

Slope Sa (2-fa if
using binary-
point
scaling)

Sb (2-fb if
using binary-
point
scaling)

Sc = min(Sa, Sb) Sc = max(Sa, Sb)

Bias Ba (0 if using
binary-point
scaling)

Bb (0 if using
binary-point
scaling)

Bc = 0 Bc = Ba + Bb for addition or
Bc = Ba – Bb for subtraction

Multiplication

By default, charts that use MATLAB as the action language support multiplication only on fixed-point
data defined through binary-point scaling. If either operand is a signed fixed-point number, then the
result is also signed. A full precision product requires a word length equal to the sum of the word
lengths of the operands. The fraction length of a product is the sum of the fraction lengths of the
operands. To perform multiplication on fixed-point data defined by using either a slope that is not an
integer power of two or a nonzero bias, specify a chart fimath object with ProductMode set to
SpecifyPrecision.

Charts that use C as the action language support multiplication only on fixed-point data operands
defined by nonzero biases. The result is a signed fixed-point number only if both operands are signed.
Mixing signed and unsigned operands can yield unexpected results and is not recommended. The
slope of a product is the product of the slopes of the operands.

 a b MATLAB as the Action
Language

C as the Action Language

Sign sa sb sc = sa||sb sc = sa && sb
Word length wa wb wc = wa + wb wc = max(wa, wb, wint)
Fraction
length

fa fb fc = fa + fb fc = fa + fb

Slope Sa (2-fa if
using binary-
point
scaling)

Sb (2-fb if
using binary-
point
scaling)

Sc = SaSb Sc = SaSb

Bias Ba = 0 Bb = 0 Bc = 0 Bc = 0

Division

Charts that use MATLAB as the action language support division only on fixed-point data defined
through binary-point scaling. If either operand is a signed fixed-point number, then the result is also
signed. A full precision quotient requires a word length equal to the maximum number of bits in the
operands. The fraction length of a quotient is the difference of the fraction lengths of the operands.

Charts that use C as the action language support division for fixed-point data operands defined by
nonzero biases. The result is a signed fixed-point number only if both operands are signed. Mixing
signed and unsigned operands can yield unexpected results and is not recommended. The slope of a
quotient is the quotient of the slopes of the operands.
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 a b MATLAB as the Action
Language

C as the Action Language

Sign sa sb sc = sa||sb sc = sa && sb
Word length wa wb wc = max(wa, wb) wc = max(wa, wb, wint)
Fraction
length

fa fb fc = fa – fb fc = fa – fb

Slope Sa (2-fa if
using binary-
point
scaling)

Sb (2-fb if
using binary-
point
scaling)

Sc = Sa/Sb Sc = Sa/Sb

Bias Ba = 0 Bb = 0 Bc = 0 Bc = 0

Unary Minus

The only unary operation that requires a promotion of its result type is the unary minus operation c
= -a. Taking the negative of an unsigned fixed-point number can yield unexpected results and is not
recommended. The word size of the result depends on the action language property of the chart. The
slope of the result is equal to the slope of the operand. The bias of the result type is the negative of
the bias of the operand.

 a MATLAB as the Action
Language

C as the Action Language

Sign sa sc = sa sc = sa
Word length wa wc = wa wc = max(wa, wint)
Fraction length fa fc = fa fc = fa
Slope Sa (2-fa if using

binary-point
scaling)

Sc = Sa Sc = Sa

Bias Ba (0 if using
binary-point
scaling)

Bc = –Ba Bc = –Ba

Arithmetic with Mixed Numeric Types

This table summarizes the fixed-point promotion rules for a binary operation between a fixed-point
number and an operand of a different numeric type.
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Numeric Type of
Second Operand

MATLAB as the Action Language C as the Action Language

Floating-point
numbers:

• single
• double

Before performing the operation, the
chart casts the floating-point operand
to a fixed-point number. The type used
for the cast depends on the operation:

• Addition and subtraction operations
use the same type as the fixed-point
operand.

• Multiplication operations use the
same word length and signedness
as the fixed-point operand, and the
best precision fraction length for a
fixed-point result.

The result of the operation is a fixed-
point number.

Before performing the operation, the
chart casts the fixed-point operand to a
floating-point number . The casting
operation uses the same type (single
or double) as the floating-point
operand. The result of the operation is
a floating-point number.

Integers:

• int64
• int32
• int16
• int8
• uint64
• uint32
• uint16
• uint8

The integer operand is treated as a
fixed-point number of the same word
length and signedness with slope S = 1
and bias B = 0. The result of the
operation is a fixed-point number.

The integer operand is treated as a
fixed-point number of the same word
length and signedness with slope S = 1
and bias B = 0. The result of the
operation is a fixed-point number.

See Also

More About
• “Fixed-Point Data in Stateflow Charts” on page 26-2
• “Supported Operations for Fixed-Point Data” on page 26-12
• “Build a Low-Pass Filter by Using Fixed-Point Data” on page 26-8
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Fixed-Point Mandelbrot Set
This example shows the difference between fixed-point and floating-point computation by displaying
the result of computing the Mandelbrot set using each data type.

To zoom in on a portion of the image, click and drag in the image window. To zoom out, restart the
simulation.

The simulation continues to run until you click Stop.

See Also

More About
• “Fixed-Point Data”
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Using Multiword Fixed-Point Data
This example shows a simple use of multiword fixed-point data in Stateflow® charts. You can define
multiword fixed-point data at the chart level, with one of the following scopes:

• Input
• Output
• Parameter
• Data Store Memory

You can also pass these data as inputs and outputs to and from MATLAB® functions, MATLAB truth
tables, and Simulink® functions in Stateflow charts.

Chart MultiwordFixptIO takes in an input, data, that is a multiword fixed-point type, and returns an
output, out, that is also a multiword fixed-point data type.

The chart defines a Simulink function foo that declares both its input and output to be of multiword
fixed-point type. foo returns the value of its input, incremented by a fixed-point constant value. At
each time step, the chart MultiwordFixptIO passes its input to foo, and assigns the output from foo
to out.
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See Also

More About
• “Fixed-Point Data”
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Complex Data

• “Complex Data in Stateflow Charts” on page 27-2
• “Supported Operations for Complex Data” on page 27-4
• “Rules for Using Complex Data in C Charts” on page 27-7
• “Best Practices for Using Complex Data in C Charts” on page 27-9
• “Measure Frequency Response by Using Spectrum Analyzer” on page 27-12
• “Detect Valid Transmission Data by Using Frame Synchronization” on page 27-18
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Complex Data in Stateflow Charts
Complex data is data whose value is a complex number. For example, in a Stateflow chart in Simulink
model, an input signal with the value 3 + 5i is complex. See “Complex Signals” (Simulink).

Define Complex Data
1 Add a data object to your chart, as described in “Add Stateflow Data” on page 12-2.
2 Set the Complexity property for the data object to On. For more information, see “Complexity”

on page 12-7.
3 Specify the name, scope, size, base type, and other properties for the data object, as described in

“Set Data Properties” on page 12-5.

• Complex data does not support the scope Constant.
• Complex data does not support the base types ml, struct, and boolean.

When to Use Complex Data
Use complex data when you model applications in communication systems and digital signal
processing. For example, you can use this design pattern to model a frame synchronization algorithm
in a communication system:

1 Use Simulink blocks (such as filters) to process complex signals.
2 Use charts to implement mode logic for frame synchronization.
3 Let the charts access complex input and output data so that nested MATLAB functions can drive

the mode logic.

For an example of modeling a frame synchronization algorithm, see “Detect Valid Transmission Data
by Using Frame Synchronization” on page 27-18.

Note Continuous-time variables of complex type are not supported. For more information, see “Store
Continuous State Information in Local Variables” on page 25-6.

Where You Can Use Complex Data
You can define complex data at these levels of the Stateflow hierarchy:

• Charts
• Subcharts
• States
• Functions

How You Can Use Complex Data
You can use complex data to define:

• Complex vectors
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• Complex matrices

You can also use complex data as arguments for:

• State actions
• Transition actions
• MATLAB functions (see “Reuse MATLAB Code by Defining MATLAB Functions” on page 9-2)
• Truth table functions (see “Use Truth Tables to Model Combinatorial Logic” on page 10-2)
• Graphical functions (see “Reuse Logic Patterns by Defining Graphical Functions” on page 8-10)
• Change detection operators (see “Detect Changes in Data and Expression Values” on page 16-62)

Note Exported functions do not support complex data as arguments.

See Also

More About
• “Supported Operations for Complex Data” on page 27-4
• “Rules for Using Complex Data in C Charts” on page 27-7
• “Best Practices for Using Complex Data in C Charts” on page 27-9
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Supported Operations for Complex Data
Stateflow charts in Simulink models have an action language property that defines the syntax that
you use to compute with complex data. The action language properties are:

•
 MATLAB as the action language.

•
 C as the action language.

For more information, see “Differences Between MATLAB and C as Action Language Syntax” on page
17-5.

Notation for Complex Data
In charts that use MATLAB as the action language, you can define complex data by using complex
number notation a + bi, where a and b are real numbers. For example, this statement assigns a
value of 3+4i to x:

x = 3 + 4i;

Alternatively, you can define complex data by using the complex operator:

complex(<real_part>,<imag_part>)

<real_part> and <imag_part> are arguments that define the real and imaginary parts of the
complex number, respectively. The two arguments must be real values or expressions that evaluate to
real values. As in the preceding example, this statement assigns a value of 3+4i to x:

x = complex(3,4);

Charts that use C as the action language do not support complex number notation a + bi. To define
a complex number based on two real values, use the complex operator.

Binary Operations
This table summarizes the interpretation of all binary operations on complex operands according to
their order of precedence (1 = highest, 3 = lowest). Binary operations are left associative so that, in
any expression, operators with the same precedence are evaluated from left to right.

Operation Precedenc
e

MATLAB as the Action Language C as the Action Language

a * b 1 Multiplication. Multiplication.
a / b 1 Division. Not supported. Use the \ operation

in a MATLAB function. See “Perform
Complex Division with a MATLAB
Function” on page 27-10.

a + b 2 Addition. Addition.
a - b 2 Subtraction. Subtraction.
a == b 3 Comparison, equal to. Comparison, equal to.
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Operation Precedenc
e

MATLAB as the Action Language C as the Action Language

a ~= b 3 Comparison, not equal to. Comparison, not equal to.
a != b 3 Not supported. Use the operation a

~= b.
Comparison, not equal to.

a <> b 3 Not supported. Use the operation a
~= b.

Comparison, not equal to.

Unary Operations and Actions
This table summarizes the interpretation of all unary operations and actions on complex data. Unary
operations:

• Have higher precedence than the binary operators.
• Are right associative so that, in any expression, they are evaluated from right to left.

Operation MATLAB as the Action Language C as the Action Language
-a Negative. Negative.
a++ Not supported. Use the expression a = a

+1.
Increment. Equivalent to a = a+1.

a-- Not supported. Use the expression a =
a-1.

Decrement. Equivalent to a = a-1.

Assignment Operations
This table summarizes the interpretation of assignment operations in Stateflow charts.

Operation MATLAB as the Action Language C as the Action Language
a = b Simple assignment. Simple assignment.
a += b Not supported. Use the expression a = a

+b.
Equivalent to a = a+b.

a -= b Not supported. Use the expression a =
a-b.

Equivalent to a = a-b.

a *= b Not supported. Use the expression a =
a*b.

Equivalent to a = a*b.

Access Real and Imaginary Parts of a Complex Number
To access the real and imaginary parts of a complex number, use the real and imag operators.

real Operator

The real operator returns the value of the real part of a complex number:

real(<complex_expr>)

<complex_expr> is an expression that evaluates to a complex number. For example, if frame(200)
evaluates to the complex number 8.23 + 4.56i, this expression returns a value of 8.2300:
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real(frame(200))

imag Operator

The imag operator returns the value of the imaginary part of a complex number:

imag(<complex_expr>)

<complex_expr> is an expression that evaluates to a complex number. For example, if frame(200)
evaluates to the complex number 8.23 + 4.56i, this expression returns a value of 4.5600:

imag(frame(200))

See Also
complex | i | imag | real

More About
• “Complex Data in Stateflow Charts” on page 27-2
• “Rules for Using Complex Data in C Charts” on page 27-7
• “Best Practices for Using Complex Data in C Charts” on page 27-9
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Rules for Using Complex Data in C Charts
Complex data is data whose value is a complex number. For example, in a Stateflow chart in Simulink
model, an input signal with the value 3 + 5i is complex. See “Complex Data in Stateflow Charts” on
page 27-2.

These rules apply when you use complex data in Stateflow charts that use C as the action language.

Do not use complex number notation in actions

C charts do not support complex number notation (a + bi), where a and b are real numbers.
Therefore, you cannot use complex number notation in state actions, transition conditions and
actions, or any statements in C charts.

To define a complex number, use the complex operator as described in “Notation for Complex Data”
on page 27-4.

Do not perform math function operations on complex data in C charts

Math operations such as sin, cos, min, max, and abs do not work with complex data in C charts.
However, you can use MATLAB functions for these operations.

For more information, see “Perform Math Function Operations with a MATLAB Function” on page 27-
9.

Mix complex and real operands only for addition, subtraction, and multiplication

If you mix operands for any other math operations in C charts, an error appears when you try to
simulate your model.

To mix complex and real operands for division, you can use a MATLAB function as described in
“Perform Complex Division with a MATLAB Function” on page 27-10.

Tip Another way to mix operands for division is to use the complex, real, and imag operators in C
charts.

Suppose that you want to calculate y = x1/x2, where x1 is complex and x2 is real. You can rewrite
this calculation as:

y = complex(real(x1)/x2, imag(x1)/x2)

For more information, see “Access Real and Imaginary Parts of a Complex Number” on page 27-5.

Do not define complex data with constant scope

If you define complex data with Constant scope, an error appears when you try to simulate your
model.

Do not define complex data with ml, struct, or boolean base type

If you define complex data with ml, struct, or boolean base type, an error appears when you try to
simulate your model.
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Use only real values to set initial values of complex data

When you define the initial value for data that is complex, use only a real value. See “Additional
Properties” on page 12-16 for instructions on setting an initial value in the Data properties dialog
box.

Do not enter minimum or maximum values for complex data

In the Data properties dialog box, do not enter any values in the Minimum or Maximum field when
you define complex data. If you enter a value in either field, an error message appears when you try
to simulate your model.

Assign complex values only to data of complex type

If you assign complex values to real data types, an error appears when you try to simulate your
model.

Note You can assign both real and complex values to complex data types.

Do not pass real values to function inputs of complex type

This restriction applies to the following types of chart functions:

• Graphical functions
• Truth table functions
• MATLAB functions
• Simulink functions

If your C chart passes real values to function inputs of complex type, an error appears when you try
to simulate your model.

Do not use complex data with temporal logic operators

You cannot use complex data as an argument for temporal logic operators, because you cannot define
time as a complex number.

See Also

More About
• “Complex Data in Stateflow Charts” on page 27-2
• “Supported Operations for Complex Data” on page 27-4
• “Best Practices for Using Complex Data in C Charts” on page 27-9
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Best Practices for Using Complex Data in C Charts
Complex data is data whose value is a complex number. For example, in a Stateflow chart in Simulink
model, an input signal with the value 3 + 5i is complex. See “Complex Data in Stateflow Charts” on
page 27-2.

When you use complex data in Stateflow charts that use C as the action language, follow these best
practices.

Perform Math Function Operations with a MATLAB Function
Math functions such as sin, cos, min, max, and abs do not work with complex data in C charts.
However, you can use a MATLAB function in your chart to perform math function operations on
complex data.

A Simple Example

In the following chart, a MATLAB function calculates the absolute value of a complex number:

The value of comp_num is 1+2i. Calculating the absolute value gives an answer of 2.2361.

How to Calculate Absolute Value

Suppose that you want to find the absolute value of a complex number. Follow these steps:

1 Add a MATLAB function to your chart with this signature:

y = myabs(u)
2 Double-click the function box to open the editor.
3 In the editor, enter the code below:

function y = myabs(u)
%#codegen
y = abs(u);

The function myabs takes a complex input u and returns the absolute value as an output y.
4 Configure the input argument u to accept complex values.

a Open the Model Explorer.
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b In the Model Hierarchy pane of the Model Explorer, navigate to the MATLAB function
myabs.

c In the Contents pane of the Model Explorer, right-click the input argument u and select
Properties from the context menu.

d In the Data properties dialog box, select On in the Complexity field and click OK.

You cannot pass real values to function inputs of complex type. For details, see “Rules for Using
Complex Data in C Charts” on page 27-7.

Perform Complex Division with a MATLAB Function
Division with complex operands is not available as a binary or assignment operation in C charts.
However, you can use a MATLAB function in your chart to perform division on complex data.

A Simple Example

In the following chart, a MATLAB function performs division on two complex operands:

The values of comp_num and comp_den are 1+2i and 3+4i, respectively. Dividing these values gives
an answer of 0.44+0.08i.

How to Perform Complex Division

To divide two complex numbers:

1 Add a MATLAB function to your chart with this function signature:

y = mydiv(u1, u2)
2 Double-click the function box to open the editor.
3 In the editor, enter the code below:

function y = mydiv(u1, u2)
%#codegen
y = u1 / u2;

The function mydiv takes two complex inputs, u1 and u2, and returns the complex quotient of
the two numbers as an output y.

4 Configure the input and output arguments to accept complex values.

27 Complex Data

27-10



a Open the Model Explorer.
b In the Model Hierarchy pane of the Model Explorer, navigate to the MATLAB function

mydiv.
c For each input and output argument, follow these steps:

i In the Contents pane of the Model Explorer, right-click the argument and select
Properties from the context menu.

ii In the Data properties dialog box, select On in the Complexity field and click OK.

You cannot pass real values to function inputs of complex type. For details, see “Rules for Using
Complex Data in C Charts” on page 27-7.

See Also

More About
• “Complex Data in Stateflow Charts” on page 27-2
• “Supported Operations for Complex Data” on page 27-4
• “Rules for Using Complex Data in C Charts” on page 27-7
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Measure Frequency Response by Using Spectrum Analyzer
This example shows how to emulate a spectrum analyzer that measures the frequency response of a
continuous-time system driven by a complex sinusoidal signal. In this Simulink® model, the Plant
block describes a second-order resonant system of the form

with a natural frequency of  (or 150 Hz) and a damping ratio of . Because the
system is underdamped ( ), the system has two complex conjugate poles. In a real-world
application, replace this block with a subsystem composed of xPC D/A and A/D blocks that measure
the response of a device under test (DUT).

The spectrum analyzer consists of these components:

• The Sinusoidal Generator block, which produces a complex sinusoidal signal of increasing
frequency. Inside the block, a Stateflow® chart uses temporal logic to iterate over a range of
frequencies.

• The Stateflow chart Analyzer, which calculates the frequency response (magnitude and phase
angle) of the system at a specified frequency. The chart registers changes in the frequency by
using change detection logic.

• The Stateflow chart Unwrap, which processes the measured phase angle and unwraps the result
so that there are no sharp jumps between  and .

The spectrum analyzer displays the measured frequency response as a pair of discrete Bode plots.

Generate Sinusoid Signal

The Sinusoid Generator block has two outputs:

• A scalar f that represents the current frequency.
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• A complex signal y that has a frequency of f.

You can control the behavior of the block by modifying its mask dialog box parameters. For example,
the default values specify a sinusoidal signal with frequencies between 10Hz and 1000Hz. The block
holds each frequency value for 0.2 seconds, and then increments the frequency by a step of 10Hz.

To control the timing of the signal generator, the block contains a Stateflow chart that applies
absolute-time temporal logic.
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During simulation, the chart goes through these stages:

• Initialize Frequency: The default transition sets the signal frequency f to the value of the
parameter fstart. Specify the value of fstart in the Sinusoid Generator mask dialog box.

• Generate Signal: While the Generate state is active, the chart produces the complex signal y =
exp(2*pi*f*t*1i) based on the frequency f and the time t since the last change in frequency.
To determine the elapsed time (in seconds) since the state became active, the chart calls the
temporal logic operator temporalCount.

• Update Frequency: After the Generate state is active for delay seconds, the chart transitions
out of the state, increases the frequency f by fstep, and returns to the Generate state. To
determine the timing of the frequency updates, the chart calls the temporal logic operator after
and checks the sign of the imaginary part of the signal before and after the current time step. The
sign checks ensure that the output signal completes a full cycle before the frequency is updated,
preventing large changes in the output signal. Specify the values of fstep and delay in the
Sinusoid Generator mask dialog box.

• Stop Simulation: When the frequency f reaches the value of the parameter fstop, the chart
transitions to the Stopped state. The active state output Stopped triggers a Stop Simulation
(Simulink) block and the simulation ends. Specify the value of fstop in the Sinusoid Generator
mask dialog box.

Calculate Frequency Response

The Analyzer chart takes the complex signal u and the output yp from the Plant block and computes
the magnitude and phase of the plant output.
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For each frequency value, the chart maintains two running sums:

• The sum y approximates the integral of the product of the plant output yp (a real number) and the
complex signal u.

• The sum yn approximates the integral of the product of the plant input imag(u) and the complex
signal u. This integral represents the accumulation of a hypothetical plant with a unit transfer
function.

To detect a change in frequency, the chart uses the operator hasChanged to guard the self-transition
on the state Analyze. When the frequency changes, the actions on this transition compute the
magnitude and phase of the plant output by normalizing y with respect to yn.

Unwrap Measured Phase Angle

The Unwrap chart prevents the measured phase angle from changing by more than  radians in a
single time step.

In this chart, the transitions test the change in the input u before computing the new output value y.

• If the input increases by more than  radians, the chart offsets the output by  radians.
• If the input decreases by more than  radians, the chart offsets the output by  radians.

Examine Simulation Results

When you simulate the model, the scope block shows the frequency response of the system
(magnitude and phase) as a function of simulation time.
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• In the magnitude plot, the maximum value at  indicates the response of the Plant block to a
resonant frequency. The peak amplitude is approximately 1.7.

• In the phase plot, the angle changes from 0 to  radians. Each complex pole of the system adds
 radians to the phase angle.

To determine the measured resonant frequency, plot the measured magnitude and phase against the
plant input frequency. During simulation, the model saves these values in a signal logging object
logsout in the MATLAB workspace. You can access the logged values by using the get
(Simulink) method. For example, to create the Bode plot for the measured frequency response of
the system and draw a red cursor at 150Hz, enter:

figure;
subplot(211);
plot(get(logsout,'frequency').Values.Data, ...
    get(logsout,'magnitude').Values.Data);
line([150 150],[0 2],'Color','red','LineStyle','--');
grid on;
title('Magnitude (Output Amplitude/Input Amplitude)');
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subplot(212);
plot(get(logsout,'frequency').Values.Data, ...
    get(logsout,'phase').Values.Data*180/pi)
grid on;
title('Phase (Degrees)');

The Bode plot shows that the measured resonant frequency is approximately 150Hz, matching the
value predicted by the plant dynamics.

See Also
Stop Simulation | after | get | hasChanged | temporalCount

More About
• “Complex Data in Stateflow Charts” on page 27-2
• “Control Chart Execution by Using Temporal Logic” on page 16-34
• “Detect Changes in Data and Expression Values” on page 16-62
• “Access Signal Logging Data” on page 33-49
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Detect Valid Transmission Data by Using Frame
Synchronization

This example shows how to process complex data in a Stateflow® chart. The model uses vectors of
complex data to find a fixed pattern in a signal from a communication system.

Frame Synchronization

In communication systems, frame synchronization is a method of finding valid data in a transmission
that consists of data frames. To aid frame synchronization, the transmitter inserts a fixed data pattern
at the start of each data frame to mark the start of valid data. The receiver searches for the fixed
pattern and achieves frame synchronization when the correlation between the input data and the
fixed pattern is high.

In this example, the Stateflow chart Frame Sync Controller accepts a complex input signal IQ and
searches for the fixed data pattern trainSig. After recognizing the start of a data frame, the chart
stores the valid data in a complex output signal frame. This output signal is a vector of complex
products between each valid data point and the phase angle of the carrier wave. The chart then
passes the valid data to the Frame Processor subsystem.
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Note that this model does not contain the rest of the communication system.

Synchronize Data Frame

In the Frame Sync Controller chart, the look_for_sync state starts the frame synchronization
algorithm. At each time step, the MATLAB® function correlate calculates the correlation between
the input signal IQ and the fixed data pattern trainSig. The function stores the complex correlation
as corr and its absolute value as corrAbs. The value of corrAbs is the correlation percentage,
which can range from 0 to 100 percent. At 0 percent, there is no correlation. At 100 percent, there is
perfect correlation.

• If corrAbs exceeds 50 percent, the correlation is high and the chart registers the start of a data
frame. The chart takes the transition to the get_payload state and stores 220 valid data points
in the complex vector frame.

• If corrAbs stays below 50 percent for 300 consecutive data points, the frame synchronization
algorithm resets. The chart takes the transition to the frame_out state and triggers the Frame
Processor subsystem. The chart then returns to the look_for_sync state.

Store Scalar Data in a Vector

When the Frame Sync Controller chart recognizes the start of a data frame, the get_payload state
calls the MATLAB function get_carrier_phase to compute the phase angle of the carrier wave.
The state stores this phase angle as the local data object phasor. Then the state collects the scalar
values of the product of IQ*phasor in the vector frame. To avoid using an extra variable as an index
counter, this state indexes into this vector by using the count operator:
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• When the state becomes active, the entry action stores the initial value of the product in the first
element of frame.

• In later time steps, the during action stores the next values of this product in successive
elements of frame. The indexing expression count(true) returns the number of time steps since
the state became active.

After 220 times steps, the transition condition [after(220,tick)] becomes true and the chart
exits from the state. When the chart enters the frame_out state, the vector frame contains the
values of 220 products. The chart passes this data to the Frame Processor subsystem and then
returns to the look_for_sync state.

See Also
after | count

More About
• “Complex Data in Stateflow Charts” on page 27-2
• “Vectors and Matrices in Stateflow Charts” on page 21-2
• “Control Chart Execution by Using Temporal Logic” on page 16-34
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Define Interfaces to Simulink Models
and the MATLAB Workspace

• “Specify Properties for Stateflow Charts” on page 28-2
• “Reuse Charts in Models with Chart Libraries” on page 28-11
• “Create a Mask to Share Parameters with Simulink” on page 28-13
• “Specify Units for Stateflow Data” on page 28-16
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Specify Properties for Stateflow Charts
Chart properties enable you to specify how your Stateflow chart interfaces with a Simulink model.
You can specify chart properties in the Property Inspector, the Model Explorer, or the Chart
properties dialog box.

• To use the Property Inspector:

1 Open the Property Inspector. In the Modeling tab, select Property Inspector.
2 Click in the chart.
3 In the Property Inspector, edit the chart properties.

• To use the Model Explorer:

1 Open the Model Explorer. In the Modeling tab, select Model Explorer.
2 In the Model Hierarchy pane, select the chart.
3 In the Chart pane, edit the chart properties.
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• To use the Chart properties dialog box:

1 Right-click in the chart.
2 Select Properties.
3 Edit the chart properties.

You can also specify chart properties programmatically by using Stateflow.Chart objects. For
more information about the Stateflow programmatic interface, see “Overview of the Stateflow API”.

Stateflow Chart Properties
You can set the following chart properties in:

• The main and Advanced sections of the Property Inspector.
• The General tab of the Model Explorer or the Chart properties dialog box.
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Name

Name of the chart (read-only). When you click the chart name hyperlink, the chart opens in the
Stateflow Editor.

Machine

Name of the Simulink subsystem (read-only). When you click the machine name hyperlink, the
Machine properties dialog box opens. This property is not available in the Property Inspector.

Action Language

Action language that defines the syntax for state and transition actions in the chart. Options include:

• MATLAB
• C

The default value is MATLAB. For more information, see “Differences Between MATLAB and C as
Action Language Syntax” on page 17-5.

State Machine Type

Type of state machine semantics to implement. Options include:

• Classic
• Mealy
• Moore

Classic charts provide the full set of Stateflow semantics. Mealy and Moore charts use a subset of
these semantics. The default value is Classic. For more information, see “Overview of Mealy and
Moore Machines” on page 7-2.

Update Method

Method by which a simulation updates or wakes up a chart in a Simulink model.
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Setting Description
Inherited Input from the Simulink model determines when the chart wakes up during

a simulation (default).

If you define input events for the chart, the Stateflow chart is explicitly
triggered by a signal on its trigger port originating from a connected
Simulink block. You can set this trigger input event to occur in response to
a Simulink signal. The Simulink signal can be Rising, Falling, or
Either (rising and falling), or in response to a Function Call. For more
information, see “Activate a Stateflow Chart by Sending Input Events” on
page 14-7.

If you do not define input events, the Stateflow chart implicitly inherits
triggers from the Stateflow model. These implicit events are the discrete or
continuous sample times of the Stateflow signals providing inputs to the
chart. If you define data inputs, the chart awakens at the rate of the fastest
data input. If you do not define any data input for the chart, the chart
wakes up as defined by the execution behavior of its parent subsystem.

Discrete The Simulink model generates an implicit event at regular time intervals to
awaken the Stateflow chart at the rate that you specify in the Sample
Time chart property. Other blocks in the Simulink model can have different
sample times.

Continuous The Stateflow chart updates its state during major time steps only,
although it computes outputs and local continuous variables during major
and minor time steps. The chart can register zero crossings, which allows
Simulink models to sample Stateflow charts whenever state changes occur.
The Stateflow chart computes derivatives for local continuous variables.
For more information, see “Continuous-Time Modeling in Stateflow” on
page 25-2.

Sample Time

The time interval at which the Stateflow chart wakes up during simulation. The sample time can be
any nonzero number. The sample time is in the same units as the Simulink simulation time. Other
blocks in the Simulink model can have different sample times. This option is available only when you
set the chart property Update method to Discrete.

Enable zero-crossing detection

Specifies that zero-crossing detection is enabled (default). This option is available only when you set
the chart property Update method to Continuous. See “Disable Zero-Crossing Detection” on page
25-3.

Enable C-bit operations

Specifies that the operators &, ^, |, and ~ perform bitwise operations in action statements (default). If
you clear this check box:

• & , |, and ~ perform logical operations.
• ^ performs the power operation.

This option is available only in charts that use C as the action language. For more information, see
“Supported Operations for Chart Data” on page 16-4.
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User-specified state/transition execution order

Specifies that the chart uses explicit ordering of parallel states and transitions (default). You
determine the order in which the chart executes parallel states and tests transitions originating from
a source. This option is available only in charts that use C as the action language. For more
information, see “Execution Order for Parallel States” on page 3-61 and “Evaluate Transitions” on
page 3-39.

Export chart level functions

Extends the scope of functions defined at the root level of the chart to other parts of the model. This
option enables Simulink Caller blocks to call Stateflow functions in the local hierarchy by using
qualified notation chartName.functionName. For more information, see “Export Stateflow Functions
for Reuse” on page 8-15.

Treat exported functions as globally visible

Enables Stateflow and Simulink Caller blocks throughout the model to call functions exported from
Stateflow without using qualified notation. This option is available only when you select the chart
property Export chart level functions. For more information, see “Export Stateflow Functions for
Reuse” on page 8-15.

Use strong data typing with Simulink I/O

Enables charts to interface directly with signals from Simulink models (default). The chart accepts
only input signals whose data type matches the type of the corresponding Stateflow data object.
Otherwise, a type mismatch error occurs. This option is available only in charts that use C as the
action language. For more information, see “Strong Data Typing with Simulink Inputs and Outputs”
on page 12-31.

Note The Use strong data typing with Simulink I/O chart property is provided for backward
compatibility. Clearing this check box can produce unpredictable results and is not recommended.

Execute (enter) chart at initialization

Specifies that the chart initializes its state configuration at time 0 instead of at the first occurrence of
an input event. For more information, see “Execution of a Chart at Initialization” on page 3-23.

Initialize outputs every time chart wakes up

Specifies that the chart resets its output values every time that the chart wakes up, not only at time 0.
Output values are reset whenever a chart is triggered by function call, edge trigger, or clock tick. If
you set an initial value for an output data object, the output resets to that value. Otherwise, the
output resets to zero. Select this option to:

• Ensure that all outputs are defined in every chart execution.
• Prevent latching of outputs (carrying over values of outputs computed in previous executions).
• Provide all chart outputs with a meaningful initial value.

For more information, see “Initial Value” on page 12-8.
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Enable super step semantics

Specifies that the chart can take multiple transitions in each time step until it reaches a stable state.
This option is not available when you set the chart property Update method to Continuous. For
more information, see “Super Step Semantics” on page 3-48.

Maximum iterations in each super step

Specifies the maximum number of transitions that the chart can take in each time step. The chart
always takes one transition during a super step, so the value N that you specify represents the
maximum number of additional transitions (for a total of N+1). This option is available only when you
select the chart property Enable super step semantics. For more information, see “Maximum
Number of Iterations” on page 3-48.

Behavior after too many iterations

Specifies how the chart behaves after it reaches the maximum number of transitions in a time step.

Behavior Description
Proceed Chart execution continues to the next time step.
Throw Error Simulation stops and an error message appears. This setting is valid

only for simulation. In generated code, chart execution always proceeds
to the next time step rather than generating an error.

This option is available only when you select the chart property Enable super step semantics.

Support variable-size arrays

Specifies that chart supports input and output data that varies in dimension during simulation. See
“Declare Variable-Size Data” on page 22-2.

Saturate on integer overflow

Specifies that integer overflows saturate in the generated code. See “Handle Integer Overflow for
Chart Data” on page 12-36.

Generate preprocessor conditionals

Generates a preprocessor conditional in the generated code. See “Code Generation Using Variant
Transitions” on page 32-9.

States when enabling

Specifies how states behave when function-call input events reenable the chart. Options include:

• Held
• Reset

See “Control States in Charts Enabled by Function-Call Input Events” on page 14-11.

Create output for monitoring

Specifies that the chart produces active state output. When you enable this option, you can select one
of these activity types to output:
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• Child activity
• Leaf state activity

See “Monitor State Activity Through Active State Data” on page 13-2.

Fixed-Point Properties
You can set fixed-point properties for the chart in:

• The Fixed Point Properties section of the Property Inspector.
• The Fixed Point Properties tab of the Model Explorer or the Chart properties dialog box.

Fixed-point properties are available only in charts that use MATLAB as the action language.

Treat These Inherited Simulink Signal Types as fi Objects

Specifies whether the chart treats inherited fixed-point and integer signals as Fixed-Point Designer
fi objects.

Setting Description
Fixed-point The chart treats all fixed-point inputs as fi objects (default).
Fixed-point &
Integer

The chart treats all fixed-point and integer inputs as fi objects.

MATLAB Chart fimath

Specifies default properties for the chart.

Setting Description
Same as MATLAB Use the same fimath properties as the current default fimath object in

MATLAB.
Specify Other Use your own default fimath object. You can:

• Construct a fimath object inside the edit box.
• Create a fimath object in the MATLAB or model workspace and enter

its variable name in the edit box.

For more information, see “fimath Properties Usage for Fixed-Point Arithmetic” (Fixed-Point
Designer).

Additional Properties
You can set additional properties for the chart in:

• The Info tab of the Property Inspector.
• The Documentation tab of the Model Explorer or the Chart properties dialog box.

Description

Description of the chart. You can enter a brief description and comments.
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Document Link

Link to online documentation for the chart. You can enter a web URL address or a MATLAB command
that displays documentation in a suitable online format, such as an HTML file or text in the MATLAB
Command Window. When you click the Document link hyperlink, Stateflow evaluates the link and
displays the documentation.

Machine Properties
The Stateflow machine represents all of the Stateflow blocks in a model (including all charts, state
transition tables, and truth tables). You can specify machine properties in the Machine properties
dialog box.

1 Open the Model Explorer or the Chart properties dialog box for any chart in the model.
2 In the Machine chart property field, click the machine name link.
3 In the Machine properties dialog box, edit the properties for the Stateflow machine.

Simulink Model

Name of the Simulink model that defines this Stateflow machine (read-only). You change the model
name when you save the model.

Creation Date

Date on which this Stateflow machine was created (read-only).

Creator

Name of the person who created this Stateflow machine.

Modified

Comment text for recording modifications to the Simulink model that defines this Stateflow machine.

Version

Comment text for recording the version of the Simulink model that defines this Stateflow machine.

Description

Description of the Stateflow machine. You can enter a brief description and comments.

Document Link

Link to online documentation for the Stateflow machine. You can enter a web URL address or a
MATLAB command that displays documentation in a suitable online format, such as an HTML file or
text in the MATLAB Command Window. When you click the Document link hyperlink, Stateflow
evaluates the link and displays the documentation.
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See Also

More About
• “Differences Between MATLAB and C as Action Language Syntax” on page 17-5
• “Overview of Mealy and Moore Machines” on page 7-2
• “Continuous-Time Modeling in Stateflow” on page 25-2
• “Supported Operations for Chart Data” on page 16-4
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Reuse Charts in Models with Chart Libraries
In Simulink, you can create your own block libraries as a way to reuse the functionality of blocks or
subsystems in one or more models. Similarly, you can reuse a set of Stateflow algorithms by
encapsulating the functionality in a chart library.

As with other Simulink block libraries, you can specialize each instance of chart library blocks in your
model to use different data types, sample times, and other properties. Library instances that inherit
the same properties can reuse generated code.

For more information about Simulink block libraries, see “Custom Libraries” (Simulink).

Create Specialized Chart Libraries for Large-Scale Modeling
1 Add Stateflow charts with polymorphic logic to a Simulink model.

Polymorphic logic is logic that can process data with different properties, such as type, size, and
complexity.

2 Configure the charts to inherit the properties you want to specialize.

For a list, see “Customize Properties of Library Blocks” on page 28-11.
3 Optionally, customize your charts using masking.
4 Simulate and debug your charts.
5 In Simulink, create a library model. In the Simulation tab, select New > Library
6 Copy or drag the charts into a library model.

Customize Properties of Library Blocks
You can customize instances of Stateflow library blocks by allowing them to inherit any of the
following properties from Simulink.

Property Inherits by
Default?

How to Specify Inheritance

Type Yes Set the data type property to Inherit: Same as
Simulink.

Size Yes Set the data size property to -1.
Complexity Yes Set the data complexity property to Inherited.
Limit range No Specify minimum and maximum values as Simulink

parameters. For example, if minimum value = aParam
and maximum value = aParam + 3, different instances
of a Stateflow library block can resolve to different
aParam parameters defined in their parent mask
subsystems.
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Property Inherits by
Default?

How to Specify Inheritance

Initial value Depends on scope For local data, temporary data, and outputs, specify
initial values as Simulink parameters. Other data always
inherits the initial value:

• Parameters inherit the initial value from the
associated parameter in the parent mask subsystem.

• Inputs inherit the initial value from the Simulink
input signal.

• Data store memory inherits the initial value from the
Simulink data store to which it is bound.

Sampling mode
(input)

Yes Stateflow chart input ports always inherit sampling
mode.

Data type override
mode for fixed-point
data

Yes Different library instances inherit different data type
override modes from their ancestors in the model
hierarchy.

Sample time (block) Yes Set the block sample time property to -1.

Limitations of Library Charts
1 Events parented by a library Stateflow machine are invalid. The Stateflow parser flags such

events as errors.
2 To include a linked library chart within another library chart, the two library charts must be in

separate libraries.
3 To include a linked library chart within a Simulink subsystem, first save the library chart within a

subsystem and place that library subsystem in the Simulink subsystem.
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Create a Mask to Share Parameters with Simulink
Creating masks for Stateflow charts, state transition tables, and truth tables simplifies how you use
and share blocks in a Simulink model. The mask encapsulates the block by hiding the underlying logic
and creates a user interface for the block. You can customize the block by:

• Changing the appearance with meaningful icons and ports.
• Creating a user interface for parameters.
• Adding customized documentation.

You decide which parameters to change through the mask user interface. You can provide meaningful
descriptions of these parameters. For example, in the model sf_car, the shift_logic chart has a
mask through which you can adjust the parameter TWAIT. To open the Mask Parameters dialog box,
double-click the Stateflow chart. This dialog box contains a parameter description "Delay before
gear change (tick)" and a box to edit the value. This value is tied to the parameter TWAIT inside
the mask. When you edit the value in this box, Stateflow assigns the new value to TWAIT during
simulation.

You can create other types of user interfaces for the mask parameters, such as check boxes, context
menus, and option buttons.

You can create masks on Stateflow blocks accessible from the Simulink library: charts, state
transition tables, and truth tables. You cannot mask atomic subcharts, states, or any other objects
within a chart.

For more information, see “Create Block Masks” (Simulink).

Create a Mask for a Stateflow Chart
To create a mask for the Stateflow chart in the model old_sf_car:

1 Open the model old_sf_car.
2 In the Simulink Editor, select the chart shift_logic.
3 Open the Mask Editor. In the State Chart tab, click Create Mask.

Add an Icon to the Mask
To customize the appearance of the block icon, use drawing commands or load an image. For more
information, see “Draw Mask Icon” (Simulink).
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1 In the Mask Editor, select the Icon & Ports pane.
2 In the edit box under Icon Drawing commands, enter:

image('shift_logic.svg')
3 Click Apply.

Add Parameters to the Mask
When you create a mask for a Stateflow block, you can define a custom interface for the block
parameters. You provide access to the block parameters by defining corresponding parameters with
the same name in the Mask Editor. A user interface to these parameters is then provided through a
Mask Parameters dialog box. The mask parameters appear as editable fields in the Mask Parameters
dialog box. Stateflow applies these values to the corresponding block parameters during simulation.

For example, the chart shift_logic has a parameter TWAIT. To add TWAIT as a parameter to the
mask:

1 In the Mask Editor, select the Parameters & Dialog pane.
2

Double-click the Edit parameter icon .
3 Next to edit, under Prompt, enter the prompt for the new mask parameter in the Mask

Parameters dialog box:

Delay before gear change(tick)
4 Under Name, enter the name of the parameter in the mask:

TWAIT
5 Click Apply.
6 Click OK.

View the New Mask
After creating a mask, the new icon for the shift_logic chart appears in the Simulink canvas. If
you double-click the icon, the Mask Parameters dialog box opens. This dialog box has the prompt for
the parameter TWAIT. The value in the edit box is assigned to the parameter TWAIT during
simulation.
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Look Under the Mask
You can view and edit the contents of a masked block by clicking the Look inside mask badge on the
chart. The badge is a downward facing arrow in the lower-left corner of the chart. Alternatively, in the
State Chart tab, click Look Under Mask. Looking under a mask does not unmask the block.

Edit the Mask
To edit a mask, in the State Chart tab, click Edit Mask. In the Mask Editor, you can modify the mask
icon, change the parameters, or add documentation. To remove the mask, click Unmask in the lower
corner of the Mask Editor. After you change a mask, click Apply to save the changes.

See Also

More About
• “Share Parameters with Simulink and the MATLAB Workspace” on page 12-21
• “Masking Fundamentals” (Simulink)
• “Mask Editor Overview” (Simulink)
• “Draw Mask Icon” (Simulink)
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Specify Units for Stateflow Data

Units for Input and Output Data
Stateflow charts in Simulink models support the specification of physical units as properties for data
inputs and outputs. Specify units by using the Unit (e.g., m, m/s^2, N*m) parameter for input or
output data on charts, state transition tables, or truth tables. When you start typing in the field, this
parameter provides matching suggestions for units that Simulink supports. By default, the property is
set to inherit the unit from the Simulink signal on the corresponding input or output port. If you
select the Data must resolve to signal object property for output data, you cannot specify units. In
this case, output data is assigned the same unit type as the Simulink signal connected to the output
port.

To display the units on the Simulink lines in the model, in the Debug tab, select Information
Overlays > Port Units.

Consistency Checking
Stateflow checks the consistency of the signal line unit from Simulink with the unit setting for the
corresponding input or output data in the Stateflow block. If the units do not match, Stateflow
displays a warning during model update.

Units for Stateflow Limitations
The unit property settings do not affect the execution of the Stateflow block. Stateflow checks only
consistency with the corresponding Simulink signal line connected to the input or output. It does not
check consistency of assignments inside the Stateflow blocks. For example, Stateflow does not warn
against an assignment of an input with unit set to ft to an output with unit set to m. Stateflow does
not perform unit conversions.

See Also

More About
• “Unit Specification in Simulink Models” (Simulink)
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Structures and Bus Signals in Stateflow
Charts

• “Access Bus Signals Through Stateflow Structures” on page 29-2
• “Index and Assign Values to Stateflow Structures” on page 29-7
• “Integrate Custom Structures in Stateflow Charts” on page 29-11
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Access Bus Signals Through Stateflow Structures
A Stateflow structure is a data type that you define from a Simulink.Bus object. Using Stateflow
structures, you can bundle data of different size and type to create:

• Inputs and outputs that access Simulink bus signals from Stateflow charts, Truth Table blocks, and
MATLAB Function blocks.

• Local data in Stateflow charts, truth tables, graphical functions, MATLAB functions, and boxes.
• Temporary data in Stateflow graphical functions, truth tables, and MATLAB functions.

For more information, see “Create and Specify Simulink.Bus Objects” (Simulink).

Example of Stateflow Structures
In this example, a Stateflow chart receives a bus input signal by using the structure inbus and
outputs a bus signal from the structure outbus. The input signal comes from the Simulink Bus
Creator block COUNTERBUSCreator, which bundles signals from two other Bus Creator blocks. The
output structure outbus connects to a Simulink Bus Selector block. Both inbus and outbus derive
their type from the Simulink.Bus object COUNTERBUS. For more information about this example,
see “Integrate Custom Structures in Stateflow Charts” on page 29-11.

The elements of a Stateflow structure data type are called fields. Fields can be any combination of
individual signals, muxed signals, vectors, and other structures (also called substructures). Each field
has its own data type. The data type does not have to match the type of any other field in the
structure. For example, in this model, each of the structures inbus and outbus has two fields:

• inputsignal is a substructure with one field, input.
• limits is a substructure with two fields, upper_saturation_limit and

lower_saturation_limit.

Define Stateflow Structures
1 To define the structure data type, create a Simulink bus object in the base workspace, as

described in “Create and Specify Simulink.Bus Objects” (Simulink).
2 Add a data object to the chart, as described in “Add Stateflow Data” on page 12-2.
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To define temporary structures in truth tables, graphical functions, and MATLAB functions, add a
data object to your function. For more information, see “Add Data Through the Model Explorer”
on page 12-3.

3 Set the Scope property for the structure. Your choices are:

• Input
• Output
• Local
• Parameter
• Data Store Memory
• Temporary (Only in charts that use C as the action language)

4 Set the Type property for the structure. Depending on its scope, a Stateflow structure can have
one of these data types.

Type Description
Inherit: Same as
Simulink

This option is available for input structures only. The input structure inherits its
data type from the Simulink bus signal in your model that connects to it. The
Simulink bus signal must be a nonvirtual bus. For more information, see
“Virtual and Nonvirtual Buses” on page 29-5.

In the base workspace, specify a Simulink.Bus object with the same
properties as the bus signal that connects to the Stateflow input structure.
These properties must match:

• Number, name, and type of inputs
• Dimension
• Sample Time
• Complexity
• Sampling Mode

If the input signal comes from a Bus Creator block, in the Bus Creator dialog
box, specify an appropriate bus object for Output data type field. When you
specify the bus object, Simulink verifies that the properties of the
Simulink.Bus object in the base workspace match the properties of the
Simulink bus signal.

Bus: <object name> In the Type field, replace <object name> with the name of the
Simulink.Bus object that defines the Stateflow structure.

For input or output structures, you are not required to specify the bus signal in
your Simulink model that connects to the Stateflow structure. If you do specify
a bus signal, its properties must match the Simulink.Bus object that defines
the Stateflow structure.
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Type Description
<date type
expression>

In the Type field, replace <data type expression> with an expression that
evaluates to a data type. For example:

• Enter the name of the Simulink.Bus object that defines the Stateflow
structure.

• For structures with scopes other than Output, use the Stateflow type
operator to copy the type of another structure. For more information, see
“Specify Structure Types by Calling the type Operator” on page 29-4.

For example, in the sf_bus_demo model, the input structure inbus and the output structure
outbus derive their type through a type specification of the form Bus: COUNTERBUS.

Specify Structure Types by Calling the type Operator
To specify structure types, you can use expressions that call the Stateflow type operator. This
operator sets the type of one structure to the type of another structure in the Stateflow chart. For
example, in the sf_bus_demo model, a type operator expression specifies the type of the local
structure counterbus_struct in terms of the input structure inbus. Both structures are defined
from the Simulink.Bus object COUNTERBUS. For more information, see “Derive Data Types from
Other Data Objects” on page 12-30.
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Virtual and Nonvirtual Buses
Simulink models support virtual and nonvirtual buses. Nonvirtual buses read their inputs from data
structures stored in contiguous memory. Virtual buses read their inputs from noncontiguous memory.
For more information, see “Types of Composite Signals” (Simulink).

Stateflow charts support only nonvirtual buses. Stateflow input structures can accept virtual bus
signals and convert them to nonvirtual bus signals. Stateflow input structures cannot inherit
properties from virtual bus signals. If the input to a chart is a virtual bus, set the Type property of the
input structure through a type specification of the form Bus: <object name>.

Debug Structures
To debug a Stateflow structure, open the Stateflow Breakpoints and Watch window and examine the
values of structure fields during simulation. To view the values of structure fields at the command
line, use dot notation to index into the structure. For more information, see “Inspect and Modify Data
and Messages While Debugging” on page 33-9.

Guidelines for Structure Data Types
• Define each structure from a Simulink.Bus object in the base workspace.
• Structures cannot have a constant scope.
• Structures of parameter scope must be tunable.

See Also
Simulink.Bus
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More About
• “Index and Assign Values to Stateflow Structures” on page 29-7
• “Integrate Custom Structures in Stateflow Charts” on page 29-11
• “Add Stateflow Data” on page 12-2
• “Derive Data Types from Other Data Objects” on page 12-30
• “Inspect and Modify Data and Messages While Debugging” on page 33-9
• “Specify Bus Properties with Simulink.Bus Object Data Types” (Simulink)
• “Types of Composite Signals” (Simulink)
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Index and Assign Values to Stateflow Structures
This example shows how to access and modify the contents of a Stateflow® structure or an array of
Stateflow structures. A Stateflow structure is a data type that you define from a Simulink.Bus
(Simulink) object. You can use Stateflow structures to bundle data of different sizes and types
together into a single data object. For more information, see “Access Bus Signals Through Stateflow
Structures” on page 29-2.

Index Substructures and Fields

To index substructures and fields of Stateflow structures, use dot notation. The first part of a name
identifies the parent structure. Subsequent parts identify the children along a hierarchical path. The
children can be individual fields or fields that contain other structures (also called substructures).
The names of the fields of a Stateflow structure match the names of the elements of the
Simulink.Bus object that defines the structure. When a field contains a vector, matrix, or array, you
can access its elements by using the indexing notation supported by the action language of your
chart.

For example, the chart in this model contains an input structure (in), an output structure (out), a
local structure (localbus), and a local array of structures (subBusArray).

• The chart defines the input structure in, the output structure out, and the local structure
localbus by using the Simulink.Bus object BusObject. These structures have four fields: sb,
a, b, and c.

• The field sb is a substructure defined from the Simulink.Bus object SubBus. This substructure
has one field called ele.

• The chart defines the local array of structures subBusArray by using the Simulink.Bus object
SubBus. The array has size 4. Each element in the array is a structure with one field called ele.

This list illustrates expressions that combine dot notation and numeric indices based on the structure
specifications for this example:

• in.c — Field c of the input structure in
• in.a(1) — First element of the vector field a of the input structure in
• out.sb — Substructure sb of the output structure out
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• out.sb.ele — Field ele of the substructure out.sb
• out.sb.ele(2,2) — Element in the second row, second column of the field ele of the

substructure out.sb
• subBusArray(1) — First element of the array of structures subBusArray
• subBusArray(1).ele — Field ele of the structure subBusArray(1)
• subBusArray(1).ele(3,4) — Element in the third row, fourth column of the field ele of

structure subBusArray(1)

Because the chart uses MATLAB as the action language, you access the elements of the arrays in this
example by using one-based indexing delimited by parentheses. In charts that use C as the action
language, use zero-based indexing delimited by brackets. For more information, see “Supported
Operations for Vectors and Matrices” on page 21-4.

Assign Values to Structures and Fields

You can write to any Stateflow structure that has a scope other than Input. You can assign values to
the entire structure, to a substructure, or to a single field.

• To assign one structure to another structure, define both structures from the same
Simulink.Bus object in the base workspace.

• To assign one structure to a substructure of a different structure (or the other way around), define
the structure and substructure from the same Simulink.Bus object.

• To assign a field of one structure to a field of another structure, the fields must have the same type
and size. You can define the Stateflow structures from different Simulink.Bus objects.

For instance, the chart in this example makes these assignments:

• localbus = sb2abc(in.sb) — The structure localbus and the output argument of the
MATLAB® function sb2abc are defined from the same Simulink.Bus object BusObject. The
function decomposes its input into three components: a vector, a 3-by-2 matrix, and a scalar. The
function returns these components as the fields a, b, and c of its output. For more information on
this function, see “Access Simulink Bus Signals in MATLAB Functions” on page 9-12.

• subBusArray(1) = in.sb — The structure subBusArray(1) and the substructure in.sb are
defined from the same Simulink.Bus object SubBus.

• subBusArray(2) = abc2sb(in) — The structure subBusArray(2) and the output argument
of the graphical function abc2sb are defined from the same Simulink.Bus object SubBus. The
function combines the values of the fields a, b, and c from its input and rearranges them in a 3-
by-3 matrix of type int8. It returns this matrix as the field ele of its output.

• subBusArray(3).ele = transpose(in.sb.ele) — The field subBusArray(3).ele has the
same type and size as the result of transpose(in.sb.ele). Both are 3-by-3 matrices of type
int8.

• subBusArray(4).ele = int8(magic(3)) — The field subBusArray(4).ele has the same
type and size as the result of int8(magic(3)). Both are 3-by-3 matrices of type int8.

• out = localbus — Both out and localbus are defined from the same Simulink.Bus object
BusObject.

• out.sb = subBusArray(idx) — The substructure out.sb and the structure
subBusArray(idx) are defined from the same Simulink.Bus object SubBus.

29 Structures and Bus Signals in Stateflow Charts

29-8



Run the Simulation

When you simulate the example, the chart uses the values of the field sb of the input structure to
populate the fields a, b, and c of the output structure. The parameter idx selects the element of the
array of structures subBusArray to use as the substructure sb of the output. In this example, idx
equals 2, so the chart uses the values of the fields a, b, c of the input structure to populate the
substructure.

When you use other values for idx, the substructure out.sb contains the same values as in.sb, the
transpose of in.sb, or a 3-by-3 magic square.

See Also
Simulink.Bus

More About
• “Access Bus Signals Through Stateflow Structures” on page 29-2
• “Identify Data by Using Dot Notation” on page 12-38
• “Supported Operations for Vectors and Matrices” on page 21-4
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• “Access Simulink Bus Signals in MATLAB Functions” on page 9-12
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Integrate Custom Structures in Stateflow Charts
This example shows how to use structures from custom code in a Stateflow® chart. You can define
structure typed data in C code and integrate it with Stateflow structures and Simulink® bus signals.
By sharing data with custom code, you can augment the capabilities supported by Stateflow and take
advantage of your preexisting code. For more information, see “Reuse Custom Code in Stateflow
Charts” on page 31-2.

In this example, a Stateflow chart processes data from one Simulink bus signal and outputs the result
to another Simulink bus signal. Both the input and output bus signals are defined by the
Simulink.Bus (Simulink) object COUNTERBUS. In the chart, the Simulink bus signals interface
with the Stateflow structures inbus and outbus. The chart calls a custom C function to write to the
output structure outbus.

Define Custom Structures in C Code

1. In your C code, define a structure by creating a custom header file. The header file contains
typedef declarations that define the properties of the custom structure. For example, in this model,
the header file counterbus.h declares three custom structures:

...
typedef struct {
    int input;
} SIGNALBUS;

typedef struct {
    int upper_saturation_limit;
    int lower_saturation_limit;
} LIMITBUS;

typedef struct {
    SIGNALBUS inputsignal;
    LIMITBUS limits;
} COUNTERBUS;
...

2. In the Bus Editor, define a Simulink.Bus object that matches each custom structure typedef
declaration. In the Header file field of each Simulink.Bus object, enter the name of the header file
that contains the matching typedef declaration.
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3. Configure the Stateflow chart to include custom C code, as described in “Specify Custom Code for
Your Model” on page 31-4.

4. Build and run your model.

Pass Stateflow Structures to Custom Code

When you call custom code functions that take structure pointers as arguments, pass the Stateflow
structures by address. To pass the address of a Stateflow structure or one of its fields to a custom
function, use the & operator and dot notation:

• &outbus provides the address of the Stateflow structure outbus.
• &outbus.inputsignal provides the address of the substructure inputsignal of the structure

outbus.
• &outbus.inputsignal.input provides the address of the field input of the substructure

outbus.inputsignal.

For more information, see “Index and Assign Values to Stateflow Structures” on page 29-7.

For instance, this example contains a custom C function counterbusFcn that takes structure
pointers as arguments. The custom header file counterbus.h contains this function declaration:

extern void counterbusFcn(COUNTERBUS *u1, int u2, COUNTERBUS *y1, int *y2);

The chart passes the addresses to the Stateflow structures counterbus_struct and outbus by
using this function call:

counterbusFcn(&counterbus_struct, u2, &outbus, &y2);
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The function reads the value of the chart input u2 and the local structure counterbus_struct. It
writes to the chart output y2 and the output structure outbus.

See Also
Simulink.Bus

More About
• “Access Bus Signals Through Stateflow Structures” on page 29-2
• “Index and Assign Values to Stateflow Structures” on page 29-7
• “Reuse Custom Code in Stateflow Charts” on page 31-2
• “Access Custom Code Variables and Functions in Stateflow Charts” on page 31-13
• “Integrate External Code by Using Model Configuration Parameters” (Simulink Coder)

See Also
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Stateflow Design Patterns

• “Schedule Multiple Subsystems in a Single Step” on page 30-2
• “Schedule a Subsystem Multiple Times in a Single Step” on page 30-6
• “Schedule Subsystems to Execute at Specific Times” on page 30-9
• “Reduce Transient Signals by Using Debouncing Logic” on page 30-12
• “Detect Faults in Aircraft Elevator Control System” on page 30-19
• “Map Fault Conditions to Actions by Using Truth Tables” on page 30-24
• “Design for Isolation and Recovery in a Chart” on page 30-27
• “Model a Launch Abort System” on page 30-31
• “Modeling a Fault-Tolerant Fuel Control System” on page 30-36
• “Model a Power Window Controller” on page 30-51
• “Model a Fitness Tracker” on page 30-59
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Schedule Multiple Subsystems in a Single Step
This example shows how to design a ladder logic scheduler in Stateflow®. The ladder logic scheduler
design pattern allows you to specify the order in which multiple Simulink® subsystems execute in a
single time step. Stateflow schedulers extend control of subsystem execution in a Simulink model,
which determines order of execution implicitly based on block connectivity and sample time
propagation.

Key Behavior of the Ladder Logic Scheduler

In this example, the Ladder Logic Scheduler chart broadcasts a series of function-call output events
to execute three function-call subsystems (A1, A2, and A3). During each time step:

1 The Simulink model activates the Edge to Function chart at the rising edge of the 1-millisecond
pulse generator.

2 The Edge to Function chart broadcasts the function-call output event call to activate Ladder
Logic Scheduler chart.

3 The Ladder Logic Scheduler chart uses sequencing ladder logic to broadcast function-call output
events based on the values of the input signals u1 and u2.
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The chart evaluates each condition sequentially. When a condition is valid, the chart calls the send
operator to broadcast an output event. The corresponding subsystem computes its output and returns
control back to the Ladder Logic Scheduler chart.

Run the Ladder Logic Scheduler

When you simulate the model, the scope shows the input and output of each function-call subsystem.
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During each time step, the Ladder Logic Scheduler chart executes the subsystems depending on the
values of the input signals u1 and u2:

1 If u1 is positive, the chart sends a function-call output event to execute subsystem A1. This
subsystem multiplies the value of u1 by a gain of 3 and passes this value back to the Ladder
Logic Scheduler chart as input u2. Control returns to the next condition in the Ladder Logic
Scheduler chart.

2 If u2 is greater than 1, the chart sends a function-call output event to execute subsystem A2. This
subsystem decreases the value of u2 by 1. Control returns to the final condition in the Ladder
Logic Scheduler chart.
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3 If u2 is less than 2, the chart sends a function-call output event to execute subsystem A3. This
subsystem multiplies its input by a gain of 2.

In the scope, horizontal segments indicate time steps when a subsystem does not execute.

See Also
send

More About
• “Activate a Stateflow Chart by Sending Input Events” on page 14-7
• “Activate a Simulink Block by Sending Output Events” on page 14-14
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Schedule a Subsystem Multiple Times in a Single Step
This example shows how to design a loop scheduler in Stateflow®. The loop scheduler design pattern
enables you to execute a Simulink® subsystem multiple times in a single time step. Stateflow
schedulers extend control of subsystem execution in a Simulink model, which determines order of
execution implicitly based on block connectivity and sample time propagation.

Key Behavior of the Loop Scheduler

In this example, the Loop Scheduler chart broadcasts a function-call output event to execute the
function-call subsystem A1 multiple times every time step. During each time step:

1 The Simulink model activates the Edge to Function chart at the rising edge of the 1-millisecond
pulse generator.

2 The Edge to Function chart broadcasts the function-call output event call to activate the Loop
Scheduler chart.

3 The Loop Scheduler chart calls the send operator to broadcast the function-call output event A1
multiple times.
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Each broadcast of the event A1 executes the subsystem A1. The subsystem computes its output and
returns control back to the Loop Scheduler chart.

Run the Loop Scheduler

When you simulate the model, the scope displays the value of y at each time step.

During each time step, the value of y increases by 25 because:

• The flow chart in the Loop Scheduler implements a for loop that iterates 10 times.
• In each iteration of the for loop, the chart increments y by 1 (the constant value of input u1).
• Each time that the chart broadcasts the output event to subsystem A1, the subsystem increments

y by 1.5.

See Also
send
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More About
• “Activate a Stateflow Chart by Sending Input Events” on page 14-7
• “Activate a Simulink Block by Sending Output Events” on page 14-14
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Schedule Subsystems to Execute at Specific Times
This example shows how to design a temporal logic scheduler in Stateflow®. The temporal logic
scheduler design pattern allows you to schedule Simulink® subsystems to execute at specified times.
Stateflow schedulers extend control of subsystem execution in a Simulink model, which determines
order of execution implicitly based on block connectivity and sample time propagation.

Key Behavior of the Temporal Logic Scheduler

In this example, the Temporal Logic Scheduler chart contains two states that schedule the execution
of three function-call subsystems (A1, A2, and A3) at different rates, as determined by the temporal
logic operator every.
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When the FastScheduler state is active, the chart schedules function calls to different Simulink
subsystems at a fraction of the base rate at which the input event call wakes up the chart.

• The chart sends an event to execute subsystem A1 at the base rate.
• The chart sends an event to execute subsystem A2 at half the base rate.
• The chart sends an event to execute subsystem A3 at one quarter the base rate.

When the SlowScheduler state is active, the chart schedules function calls for A1, A2, and A3 at
1/8, 1/16, and 1/32 times the base rate.

The chart switches between the fast and slow execution modes after every 100 invocations of the
call event.

Run the Temporal Logic Scheduler

When you simulate the model, the scope displays the value of y at each time step.
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The changes in value illustrate the different rates of execution.

• When the chart executes the subsystems at a slow rate (for example, from  to , from
 to , and from  to ), the values change slowly.

• When the chart executes the subsystems at a fast rate (for example, from  to  and
from  to ), the values change rapidly.

See Also
every | send

More About
• “Control Chart Execution by Using Temporal Logic” on page 16-34
• “Activate a Stateflow Chart by Sending Input Events” on page 14-7
• “Activate a Simulink Block by Sending Output Events” on page 14-14
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Reduce Transient Signals by Using Debouncing Logic
When a switch opens and closes, the switch contacts can bounce off each other before the switch
completely transitions to an on or off state. The bouncing action can produce transient signals that do
not represent a true change of state. Therefore, when modeling switch logic, it is important to filter
out transient signals by using debouncing algorithms.

If you model a controller in a Stateflow chart, you do not want your switch logic to overwork the
controller by turning it on and off in response to every transient signal it receives. To avoid this,
design a Stateflow controller that uses temporal logic to debounce your input signals and determine
whether a switch is actually on or off.

How to Debounce a Signal
There are two ways to debounce a signal by using Stateflow:

1 Filter out transient signals by using the duration temporal operator.
2 Filter out transient signals by using an intermediate graphical state. Use intermediate graphical

state for advanced filtering techniques, such as fault detection.

The duration operator is supported only in Stateflow charts in a Simulink model.

Debounce Signals with the duration Operator
This example illustrates a design pattern that uses the duration operator to filter out transient
signals.

The Debouncer chart contains this logic.
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State Logic

The initial state for this model is Off. By using the duration operator, you can control which state is
active based on how long the switch signal, sw, has been negative or nonnegative.

• When sw has been nonnegative for longer than 0.01 seconds, the switch moves from state Off to
state On.

• When sw has been negative for longer than 0.01 seconds, the switch moves from state On to state
Off.

Run the Debouncer

1 Open the model.
2 Open the Scope block.
3 Open the Stateflow chart Debouncer.
4 Simulate the model. The scope shows how the debouncer isolates transient signals from the noisy

input signal.
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Debounce Signals with Fault Detection
This example illustrates a design pattern that uses an intermediate state to isolate transient signals.

30 Stateflow Design Patterns

30-14



The debouncer design uses the after operator to implement absolute-time temporal logic. With this
design pattern, you can also detect faults and allow your system time to recover.

The Debouncer chart contains this logic.

State Logic

The Debouncer chart contains an intermediate state called Debounce. This state isolates transient
inputs by checking if the signal sw remains positive or negative, or if it fluctuates between zero
crossings over a prescribed period.

• When sw has been positive for longer than 0.1 seconds, the switch moves to state On.
• When sw has been negative for longer than 0.1 seconds, the switch moves to state Off.
• When sw fluctuates between zero crossings for longer than 0.3 seconds, the switch moves to state

Off.Fault, isolating sw as a transient signal and giving it time to recover.
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Run the Debouncer

1 Open the model.
2 Open the Scope block.
3 Open the Stateflow chart Debouncer.
4 Simulate the model. The scope shows how the debouncer isolates transient signals from the noisy

input signal.
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Use Event-Based Temporal Logic
As an alternative to absolute-time temporal logic, you can apply event-based temporal logic to
determine true state in the Debouncer chart by using the after operator. The keyword tick
specifies and implicitly generates a local event when the chart awakens.
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The Error Generator block in the sf_debouncer model generates a pulse signal every 0.001 second.
Therefore, to convert the absolute-time temporal logic specified in the Debouncer chart to event-
based logic, multiply the argument of the after operator by 1000, as indicated by this table.

Absolute Time-Based Logic Event-Based Logic
after(0.1,sec) after(100,tick)
after(0.3,sec) after(300,tick)
after(1,sec) after(1000,tick)

See Also
after | duration

More About
• “Control Chart Execution by Using Temporal Logic” on page 16-34
• “Control Chart Behavior by Using Implicit Events” on page 14-26
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Detect Faults in Aircraft Elevator Control System
This example shows how to design a fault detection, isolation, and recovery (FDIR) application for a
pair of aircraft elevators controlled by redundant actuators. This model uses the same fault detection
control logic as the Avionics subsystem of the Aerospace Blockset™ example “HL-20 Project with
Optional FlightGear Interface” (Aerospace Blockset).

Elevator Control System

A typical aircraft has two elevators, one on each side of the fuselage, attached on the horizontal tails.
To enhance the safety of the aircraft, the elevator control system contains these redundant parts:

• Four independent hydraulic actuators (two actuators per elevator).
• Three hydraulic circuits that drive the actuators. Each outer actuator has a dedicated hydraulic

circuit. The inner actuators share a hydraulic circuit.
• Two primary flight control units (PFCU).
• Two control modules per actuator: full range control law and limited/reduced range control law.
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If the aircraft is flying perfectly level, then the actuator position should maintain a constant value.
The fault detection system registers a failure in an actuator if:

• The position of the actuator increases or decreases by 10 cm from this zero point.
• The actuator changes position rapidly (for instance, if the position changes at least 20 cm in 0.01

seconds).

The fault detection system also registers a fault in one of the hydraulic circuits if the pressure is out
of bounds or if the pressure changes rapidly. In this example, the fault detection system checks that:

• The pressure in the hydraulic circuit is between 500 kPa and 2 MPa.
• The pressure changes no more than 100 kPa in 0.01 seconds.

Fault Detection Control Logic

The Stateflow® chart Mode Logic defines the fault detection logic for the elevator control system.
The chart contains a parallel substate for each actuator in the system. Each actuator can be in one of
five modes: Passive, Standby, Active, Off, and Isolated. These operating modes are
represented as substates of the parallel states.
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By default, the outer actuators start in Active mode and the inner actuators start in Standby mode.
If a failure is detected in the outer actuators or in the hydraulic circuits that are connected to them,
the fault detection system responds by disabling the outer actuators and activating the inner
actuators.

Inject Failures Into Fault Detection System

To experiment with the model, during simulation, you can introduce hydraulic circuit and actuator
position failures into the fault detection system through the Failure Injection UI.
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For example, to inject a failure in Hydraulic Circuit 1, select the H1 check box and click Update. The
UI runs this MATLAB® code to communicate with the Simulink® model:

   blockname=[mname '/Signal conditioning '...
   'and failures /Hydraulic Pressures/Measured ',char(10),...
   'Hydraulic system 1 ',...
   'pressures/Hydraulic pressure/H1_fail'];
   val=get(handles.H1,'Value');

   if val
       set_param(blockname,'value','1');
   else
       set_param(blockname,'value','0');
   end

This code turns on a switch in the Signal conditioning subsystem that causes the fault detection
system to register a fault in the hydraulic circuit.

The chart Mode Logic responds to failures in the hydraulic circuits and actuators by using truth table
functions and event broadcasting. For example, if the fault detection system registers an isolated
failure in Hydraulic Circuit 1, then:

• The truth table function L_switch broadcasts the event go_off to the substate LO.
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• The substate LO enters the Off mode and sends the event E to the substate LI.
• Because the substate LO is no longer in the Active mode, LI enters the Active mode.
• Because the substate LI is now in the active mode, RI enters the Active mode and sends a

second event E to the substate RO.
• The substate RO enters the Standby mode.

After the fault detection systems registers a failure in Hydraulic Circuit 1, the left outer actuator is
turned off, the right outer actuator is placed on standby, and the inner actuators are activated.

Recover from Hydraulic Failures

The fault detection control logic enables the system to recover from a hydraulic circuit failure. For
example, to bring the Hydraulic Circuit 1 back online, in the Failure Injection UI, clear the H1 check
box and click Update. In the chart, the condition !u.low_press[0] becomes true, so the substate
LO transitions from the Off mode to the Standby mode. As a result, the left outer actuator can then
be activated in the event that the fault detection system registers another failure later in the
simulation.

Isolate Actuators After Failures

When the fault detection system registers a failure in one of the actuators, that actuator can no
longer be activated. In the chart Mode Logic, the failure of an actuator is represented by the substate
Isolated. This substate has no outgoing transitions so once an actuator enters the Isolated state,
it remains in that state for the rest of the simulation.

References

Pieter J. Mosterman and Jason Ghidella, "Model Reuse for the Training of Fault Scenarios in
Aerospace," in Proceedings of the AIAA® Modeling and Simulation Technologies Conference, CD-
ROM, paper 2004-4931, August 16 - 19, 2004, Rhode Island Convention Center, Providence, RI.

Jason R. Ghidella and Pieter J. Mosterman, "Applying Model-Based Design to a Fault Detection,
Isolation, and Recovery System," in Military Embedded Systems, Summer, 2006.

See Also

More About
• “Synchronize Model Components by Broadcasting Events” on page 14-2
• “Use Truth Tables to Model Combinatorial Logic” on page 10-2
• “Reuse Logic Patterns by Defining Graphical Functions” on page 8-10
• “HL-20 Project with Optional FlightGear Interface” (Aerospace Blockset)
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Map Fault Conditions to Actions by Using Truth Tables
This example shows how to use truth tables to map fault conditions of a system directly to their
consequent actions.

Truth tables are only supported in Simulink®. For more information, see “Use Truth Tables to Model
Combinatorial Logic” on page 10-2.

Detect Faults in a System

This model maps the fault conditions and actions of an aircraft elevator control system by using truth
tables.

This list describes the requirements for the fault detection system in the model.

• Hydraulic pressure 1 failure — While there are no other failures, turn off the left outer actuator.
• Hydraulic pressure 2 failure — While there are no other failures, turn off the left inner actuator

and the right inner actuator.
• Hydraulic pressure 3 failure — While there are no other failures, turn off the right outer actuator.
• Actuator position failure — While there are no other failures, isolate that specific actuator.
• Hydraulic pressure 1 and left outer actuator failures — While there are no other failures, turn off

the left outer actuator.
• Hydraulic pressure 2 and left inner actuator failures — While there are no other failures, turn off

the left inner actuator.
• Hydraulic pressure 3 and right outer actuator failures — While there are no other failures, turn off

the right outer actuator.
• Multiple failures on left hydraulics and actuators — Isolate the left outer actuator and the left

inner actuator.
• Multiple failures on right hydraulics and actuators — Isolate the right outer actuator and the right

inner actuator.
• Intermittent actuator failures — If an actuator has been switched on and off five times during

operation, isolate that specific actuator.

In the Mode Logic chart, a pair of truth table functions define the logic to satisfy these requirements.
L_switch controls the left elevator and R_switch controls the right elevator. This truth table is for
the left elevator.
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The first requirement indicates that if a failure is only detected in the hydraulic pressure 1 system,
turn off the left outer actuator. In the truth table, this requirement is represented by the decision D1.
If there is low pressure in the hydraulic system 1, then D1 specifies that action 2 is performed. Action
2 sends an event go_off to the left actuator, Actuators.LO.

Similarly, the other requirements are mapped to the appropriate actions in the truth table. For
example, if the left outer actuator fails, D3 causes action 3. Action 3 sends the event go_isolated
to Actuators.LO to isolate the left actuator.
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The truth table functions are called at entry and during actions for the chart so that fault checks
execute at each time step.

See Also

More About
• “Use Truth Tables to Model Combinatorial Logic” on page 10-2
• “Program a Truth Table” on page 10-8
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Design for Isolation and Recovery in a Chart

Mode Logic for the Elevator Actuators
This example shows how the model sf_aircraft uses the chart Mode Logic to detect system faults
and recover from failure modes for an aircraft elevator control system. For more information on this
model, see “Detect Faults in Aircraft Elevator Control System” on page 30-19.

There are two elevators in the system, each with an outer and inner actuator. The Actuators state
has a corresponding substate for each of the four actuators. An actuator has five modes: Passive,
Active, Standby, Off, and Isolated. By default, the outer actuators are on, and the inner
actuators are on standby. If a fault is detected in the outer actuators, the system responds to maintain
stability by turning the outer actuators off and activating the inner actuators.
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States for Failure and Isolation
Each actuator contains an Off state and an Isolated state. When the fault detection logic in one of
the truth tables detects a failure, it broadcasts the event go_off or go_isolated to the failing
actuator. For more information, see “Map Fault Conditions to Actions by Using Truth Tables” on page
30-24.

The go_off event instructs the failing actuator to transition to the Off state until the condition is
resolved. The event go_isolated causes the failing actuator to transition to Isolated. Transitions
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to the Isolated state are from the superstate L1, which contains all the other operating modes. This
state has no outgoing transitions, so that once an actuator has entered Isolated it remains there.
Intermittent failures that cause an actuator to fail 5 or more times, also cause a transition to
Isolated. The variable fails logs the number of failures for an actuator by incrementing each time
a transition occurs out of Off.

Transitions for Recovery
Transitions in the substates for each actuator account for recovery requirements of the elevator
system. These requirements derive from rules for symmetry and safety of the elevators such as:

• Only one actuator for an elevator must be active at one time.
• Outer actuators have priority over the inner actuators.
• Actuator activity should be symmetric if possible.
• Switching between actuators must be kept to a minimum.

For example, one requirement of the system is if one outer actuator fails, then the other outer
actuator must move to standby and the inner actuators take over. Consequently, there is a transition
from each Active state to Standby, and vice versa.

For the inner left actuator (LI ), the transition to Active inside the L1 superstate is conditionally
based on [!LO_act()|RI_act()]. This causes the left inner actuator to turn on if the outer
actuator (LO) has failed, or the right inner actuator (RI) has turned on.
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Another consequence if LO fails and moves out of Active is a transition that occurs in the right outer
actuator (RO). The RO state transitions inside the L1 superstate from Active to Standby. This
satisfies the requirement of the outer actuators and inner actuators to work in symmetry.
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Model a Launch Abort System
This example shows how to model a launch abort system for an orbiter heading into outer space. If a
fault occurs during the launch, the orbiter aborts the launch. Depending on when the fault occurs, the
orbiter returns to the launch site, returns to a downrange landing site, attempts to land after orbiting
once around the Earth, or proceeds to a lower, stable orbit. A Simulink 3D Animation™ window
displays a visualization of these steps. This simplified example does not model the dynamics of the
fuel, boosters, and tank subsystems.

Monitor Orbiter Altitude

In this example, a Stateflow® chart monitors the flight of the orbiter and schedules the appropriate
launch abort actions when the orbiter encounters an anomaly.
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The chart consists of two parallel states: ModeLogic and Abort. The ModeLogic state contains four
substates that describe the possible launch abort scenarios based on the altitude of the orbiter:

• Return to Launch Site (RTLS) — If the altitude is less than 10,000 meters, the orbiter dumps the
fuel, releases the solid rocket boosters and the external tank, and returns to the launch site.

• Downrange landing (DRL) — If the altitude is between 10,000 and 100,000 meters, the orbiter
releases the solid rocket boosters and the external tank and returns to a downrange landing site.

• Abort Once Around (AOA) — If the altitude is between 100,000 and 400,000 meters, the orbiter
releases the external tank, circles the Earth once, and proceeds to re-entry.

• Abort to Orbit (ATO) — If the altitude is greater than 400,000 meters, the orbiter abandons the
intended orbit and proceeds to a lower, stable orbit.
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Schedule Launch Abort Actions

The Abort state controls the behavior of the orbiter when an anomaly is detected. If an anomaly
occurs, the system transitions from the Normal substate to the AbortLogic subchart before
transitioning to the AbortComplete substate.

The transition into the AbortLogic subchart connects to an entry port. Similarly, the transition out
of the subchart begins at an exit port. Each port has a matching junction that marks the entry or exit
point inside the subchart. The junctions isolate the internal logic of the subchart which, depending on
the launch abort scenario, schedules three possible actions:

• Dump the fuel.
• Release the sold rocket boosters.
• Release the external tank.

If the orbiter is in the ATO scenario, none of these actions is required.
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For more information about entry and exit ports, see “Create Entry and Exit Connections Across State
Boundaries” on page 2-48.

Simulate the Model

To run a simulation of the model:

1 Double-click the Inputs block. In the Signal Editor dialog box, select a launch abort scenario
from the Active Scenario list. The default scenario is RTLS_Abort.

2 Click Run. The Simulink 3D Animation window displays a visualization of the launch.
3 To view the orbiter from different perspectives, in the Simulink 3D Animation window, use the

Viewpoint dropdown menu. For example, you can see entire flight of the orbiter by selecting
Chase Plane.
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Reference

Nelson, Douglas, John Bradford, and John Olds. "Abortability Metrics: Quantifying Intact Abort Mode
Availability for Reusable Launch Vehicles." In Space 2006. San Jose, California: American Institute of
Aeronautics and Astronautics, 2006. https://doi.org/10.2514/6.2006-7293.

See Also

More About
• “Create Entry and Exit Connections Across State Boundaries” on page 2-48
• “Check State Activity by Using the in Operator” on page 13-18
• “Control Chart Execution by Using Temporal Logic” on page 16-34
• “Simulink 3D Animation”
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Modeling a Fault-Tolerant Fuel Control System
This example shows how to combine Stateflow® with Simulink® to efficiently model hybrid systems.
This type of modeling is particularly useful for systems that have numerous possible operational
modes based on discrete events. Traditional signal flow is handled in Simulink while changes in
control configuration are implemented in Stateflow. The model described below represents a fuel
control system for a gasoline engine. The system is highly robust in that individual sensor failures are
detected and the control system is dynamically reconfigured for uninterrupted operation.

Analysis and Physics

Physical and empirical relationships form the basis for the throttle and intake manifold dynamics of
this model. The air-fuel ratio is computed by dividing the air mass flow rate (pumped from the intake
manifold) by the fuel mass flow rate (injected at the valves). The ideal (i.e. stoichiometric) mixture
ratio provides a good compromise between power, fuel economy, and emissions. The target air-fuel
ratio for this system is 14.6. Typically, a sensor determines the amount of residual oxygen present in
the exhaust gas (EGO). This gives a good indication of the mixture ratio and provides a feedback
measurement for closed-loop control. If the sensor indicates a high oxygen level, the control law
increases the fuel rate. When the sensor detects a fuel-rich mixture, corresponding to a very low level
of residual oxygen, the controller decreases the fuel rate.

Modeling

Figure 1 shows the top level of the Simulink model. To open the model, click Open Model. Press the
Play button in the model window toolbar to run the simulation. The model loads necessary data into
the model workspace from sldemo_fuelsys_data.m. The model logs relevant data to MATLAB
workspace in a data structure called sldemo_fuelsys_output and streams the data to the
Simulation Data Inspector. Logged signals are marked with a blue indicator while streaming signals
are marked with the light blue badge(see Figure 1).

Note that loading initial conditions into the model workspace keeps simulation data isolated from
data in other open models that you may have open. This also helps avoid MATLAB workspace
cluttering. To view the contents of the model workspace select Modeling > Model Explorer, and click
on Model Workspace from the Model Hierarchy list.

Notice that units are visible on the model and subsystem icons and signal lines. Units are specified on
the ports and on the bus object.
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Figure 1: Top-level diagram for the fuel control system model

The Dashboard subsystem (shown in Figure 2) allows you to interact with the model during
simulation. The Fault Injection switches can be moved from the Normal to Fail position to simulate
sensor failures, while the Engine Speed selector switch can be toggled to change the engine speed.
The fuel and air/fuel ratio signals are visualized using the dashboard gauges and scopes to provide
visual feedback during a simulation run.
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Figure 2: Dashboard subsystem for the fuel control system model

The fuel_rate_control uses signals from the system's sensors to determine the fuel rate which gives a
stoichiometric mixture. The fuel rate combines with the actual air flow in the engine gas dynamics
model to determine the resulting mixture ratio as sensed at the exhaust.

You can selectively disable each of the four sensors (throttle angle, speed, EGO and manifold absolute
pressure [MAP]) by using the slider switches in the dashboard subsystem, to simulate failures.
Simulink accomplishes this by binding slider switches to the value parameter of the constant block.
Double-click on the dashboard subsystem to open the control dashboard to change the position of the
switch. Similarly, you can induce the failure condition of a high engine speed by toggling the engine
speed switch on the dashboard subsystem. A Repeating Table block provides the throttle angle input
and periodically repeats the sequence of data specified in the mask.

The fuel_rate_control block, shown in Figure 3, uses the sensor input and feedback signals to adjust
the fuel rate to give a stoichiometric ratio. The model uses three subsystems to implement this
strategy: control logic, airflow calculation, and fuel calculation. Under normal operation, the model
estimates the airflow rate and multiplies the estimate by the reciprocal of the desired ratio to give the
fuel rate. Feedback from the oxygen sensor provides a closed-loop adjustment of the rate estimation
in order to maintain the ideal mixture ratio.
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Figure 3: Fuel rate controller subsystem

Control Logic

A single Stateflow chart, consisting of a set of six parallel states, implements the control logic in its
entirety. The four parallel states shown at the top of Figure 4 correspond to the four individual
sensors. The remaining two parallel states at the bottom consider the status of the four sensors
simultaneously and determine the overall system operating mode. The model synchronously calls the
entire Stateflow diagram at a regular sample time interval of 0.01 sec. This permits the conditions for
transitions to the correct mode to be tested on a timely basis.

To open the control_logic Stateflow chart, double-click on it in the fuel_rate_control subsystem.
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Figure 4: The control logic chart

When execution begins, all of the states start in their normal mode with the exception of the oxygen
sensor (EGO). The O2_warmup state is entered initially until the warmup period is complete. The
system detects throttle and pressure sensor failures when their measured values fall outside their
nominal ranges. A manifold vacuum in the absence of a speed signal indicates a speed sensor failure.
The oxygen sensor also has a nominal range for failure conditions but, because zero is both the
minimum signal level and the bottom of the range, failure can be detected only when it exceeds the
upper limit.

Regardless of which sensor fails, the model always generates the directed event broadcast
Fail.INC. In this way the triggering of the universal sensor failure logic is independent of the
sensor. The model also uses a corresponding sensor recovery event, Fail.DEC. The Fail state keeps
track of the number of failed sensors. The counter increments on each Fail.INC event and
decrements on each Fail.DEC event. The model uses a superstate, Multi, to group all cases where
more than one sensor has failed.

The bottom parallel state represents the fueling mode of the engine. If a single sensor fails, operation
continues but the air/fuel mixture is richer to allow smoother running at the cost of higher emissions.
If more than one sensor has failed, the engine shuts down as a safety measure, since the air/fuel ratio
cannot be controlled reliably.

During the oxygen sensor warm-up, the model maintains the mixture at normal levels. If this is
unsatisfactory, you can change the design by moving the warm-up state to within the Rich_Mixture
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superstate. If a sensor failure occurs during the warm-up period, the Single_Failure state is
entered after the warm-up time elapses. Otherwise, the Normal state is activated at this time.

A protective overspeed feature has been added to the model by creating a new state in the
Fuel_Disabled superstate. Through the use of history junctions, we assured that the chart returns
to the appropriate state when the model exits the overspeed state. As the safety requirements for the
engine become better specified, we can add additional shutdown states to the Fuel_Disabled
superstate.

Sensor Correction

When a sensor fails, the model computes an estimate of the sensor. For example, open the pressure
sensor calculation. Under normal sensor operation, the model uses the value of the pressure sensor.
Otherwise, the model estimates the value.

The model computes an estimate of manifold pressure as a function of the engine speed and throttle
position. To compute the value, the model uses a Simulink function inside Stateflow.
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Airflow Calculation

The Airflow Calculation block (shown in Figure 6) is the location for the central control laws. This
block is found inside the fuel_rate_control subsystem (open this block). The block estimates the intake
air flow to determine the fuel rate which gives the appropriate air/fuel ratio. Closed-loop control
adjusts the estimation according to the residual oxygen feedback in order to maintain the mixture
ratio precisely. Even when a sensor failure mandates open-loop operation, the most recent closed-loop
adjustment is retained to best meet the control objectives.

Figure 6: Airflow estimation and correction

Equation 1

The engine's intake air flow can be formulated as the product of the engine speed, the manifold
pressure and a time-varying scale factor.
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Cpump is computed by a lookup table and multiplied by the speed and pressure to form the initial flow
estimate. During transients, the throttle rate, with the derivative approximated by a high-pass filter,
corrects the air flow for filling dynamics. The control algorithm provides additional correction
according to Equation 2.

Equation 2

Figure 7: Engine Gas Dynamics subsystem

Figure 8: Mixing & Combustion block within the Engine Gas Dynamics subsystem

The nonlinear oxygen sensor (EGO Sensor block) is found inside the Mixing & Combustion block (see
Figure 8) within the Engine Gas Dynamics subsystem (see Figure 7). EGO Sensor is modeled as a
hyperbolic tangent function, and it provides a meaningful signal when in the vicinity of 0.5 volt. The
raw error in the feedback loop is thus detected with a switching threshold, as indicated in Equation 2.
If the air-fuel ratio is low (the mixture is lean), the original air estimate is too small and needs to be
increased. Conversely, when the oxygen sensor output is high, the air estimate is too large and needs
to be decreased. Integral control is utilized so that the correction term achieves a level that brings
about zero steady-state error in the mixture ratio.

The normal closed-loop operation mode, LOW, adjusts the integrator dynamically to minimize the
error. The integration is performed in discrete time, with updates every 10 milliseconds. When
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operating open-loop however, in the RICH or O2 failure modes, the feedback error is ignored and the
integrator is held. This gives the best correction based on the most recent valid feedback.

Fuel Calculation

The fuel_calc subsystem (within the fuel_rate_control subsystem, see Figure 9) sets the injector signal
to match the given airflow calculation and fault status. The first input is the computed airflow
estimation. This is multiplied with the target fuel/air ratio to get the commanded fuel rate. Normally
the target is stoichiometric, i.e. equals the optimal air to fuel ratio of 14.6. When a sensor fault
occurs, the Stateflow control logic sets the mode input to a value of 2 or 3 (RICH or DISABLED) so
that the mixture is either slightly rich of stoichiometric or is shut down completely.

Figure 9: fuel_calc subsystem

The fuel_calc subsystem (Figure 9) employs adjustable compensation (Figure 10) in order to achieve
different purposes in different modes. In normal operation, phase lead compensation of the feedback
correction signal adds to the closed-loop stability margin. In RICH mode and during EGO sensor
failure (open loop), however, the composite fuel signal is low-pass filtered to attenuate noise
introduced in the estimation process. The end result is a signal representing the fuel flow rate which,
in an actual system, would be translated to injector pulse times.
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Figure 10: Switchable compensation subsystem

Results and Conclusions

Simulation results are shown in Figure 11 and Figure 12. The simulation is run with a throttle input
that ramps from 10 to 20 degrees over a period of two seconds, then goes back to 10 degrees over
the next two seconds. This cycle repeats continuously while the engine is held at a constant speed so
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that the user can experiment with different fault conditions and failure modes. Click on a sensor fault
switch in the dashboard subsystem to simulate the failure of the associated sensor. Repeat this
operation to slide the switch back for normal operation.
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Figure 11: Comparing the fuel flow rate for different sensor failures

Figure 11 compares the fuel flow rate under fault-free conditions (baseline) with the rate applied in
the presence of a single failure in each sensor individually. In each case note the nonlinear
relationship between fuel flow and the triangular throttle command (shown in Figure 13). In the
baseline case, the fuel rate is regulated tightly, exhibiting a small ripple due to the switching nature
of the EGO sensor's input circuitry. In the other four cases the system operates open loop. The control
strategy is proven effective in maintaining the correct fuel profile in the single-failure mode. In each
of the fault conditions, the fuel rate is essentially 125% of the baseline flow, fulfilling the design
objective of 80% rich.
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Figure 12: Comparing the air-fuel ratio for different sensor failures

Figure 12 plots the corresponding air/fuel ratio for each case. The baseline plot shows the effects of
closed-loop operation. The mixture ratio is regulated very tightly to the stoichiometric objective of
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14.6. The rich mixture ratio is shown in the bottom four plots of Figure 12. Although they are not
tightly regulated, as in the closed-loop case, they approximate the objective of air/fuel
(0.8*14.6=11.7).

Figure 13: Throttle command

The transient behavior of the system is shown in Figure 14. With a constant 12 degree throttle angle
and the system in steady-state, a throttle failure is introduced at t = 2 and corrected at t = 5. At the
onset of the failure, the fuel rate increases immediately. The effects are seen at the exhaust as the
rich ratio propagates through the system. The steady-state condition is then quickly recovered when
closed-loop operation is restored.

Figure 14: Transient response to fault detection
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Remarks

If you enable animation in the Stateflow debugger, the state transitions are highlighted in the
Stateflow diagram (see Figure 4) as the various states are activated. The sequence of activation is
indicated by changing colors. This closely coupled synergy between Stateflow and Simulink fosters
the modeling and development of complete control systems.

See Also

More About
• “Fixed-Point Fuel Rate Control System” (Fixed-Point Designer)
• “Air-Fuel Ratio Control System with Fixed-Point Data” (Embedded Coder)
• “Air-Fuel Ratio Control System with Stateflow Charts” (Embedded Coder)
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Model a Power Window Controller
This example shows how to create an interface between a Stateflow® chart that uses MATLAB® as
the action language and a MATLAB app created in App Designer. For more information on connecting
a Stateflow chart that uses C as the action language to a MATLAB app, see “Simulate a Media Player”
on page 24-15.

In this example, an automotive power window system raises and lowers the passenger-side window in
response to a pair of window control switches. The switches in the MATLAB app represent the
controls on the driver and passenger doors. The app also contains several indicator lamps that
monitor the status of the power window system and a button for introducing an obstacle in the path
of the window.

The Stateflow chart App Interface provides a bidirectional connection between the MATLAB app
and the control and plant systems in the Simulink® model. When you point a switch in the app to a
new position, the chart sends a corresponding "Up," "Down," or "Neutral" command to the power
window control system. Conversely, when the control system changes state, the chart enables or
disables the corresponding status lamps in the app.

To run the example, open the Simulink model and click Run. The chart App Interface opens the
app and initializes the control and plant systems in the power window system. To stop the simulation,
click Stop or close the app.
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Connect Chart to MATLAB App

The chart App Interface is already configured to communicate with the MATLAB app
sf_power_window_app. To create a bidirectional connection between your MATLAB app and a
Stateflow chart that uses MATLAB as the action language, follow these steps. In the MATLAB app:

1 Create a custom property to interface with the chart during simulation. The app uses this
property to access chart inputs, chart outputs, and local data. For more information, see “Share
Data Within App Designer Apps”.

2 Modify the startupFcn callback for the app by adding a new input argument and storing its
value as the property that you created in the previous step. For more information, see “Write
Callbacks in App Designer”.

In the Stateflow chart:

1 Create a local data object to interface with the app. The chart uses this local data object as an
argument when it calls helper functions in the app.

2 Set the type of the local data object you created in the previous step to Inherit: From
definition in chart. For more information, see “Specify Type of Stateflow Data” on page
12-27.

3 Call the coder.extrinsic function to declare the app and any helper functions as extrinsic
MATLAB code. For more information, see “Call Extrinsic MATLAB Functions in Stateflow Charts”
on page 31-30.

4 Run the app using the keyword this as an argument to give the app access to the chart during
simulation. Store the value returned by the function call to the app as the local data object that
you created to interface with the app.

In this example, the power window app uses a property called chart to interface with the chart App
Interface. The app callbacks use this property to write to the chart outputs:

• When you move the driver-side control switch to a new position, the
DriverControlValueChanged callback sets the values of switches.driver_up and
switches.driver_down.

• When you move the passenger-side control switch to a new position, the
PassengerControlValueChanged callback sets the values of switches.passenger_up and
switches.passenger_down.

• When you click the Obstacle button, the ObstacleButtonPushed callback sets the value of
obstacle to true.

• When you close the app, the UIFigureCloseRequest callback sets the value of stop to true.

Conversely, in the chart, the entry actions in the InterfaceWithApp state run the app
sf_power_window_app and store the returned value as the local data object app. The chart uses
this local data object when it calls the helper function updateLamps. In the app, this helper function
turns the lamps on and off based on the value of the chart input lamps.
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Control System Design

The power window control system uses mode logic to determine when the window should move and
outputs a unified motion command to a servo motor. To lower production costs, the control system
does not keep track of the window position. Instead, it relies on a signal from the servo motor to
determine when the window is fully open or fully closed, or when it encounters an obstacle.

The control system meets these performance requirements:

1 The window must open or close completely in 5 seconds.
2 The motor must stop when the window reaches a fully opened or fully closed position.
3 The motor must be able to detect an obstacle when the window is moving up. When the motor

detects an obstacle in the path of the window, the window must be lowered for one second or
until the window is fully open.

4 The motor must stop after 10 seconds of continuous movement in any direction. This requirement
provides a fail-safe protection for the window mechanism, motor, and drive.

5 If a control switch is pressed for less than half a second, or if it is pressed for longer than one
second, the window must stop when the switch is released.

6 If a control switch is pressed for longer than half a second and released before one second, the
window must open or close completely unless it is interrupted by a new command or by an
obstacle. This requirement represents the automatic mode capability of the power window.

7 The driver-side control has priority over the passenger-side control.
8 Obstacle detection has priority over both driver-side and passenger-side controls.

The Stateflow chart Control System models an event-driven controller that satisfies these
requirements. The chart consists of two states (Switch and Logic) in parallel decomposition. These
states react to changes in the chart inputs, determine the operating mode of the power window
system, and manage the output signals that activate the servo motor.
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Monitor Controller Input

The state Switch reads the values of the chart inputs and broadcasts local events to change the
operating mode of the power window system. For more information, see “Broadcast Local Events to
Synchronize Parallel States” on page 14-23.

At every time step of the simulation, the state calls the truth table function checkSwitches to
determine the positions of the driver-side and passenger-side control switches. Depending on the
value of the input structure switches, this function broadcasts the UP, DOWN, and NEUTRAL events.
Because the function ignores any input from the passenger-side control when the driver-side control
is not in the "Neutral" position, the driver-side control has priority over the passenger-side control, as
specified by requirement 7.
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In a similar way, the state calls the graphical function detectObstacles to determine the strength
of the armature current in the servo motor. If the value of current is small and nonzero, an obstacle
is present so the function broadcasts the event OBSTACLE. In contrast, if the value of current is
large, the window has reached a fully open or fully closed position so the function broadcasts the
event ENDSTOP. Because the chart calls detectObstacles before checkSwitches, obstacle
detection has priority over both driver-side and passenger-side controls, as specified by requirement
8.

Determine Operating Mode

The state Logic incorporates fault detection algorithms to protect the window hardware and any
obstacles in the path of the window. The state contains three substates, Stop, Move, and
EmergencyDown, that represent the operating modes of the power window system.

Initially, the state Stop is active. This state contains two parallel substates named Mode and
Position.

• Mode determines when the power system is ready to accept new commands from the control
switches. The system is ready for new commands when both control switches are in the "Neutral"
position.

• Position records whether the window is fully open, fully closed, or somewhere in the middle.
The chart makes this determination by noting the direction in which the window is moving when
the servo motor reaches the end of its range.

 Model a Power Window Controller

30-55



Stop remains active until a broadcast of the events UP or DOWN indicates a command from one of the
control switches. As long as the window is not fully open or fully closed, these events trigger the
transition to the state Move. However, the event UP is considered invalid when the window is already
fully closed. Likewise, the event DOWN is invalid when the window is fully open.

The state Move is active whenever the window is in motion. This state implements several of the
power window requirements related to automatic window movement and fault detection. The state
has two parallel substates named Direction and Mode.

• Direction determines the direction in which the window should move and calls the functions
go.up and go.down, as appropriate. These functions set the values of the output signals that
control the servo motor and the "Up" and "Down" status lamps in the app.

• Mode implements the automatic and manual modes of the power window specified by
requirements 5 and 6. This state has three exclusive substates (Initializing, Auto, and
Manual). Initially, the substate Initializing is active. The substate waits for a broadcast of the
NEUTRAL event, which indicates that the control switches have returned to the "Neutral" position.
If the broadcast occurs within half a second of Initializing becoming active, the event triggers
a transition to the Stop state, indicating that the window must stop moving. If the broadcast
occurs after half a second but before one second of Initializing becoming active, the event
triggers a transition to the substate Auto, indicating that the power window system is operating
in its automatic mode. This substate remains active until it is interrupted by a broadcast of the
events ENDSTOP (when the window is fully open or fully closed), OBSTACLE (when the window
encounters an obstacle), or UP or DOWN (when the system receives a new command from one of
the control switches). Finally, if the broadcast does not occur before one second of Initializing
becoming active, the temporal logic expression after(1,sec) triggers the transition to the
substate Manual. This substate remains active until a broadcast of the event NEUTRAL triggers
the transition back to the Stop state.

Independent of whether the system is in automatic or manual mode, the chart transitions directly
from Move to Stop on the broadcast of the event ENDSTOP or when Move is active for longer than
FAILSAFE_TIMEOUT seconds, as specified by requirements 2 and 4. By default, the value of this
constant is set to 10.
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Detect Obstacles

When the window encounters an obstacle, the applied force on the window increases the load on the
servo motor and causes a rise in the armature current. By monitoring for sharp increases in the
armature current, the system detects obstacles in the path of the window.

In this example, a Simulink subsystem simulates the servo motor. The position of the window is
computed by an Integrator (Simulink) block with saturation limits of 0 (fully open) and 10 (fully
closed). Because the input to this block has a gain of 2, the window opens and closes completely in 5
seconds, as specified by requirement 1. When the Integrator block reaches a saturation point, the
system output armature current increases to 10. This value indicates that the window is fully open
or fully closed.

To introduce an obstacle in the path of the window, click the Obstacle button in the app while the
window is moving up. The App Interface chart responds by sending a positive signal to the servo
motor, which in turn produces a small rise in the armature current. In the Control System chart,
the function detectObstacles registers this change in current and broadcasts the event
OBSTACLE. In the Logic state, this event triggers the transition from the substate Move to the
substate EmergencyDown. While this substate is active, the system moves the window down for one
second or until the window is fully open. Then, the chart transitions back to the substate Stop,
indicating that the window must stop moving, as specified by requirement 3.

See Also
after | hasChanged | send | this | coder.extrinsic | Integrator

More About
• “Simulate a Media Player” on page 24-15
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• “Call Extrinsic MATLAB Functions in Stateflow Charts” on page 31-30
• “Broadcast Local Events to Synchronize Parallel States” on page 14-23
• “Control Chart Execution by Using Temporal Logic” on page 16-34
• “Develop Apps Using App Designer”
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Model a Fitness Tracker
This example shows how to create an interface between a Stateflow® chart and a MATLAB® app
created in App Designer. For other examples that show how to connect a Stateflow chart to a
MATLAB app, see “Model a Power Window Controller” on page 30-51 and “Simulate a Media Player”
on page 24-15. For a version of this example that uses standalone charts in MATLAB, see “Model a
Fitness App by Using Standalone Charts” on page 35-35.

In this example, a MATLAB app models a fitness tracker. During simulation, you can adjust the
settings for the tracker and select an activity (Sleep, Rest, Walk, or Exercise). When you choose
Exercise, you can also set the intensity of your workout.

The Stateflow chart App Interface provides a bidirectional connection between the MATLAB app
and the control and plant systems in the Simulink® model. When you interact with the widgets in the
app, the chart communicates your selections to the other charts in the model. Conversely, the chart
uses the output of the fitness tracker to update the numeric and text fields in the app. For example,
when you click the Rest button on the app, the App Interface chart sets the value of the output
activity to the enumerated value Activity.Rest. The Human Simulator chart responds by
producing vital sign values that model a person at rest. The Fitness Tracker chart analyses these
values and sets the output signal status to Activity.Rest. The App Interface chart monitors
this signal and updates the contents of the Status field in the app to Rest.
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To run the example, open the Simulink model and click Run. The chart App Interface opens the
app and initializes the Human Simulator and Fitness Tracker charts. While the example is
running, one second of simulation represents one minute of exercise time. To stop the simulation,
click Stop or close the app.

Connect Chart to MATLAB App

The chart App Interface is configured to communicate with the MATLAB app sf_fitness_app.

• The app uses a property called chart to interface with the chart App Interface. The app
callbacks use this property to read the chart inputs and write to the chart outputs. For example,
when you change the value of one of the fields in the Settings pane, a callback updates the value
of the corresponding field of the output structure threshold. Similarly, when you select a new
activity or change the intensity of your workout in the Human Simulator pane, a callback sets
the value of the chart outputs activity and intensity. Finally, when you close the app, the
UIFigureCloseRequest callback sets the value of the chart output stop to true.

• In the chart, the entry actions in the InterfaceWithApp state run the app sf_fitness_app
and store the returned value as the local data object app. The chart uses this local data object
when it calls the helper functions updateStatus, updateClock, updateText, updateSteps,
and updateHeartRate. In the app, these helper functions change the contents of the activity
status, clock, and step counter fields, and create the animation effects in the heartbeat and
footstep displays. For example, when the chart receives a notification message, the substate
MainDisplay calls the helper function updateText. This function replaces the contents of the
clock display with a customized notification. After five seconds, the substate calls the helper
function updateClock to restore the clock display.

For more information on how to create a bidirectional connection between your MATLAB app and a
Stateflow chart, see “Model a Power Window Controller” on page 30-51 and “Simulate a Media
Player” on page 24-15.
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The functions used to interact with the app are not supported for code generation, so the
InterfaceWithApp state first calls the coder.extrinsic function to declare them as extrinsic
MATLAB code. For more information, see “Call Extrinsic MATLAB Functions in Stateflow Charts” on
page 31-30.

Simulate Vital Signs Based on Activity

The Human Simulator chart models the vital signs of a human engaged in the activity you select in
the app. The chart uses the output structure vitals to relay these vital signs to the fitness tracker.
The fields of the structure represent your heart rate, speed, and the number of steps that you have
taken. When you select a new activity or adjust the intensity of your workout, the chart calls the
function transition to ensure that these vital signs change gradually over time. To detect changes
in activity or exercise intensity, the chart calls the hasChanged operator. For more information, see
“Detect Changes in Data and Expression Values” on page 16-62.
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Determine Fitness Tracker Output

The chart Fitness Tracker models the core logic of the fitness tracker. The chart consists of four
subcharts that correspond to the possible activities. The chart registers your activity status based on
the heart rate and speed produced by the Human Simulator chart and transitions between these
subcharts. To filter out signal noise, the chart uses the duration operator to implement simple
debouncing logic. For instance, when you are at rest, you can make some quick and sudden
movements that do not correspond to exercise. The chart determines that you are walking or
exercising only if your motion lasts longer than two minutes (or two seconds of simulation time). The
chart monitors the active child state and passes this information to the App Interface chart
through the output data status. For more information, see “Monitor State Activity Through Active
State Data” on page 13-2.

The chart uses other temporal logic operators to track the amount of time you spend in each activity
and determine when to send notifications to the app:

• The exit actions in each subchart call the elapsed operator to determine how long the subchart
was active. The chart communicates this value, along with other information such as your heart
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rate and your total number of steps, to the App Interface chart through the output structure
display.

• The chart uses the after operator to determine when you sleep or walk for longer than five
minutes, rest or exercise for longer than the threshold you specify in the app, or exercise at a high
intensity (taking more than 4 steps a second) for longer than 15 minutes. In each of these cases,
the chart sends a Notification message. The App Interface chart receives this message and
causes a notification to appear in the main display of the app. Depending on the type of
notification, the notification button changes color.

See Also
Stop Simulation | after | duration | elapsed | hasChanged | coder.extrinsic

More About
• “Model a Fitness App by Using Standalone Charts” on page 35-35
• “Call Extrinsic MATLAB Functions in Stateflow Charts” on page 31-30
• “Control Chart Execution by Using Temporal Logic” on page 16-34
• “Communicate with Stateflow Charts by Sending Messages” on page 15-2
• “Monitor State Activity Through Active State Data” on page 13-2
• “Develop Apps Using App Designer”
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Build Targets

• “Reuse Custom Code in Stateflow Charts” on page 31-2
• “Access Custom C++ Code in Stateflow Charts” on page 31-8
• “Configure Custom Code in Library Models” on page 31-10
• “Access Custom Code Variables and Functions in Stateflow Charts” on page 31-13
• “Include Custom C Code Functions and Structures” on page 31-15
• “C++ Code Generation and Integration in Stateflow” on page 31-17
• “Model Battery Management with Custom Code” on page 31-19
• “Speed Up Simulation” on page 31-28
• “Call Extrinsic MATLAB Functions in Stateflow Charts” on page 31-30
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Reuse Custom Code in Stateflow Charts
You can integrate custom code written in C or C++ with Stateflow charts in Simulink models. By
sharing data and functions between your custom code and your Stateflow chart, you can augment the
capabilities of Stateflow and take advantage of your preexisting code.

Integrate Custom C Code in Stateflow Charts
This example shows how to use custom C code to define constants, variables, and functions that you
can access in all charts in your model. For more information about integrating custom C++ code in
your charts, see “Access Custom C++ Code in Stateflow Charts” on page 31-8 and “C++ Code
Generation and Integration in Stateflow” on page 31-17.

In this example, a Stateflow chart calls a custom code function named custom_function. This
function reads the chart input signal and the local data threshold, compares their values, and
returns one of three custom global constants named HIGH, MEDIUM, and LOW. The chart uses the
return value to determine whether to transition to a new state after it increments or decrements the
value of a custom variable named custom_var.

To see the custom code that this chart accesses, open the Model Configuration Parameters dialog box
and select the Simulation Target pane.

• The Header file parameter contains an #include statement that specifies the header file
sf_custom_code_constants_vars_fcns_hdr.h.

• The Source file parameter specifies the source file
sf_custom_code_constants_vars_fcns_src.c.

Both of these files are located in the same folder that contains the model. To access custom code files
that reside in a different folder, use relative path names. For more information, see “Specify Relative
Paths to Your Custom Code” on page 31-6.
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The header file contains the definitions of three global constants and the declarations for the global
variable custom_var and the function custom_function.

#ifndef SF_CUSTOM_CODE_CONSTANTS_VARS_FCNS_HDR_H
#define SF_CUSTOM_CODE_CONSTANTS_VARS_FCNS_HDR_H
/* Include guard makes ensures that the header file is included 
   only once in the generated code. */

/* Constant definitions shared by the Stateflow chart and custom code*/

#define LOW -1
#define MEDIUM 0
#define HIGH 1

/* extern declaration of the global variable defined in the source file 
   sf_custom_code_constants_vars_fcns_src.c */

extern int custom_var;

/* extern declaration of the custom function defined in the source file 
   sf_custom_code_constants_vars_fcns_src.c */

extern int custom_function(double var1, int var2); 

#endif /* SF_CUSTOM_CODE_CONSTANTS_VARS_FCNS_HDR_H */

The source file sets the initial value of custom_var to zero and defines the function
custom_function.

#include "sf_custom_code_constants_vars_fcns_hdr.h"

/* Definition of the global variable */

int custom_var = 0;

/* Definition of the custom function */

int custom_function(double var1, int var2)
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{
    if(var1 > var2 + custom_var) {
        return(HIGH);
    }else if(var1 < var2 - custom_var) {
        return(LOW);
    }
    return(MEDIUM);
}

When you simulate the model, Stateflow compiles the source file and the chart into a single S-
function MEX file. Because the custom definitions appear at the top of the generated machine header
file sf_custom_code_constants_vars_fcns_sfun.h, every chart in the model can access the
custom code during simulation.

Specify Custom Code for Your Model
Specify Custom Code for Simulation

To configure your model to access custom code during simulation, use the Simulation Target pane
of the Model Configuration Parameters dialog box.

1 Open the Model Configuration Parameters dialog box.
2 Select the Simulation Target pane.
3 Specify your custom code in the Insert custom C code in generated and Additional build

information subpanes.

• Source file — Enter the code to include at the top of a generated source code file. This code
appears at the top of the generated model.c source file, outside of any function. For example,
use this parameter to include extern int declarations for global variables. For more
information, see “Source file” (Simulink).
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• Header file — Enter the code to include at the top of the generated model.h header file,
which declares custom functions and data in the generated code. The code appears at the top
of all generated source code files and is visible to all generated code. For example, use this
parameter to enter #define and #include statements. When you include a custom header
file, you must enclose the file name in double quotes. For more information, see “Header file”
(Simulink).

Note Because the code you specify in the Header file parameter appears in multiple source
files that link into a single binary, you cannot include a global variable definition such as int
x or a function with a signature of void myfun(void). These statements cause linking
errors because their symbol definitions appear multiple times in the source files of the
generated code. You can, however, include extern declarations of variables or functions,
such as extern int x or extern void myfun(void).

• Initialize function — Enter code that executes once at the start of simulation. Use this code
to invoke functions that allocate memory or initialize your custom code. For more information,
see “Initialize function” (Simulink).

• Terminate function — Enter code that executes at the end of simulation. Use this code to
invoke functions that free memory allocated by the custom code or perform other cleanup
tasks. For more information, see “Terminate function” (Simulink).

• Include directories — Enter a space-separated list of the folder paths that contain custom
header files that you include either directly in the Header file parameter or indirectly in the
compiled target. For more information, see “Include directories” (Simulink).

• Source files — Enter a list of source files to compile and link into the target. You can
separate source files with a comma, space, or new line. For more information, see “Source
files” (Simulink).

• Libraries — Enter a space-separated list of static libraries that contain custom object code to
link into the target. For more information, see “Libraries” (Simulink).

• Defines — Enter a space-separated list of preprocessor macro definitions to add to the
generated code. For more information, see “Defines” (Simulink).

4 If your model contains library charts, configure the custom code settings for each library model
that contributes a chart to your model. For more information, see “Configure Custom Code in
Library Models” on page 31-10.

For information on setting simulation options by using the command-line API, see “Set Simulation
Parameters Programmatically” on page 32-17.

Specify Custom Code for Code Generation

To configure your model to access custom code for code generation, use the Code Generation >
Custom Code pane of the Model Configuration Parameters dialog box. When generating code, your
model can use the same custom code settings that it uses for simulation or use unique custom code
settings.

• To use the same custom code settings used for simulation, select Use the same custom code
settings as Simulation Target. Specify the custom code settings in the Simulation Custom
Code pane as described in “Specify Custom Code for Simulation” on page 31-4.

• To use unique custom code settings, clear Use the same custom code settings as Simulation
Target. Specify custom code settings for code generation in the Insert custom C code in
generated and Additional build information subpanes. For descriptions of the parameters in
these subpanes, see “Specify Custom Code for Simulation” on page 31-4.
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For more information, see “Use the same custom code settings as Simulation Target” (Simulink
Coder) and “Integrate External Code by Using Model Configuration Parameters” (Simulink Coder).

Call Custom Code Functions in States and Transitions
You can call custom code functions from the actions of any state or transition or from other functions.

To call a custom code function, use the signature specified by the function declaration in your header
file. Include an actual argument value for each formal argument in the function signature:

return_val = function_name(arg1,arg2,...)

Note Do not share fixed-point data between your custom code and your Stateflow chart.

Specify Relative Paths to Your Custom Code
When you update your model or start the simulation, the model searches for the custom code files in
these folders:

• The current folder
• The model folder (if this folder is different from the current folder)
• The custom list of folders that you specify
• All the folders on the MATLAB search path, excluding the toolbox folders

You can specify the location of your custom code by using paths relative to one of these folders. For
instance, suppose that, in the previous example, you store the source and header files for your
custom code in the subfolders CustomCode/SourceFiles and CustomCode/HeaderFiles of the
model folder. To access these files, enter the relative paths of the subfolders in the Include
directories subpane.
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Alternatively, you can use relative path names to specify the header and source files individually:

• In the Header file subpane, enter:

#include "./CustomCode/HeaderFiles/sf_custom_code_constants_vars_fcns_hdr.h"

• In the Source file subpane, enter:

./CustomCode/HeaderFiles/sf_custom_code_constants_vars_fcns_src.c

Guidelines for Relative Path Syntax

When you construct relative paths for custom code, follow these syntax guidelines:

• Use a single period (.) to indicate the starting point for the relative path.
• Use forward slashes (/) or backward slashes (\) as file separators, regardless of the current

platform you are using.
• Enclose paths in double quotes ("...") if they contain nonstandard path characters such as

spaces or hyphens (-).
• Enclose expressions with dollar signs ($...$) to evaluate them in the MATLAB workspace. For

example, suppose that CustomCodeFolder is a variable that you define in the MATLAB
workspace as "module1". If you specify your custom code files using the path name .\work
\source\$CustomCodeFolder$, then the model searches for the custom code files in the
folder .\work\source\module1.

See Also

More About
• “Configure Custom Code in Library Models” on page 31-10
• “Include Custom C Code Functions and Structures” on page 31-15
• “Access Custom C++ Code in Stateflow Charts” on page 31-8
• “C++ Code Generation and Integration in Stateflow” on page 31-17
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Access Custom C++ Code in Stateflow Charts
You can integrate custom code written in C or C++ with Stateflow charts in Simulink models. By
sharing data and functions between your custom code and your Stateflow chart, you can augment the
capabilities of Stateflow and take advantage of your preexisting code. For more information, see
“Reuse Custom Code in Stateflow Charts” on page 31-2.

Task 1: Prepare Code Files
Prepare your custom C++ code for simulation as follows:

1 Add a C function wrapper to your custom code. This wrapper function executes the C++ code
that you are including.

The C function wrapper should have this form:

int my_c_function_wrapper()
{
    .
    .
    .
    //C++ code
    .
    .
    .
    return result;
}

2 Create a header file that prototypes the C function wrapper in the previous step.

The header file should have this form:

int my_c_function_wrapper();

The value _cplusplus exists if your compiler supports C++ code. The extern "C" wrapper
specifies C linkage with no name mangling.

Task 2: Include Custom C++ Source and Header Files for Simulation
To include custom C++ code for simulation, you must configure your simulation target and select C+
+ as the custom code language:

1 Open the Model Configuration Parameters dialog box.
2 In the Model Configuration Parameters dialog box, select the Simulation Target pane.
3 Add your custom header file in the Header file subpane. Click Apply.
4 Add your custom C++ files in the Source files subpane. Click Apply.
5 In the Model Configuration Parameters dialog box, select the Code Generation pane.
6 Select C++ from the Language menu.
7 Click OK.
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Task 3: Choose a C++ Compiler
You can change the default compiler by calling the mex –setup command, and following the
instructions. For a list of supported compilers, see www.mathworks.com/support/compilers/
current_release/.

Task 4: Simulate the Model
Simulate your model by clicking the play button in the toolbar of the editor.

For information on setting simulation options using the command-line API, see “Set Simulation
Parameters Programmatically” on page 32-17.

See Also

More About
• “Reuse Custom Code in Stateflow Charts” on page 31-2
• “C++ Code Generation and Integration in Stateflow” on page 31-17
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Configure Custom Code in Library Models
You can integrate custom code written in C or C++ with Stateflow charts in Simulink models. By
sharing data and functions between your custom code and your Stateflow chart, you can augment the
capabilities of Stateflow and take advantage of your preexisting code. For more information, see
“Reuse Custom Code in Stateflow Charts” on page 31-2.

Configure Custom Code Settings for Simulation
To configure your library model to access custom code during simulation, use the Simulation
Custom Code pane of the Model Configuration Parameters dialog box.

1 In the Modeling tab, under Design, select Simulation Custom Code.

2 A library model can inherit the custom code settings from the main model or use local custom
code settings for simulation.

• To inherit the custom code settings from the main model, clear Use local custom code
settings (do not inherit from main model).

• To use local custom code settings for simulation, select Use local custom code settings (do
not inherit from main model).

For more information, see “Use local custom code settings (do not inherit from main model)”
(Simulink).
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3 To specify local custom code settings for simulation that are unique to your library model, use the
Insert custom C code in generated and Additional build information subpanes.

• Source file — Enter the code to include at the top of a generated source code file. This code
appears at the top of the generated model.c source file, outside of any function. For example,
use this parameter to include extern int declarations for global variables. For more
information, see “Source file” (Simulink).

• Header file — Enter the code to include at the top of the generated model.h header file,
which declares custom functions and data in the generated code. The code appears at the top
of all generated source code files and is visible to all generated code. For example, use this
parameter to enter #define and #include statements. When you include a custom header
file, you must enclose the file name in double quotes. For more information, see “Header file”
(Simulink).

Note Because the code you specify in the Header file parameter appears in multiple source
files that link into a single binary, you cannot include a global variable definition such as int
x or a function with a signature of void myfun(void). These statements cause linking
errors because their symbol definitions appear multiple times in the source files of the
generated code. You can, however, include extern declarations of variables or functions,
such as extern int x or extern void myfun(void).

• Initialize function — Enter code that executes once at the start of simulation. Use this code
to invoke functions that allocate memory or initialize your custom code. For more information,
see “Initialize function” (Simulink).

• Terminate function — Enter code that executes at the end of simulation. Use this code to
invoke functions that free memory allocated by the custom code or perform other cleanup
tasks. For more information, see “Terminate function” (Simulink).

• Include directories — Enter a space-separated list of the folder paths that contain custom
header files that you include either directly in the Header file parameter or indirectly in the
compiled target. For more information, see “Include directories” (Simulink).

• Source files — Enter a list of source files to compile and link into the target. You can
separate source files with a comma, space, or new line. For more information, see “Source
files” (Simulink).

• Libraries — Enter a space-separated list of static libraries that contain custom object code to
link into the target. For more information, see “Libraries” (Simulink).

• Defines — Enter a space-separated list of preprocessor macro definitions to add to the
generated code. For more information, see “Defines” (Simulink).

These settings apply only when you select Use local custom code settings (do not inherit
from main model).

Note You cannot simulate only the Stateflow blocks in a library model. You must first create a link to
the library block in your main model and then simulate the main model.

Configure Custom Code Settings for Code Generation
To configure your library model to access custom code during code generation, use the Code
Generation Custom Code pane of the Model Configuration Parameters dialog box.
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1 In the Modeling tab, under Design, select Simulation Custom Code.
2 Select the Code Generation Custom Code pane.

3 When generating code, a library model can use the same custom code settings that it uses for
simulation or use unique custom code settings.

• To use the same custom code settings used for simulation, select Use the same custom code
settings as Simulation Target. Specify the custom code settings in the Simulation
Custom Code pane as described in “Configure Custom Code Settings for Simulation” on page
31-10.

• To use unique custom code settings, clear Use the same custom code settings as
Simulation Target. Specify custom code settings for code generation in the Insert custom
C code in generated and Additional build information subpanes. For descriptions of the
parameters in these subpanes, see “Configure Custom Code Settings for Simulation” on page
31-10.

For more information, see “Use the same custom code settings as Simulation Target” (Simulink
Coder) and “Integrate External Code by Using Model Configuration Parameters” (Simulink
Coder).

See Also

More About
• “Reuse Custom Code in Stateflow Charts” on page 31-2
• “Include Custom C Code Functions and Structures” on page 31-15
• “Share String Data with Custom C Code” on page 24-11
• “Integrate Custom Structures in Stateflow Charts” on page 29-11
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Access Custom Code Variables and Functions in Stateflow
Charts

You can integrate custom code written in C or C++ with Stateflow charts in Simulink models. By
sharing data and functions between your custom code and your Stateflow chart, you can augment the
capabilities of Stateflow and take advantage of your preexisting code. For more information, see
“Reuse Custom Code in Stateflow Charts” on page 31-2.

Custom Code Variables in Charts That Use MATLAB as the Action
Language
You can read and write the following C code variables directly in your charts that use MATLAB as the
action language.

Custom C Code Type Description
double Double-precision floating point
single Single-precision floating point
int8 Signed 8-bit integer
uint8 Unsigned 8-bit integer
int16 Signed 16-bit integer
uint16 Unsigned 16-bit integer
int32 Signed 32-bit integer
uint32 Unsigned 32-bit integer

By right clicking on the Stateflow object that uses your custom code, you can access your custom
code variable. After right clicking on the object, hover over Explore. Your custom code variable
appears, denoted by (C variable). Clicking the C variable allows you to access the custom code
from MATLAB.

Custom Code Functions in Charts That Use MATLAB as the Action
Language
You can use the following C function argument types directly in your charts that use MATLAB as the
action language without using coder.ceval. For information on calling external code from MATLAB
code by using coder.ceval, see “Call C/C++ Code from MATLAB Code” (MATLAB Coder).

Custom C Function Argument Type Description
double Double-precision floating point
single Single-precision floating point
int8 Signed 8-bit integer
uint8 Unsigned 8-bit integer
int16 Signed 16-bit integer
uint16 Unsigned 16-bit integer
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Custom C Function Argument Type Description
int32 Signed 32-bit integer
uint32 Unsigned 32-bit integer

By right clicking on the Stateflow object that uses your custom code, you can access your custom
code function. After right clicking on the object, hover over Explore. Your custom code function
appears, denoted by (C function). Clicking the C function allows you to access the custom code
from MATLAB.

Accessing Enumerations in Custom Code
In charts that use C as the action language, to include enumerations in your custom code, select
Import custom code in the Simulation Target pane of the Configuration Parameters. After this
option is selected, define your enumerations in a header file, and include your header file in the
Insert custom C code in generated section of the Simulation Target pane.

See Also

More About
• “Reuse Custom Code in Stateflow Charts” on page 31-2
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Include Custom C Code Functions and Structures
This model shows how Stateflow® allows you to incorporate and to call your custom-written C code
functions.

In this particular example, a C function defined in my_function.c and a structure that is defined in
my_header.h are included in the chart. MY_FUNCTION multiplies its input by two. The structure in
my_header.h is defined as follows:

typedef struct { real_T a; int8_T b[10]; } MyStruct;

The model accesses the structure member using the dot notation MyStruct.a and also with the use
of the pointer gMyStructPointerVar ->b[1].

Integrate C Code into Model

Custom written C-files can be integrated easily into Stateflow models. Custom code can be used to
augment the capabilities of your Stateflow chart and to take advantage of legacy code.

To add custom C-files open the Model Configuration Parameters dialog box, select the Simulation
Target pane, and enter:

• Header file: Header that defines functions, structures, and data to be accessible by Stateflow.
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• Include directories: Path to folders that contain your custom code.
• Source files: C-files that define the functions and data accessible by Stateflow.

If you are generating code through Simulink Coder, add the same settings to the Code Generation >
Custom Code pane.

Call C Code from Stateflow

Functions: Stateflow charts call custom C-code functions by using the same syntax as graphical,
truth table, MATLAB®, and Simulink® function calls:

result = my_custom_function(in_args);

Structures: Stateflow charts can access variables of structure type by using dot notation:

result = my_var.my_field;

Call C++ Code from Stateflow

Custom C++ code can also be integrated into Stateflow and Simulink Coder. For more information,
see “C++ Code Generation and Integration in Stateflow” on page 31-17.

See Also

More About
• “Access Custom Code Variables and Functions in Stateflow Charts” on page 31-13
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C++ Code Generation and Integration in Stateflow
This example shows how custom C++ files can be used in a Stateflow® model.

C++ Code Integration

You can integrate C++ code into a model by using Stateflow. These steps illustrate the workflow:
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1 Create a C-style wrapper function or create access macros for each method called within the C
chart.

2 Open the Model Configuration Parameters dialog box. In the Simulation Target pane, add the
custom header file, source files, and any include directories.

3 In the Code Generation > Custom Code pane, enter the same information.

C++ Code Generation

Open the Model Configuration Parameters dialog box. In the Code Generation pane, change the
Language setting to C++.

See Also

More About
• “Access Custom Code Variables and Functions in Stateflow Charts” on page 31-13
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Model Battery Management with Custom Code
With Stateflow you can integrate your custom C code into charts. Using custom C code in a Stateflow
chart allows you to:

• Reuse existing algorithms that you have already coded.
• Use C code for low-level hardware operations, which may be difficult to implement with Stateflow.

This example shows how to use custom C code with Stateflow to model a system that manages
battery percentage, also known as the state of charge (SOC).

Battery Management
To open the model, in the command prompt type:

openExample('stateflow/BatteryManagementExample')
sf_battery_management

This model represents several components of a battery management system. This system is designed
to be implemented on a controller for battery powered devices, such as battery powered vehicle or a
cell phone. The purpose of the battery management system is to limit the power demands on the
battery and to ensure that the SOC does not get too high or too low. An SOC that is too high or too
low would be detrimental to the health of the battery. Additionally, the model is designed to limit the
discharge of the battery when the charge is low in a trade-off of performance for battery lifetime.

The battery management model achieves these goals with three different charts.

Chart Sensor Reader w/ Fault Detection reads the sensor values from the battery pack and
reports out when the sensors is in a faulted state. Chart Battery State Estimation uses the
sensor reading to estimate the SOC of the battery. Chart Battery Power Limit Control
conserves the battery, protects the battery health, and keeps the SOC away from either extreme. The
chart accomplishes these tasks by setting power limits for the controller.

With this model you can generate code and deploy that code to an embedded controller along with
other control code that your system may need.
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Simulate Communication with Hardware
When using the model for simulation, the Dashboard panel allows you to control the sensor readings
for the system inputs. If the calls to the battery monitor timeout, an error code of -9999 is returned
from the function.

Two C code files are included with Sensor Reader w/ Fault Detection:
batteryMonitorDriver.h and batteryMonitorDriver.c. These two files represent the device
driver code that would be used to get sensor data from the system, including battery voltage, current,
and temperature and are used for code generation. See “Code Generation” on page 31-25.

The Stateflow chart can also handle the error signals returned by the sensors. In the event of a
sensor error, the SensorFaultDetection subchart holds the last known valid sensor reading until
the error code has been received for a certain amount of time. After this threshold is met,
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SensorFaultDetection sends a fault message and assumes it will be handled by the other control
components of the controller.

In order to simulate the model with the driver code, you must include the header file and specify the
source file in the Simulation Target pane of the Configuration Parameters, and the Import custom
code option must be selected. For information on the Import custom code option, see “Import
custom code” (Simulink).

Estimate Battery State of Charge by Reusing Custom Code
To estimate the battery state of charge, the model utilizes a custom C code algorithm. The included
file estimateSOC.c contains the following code:
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With this algorithm, you can easily call the C code function, rather than reimplementing it with
Stateflow charts.

In order to account for the sensitivity of noise and change of current in the estimateSOC algorithm,
Stateflow logic is used to implement a debouncing algorithm. This logic simplifies the SOC
percentage into 5 ranges: MAX, HIGH, NORMAL, LOW, and MIN. These ranges prevent rapid
fluctuation between different control states. The exit transitions from the child states go to the edge
of the parent state. When these transitions are taken, Stateflow returns to the default transition of
the parent state.
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Logic to Control Device State of Charge
It is easier to design this control logic with a Stateflow chart, rather than implementing the logic
control through custom code. This chart implements power limit on the battery based on the
estimated battery state.
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The chart represents 5 possible modes for power limits on the battery.

1 Performance Mode: Allow high power draw when battery charge is high.
2 Battery Saver Mode: Limit power draw on the battery for efficiency when charge is low.
3 Off: Do not allow Power Draw when battery is at state of charge limits.
4 Fast Charge: Quickly charge the battery when charge is low.
5 Slow Charge: Slowly charge the battery when charge is high for battery health benefits.

Simulate Using the Dashboard Panel
To test that the model behaves as expected, you can use the dashboard panel to simulate the voltage,
current, and temperature readings. The switches allow you to simulate a sensor error to test the fault
detection logic. The gauge and plot dashboard blocks are bound to the activity of stateflow charts to
visualize internal states and data. You can move and minimize the dashboard panel while navigating
the model. For more information on dashboard blocks, see “Control Simulations with Interactive
Displays” (Simulink).
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Code Generation
inputs into the state Sensor Reader w/ Fault Detection are provided with two C code files:
batteryMonitorDriver.h and batteryMonitorDriver.c. These two files represent the device
driver code that would be used to get sensor data from the system, including battery voltage, current,
and temperature.

To use this model for code generation, the driver code must communicate with the external hardware.
To enable this functionality, a variant transition using the control variable CODEGEN_FLAG allows the
Stateflow chart to call the C code directly when generating code and simulate the sensor value with
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noise. In the Model Explorer, open the Base Workspace and set the value of CODEGEN_FLAG to
true. For more information on Stateflow Variants and variant transitions, see “Code Generation
Using Variant Transitions” on page 32-9.

In order to compile the generated code with the driver code, you must include the header file and
specify the source file in the Custom Code pane of the Configuration Parameters.

References
[1] Ramadass, P., B. Haran, R. E. White, and B. N. Popov. “Mathematical modeling of the capacity fade

of Li-ion cells.” Journal of Power Sources. 123 (2003), pp. 230–240.
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discharge rates.” Journal of Power Sources. 117 (2003), pp. 160–169.

See Also

More About
• “Code Generation by Using Simulink Coder” (Simulink Coder)
• “Code Generation Workflows with Embedded Coder” (Embedded Coder)
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• “Tune and Experiment with Block Parameter Values” (Simulink)
• “Create a Variant Configuration” on page 32-9

 Model Battery Management with Custom Code

31-27



Speed Up Simulation

Improve Model Update Performance
Stateflow uses Just-In-Time (JIT) compilation mode to improve model update performance for most
charts in Simulink models. Stateflow applies JIT mode to charts that qualify. For a chart in JIT mode,
Stateflow generates an execution engine in memory for simulation. For these charts, Stateflow does
not generate C code or a MEX file to simulate the chart. JIT mode provides the best performance
during the compilation of a model.

Some charts do not qualify for JIT mode, such as charts with signal logging.

Stateflow models include debugging support for simulation. To gain optimal performance, turn off
debugging by using this command:

sfc('coder_options', 'forceDebugOff', 1);

When you run this command, your Stateflow charts do not have debugging support or run-time error
checking.

Note When you turn off debugging, animation is also turned off.

Disable Simulation Target Options That Impact Execution Speed
To simulate your model more quickly, in the Model Configuration Parameters dialog box, on the
Simulation Target pane, clear the check boxes for these parameters:

• Echo expressions without semicolons — To disable run-time output in the MATLAB Command
Window, such as actions that do not terminate with a semicolon, clear this check box.

• Ensure responsiveness— To disable ability to break out of long-running execution using Ctrl+C,
clear this check box.

Click OK.

Speed Up Simulation
Use these tips to further speed up simulation:

Keep Charts Closed

During model simulation, any open charts with animation enabled take longer to simulate. If you keep
all charts closed, the simulation runs faster.

Disable Content Preview

During model simulation, any open charts with content preview enabled take longer to simulate. If
you disable content preview, the simulation runs faster. To disable content preview, select the chart
that has content preview enabled. On the State Chart tab, click Content Preview.
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Keep Scope Blocks

During model simulation, any open Scope blocks continuously update their display. If you keep all
Scope blocks closed, you can speed up the simulation. After the simulation ends, you can open the
Scope blocks to view the results.

Use Library Charts in Your Model

If your model contains multiple charts that do not use JIT mode and contain the same elements, you
might generate multiple copies of identical simulation code. By using library charts, you can minimize
the number of copies of identical simulation code. For example, using five library charts reduces the
number of identical copies from five to one.

For more information, see “Create Specialized Chart Libraries for Large-Scale Modeling” on page 28-
11.

See Also

More About
• “Reduce the Compilation Time of a Chart” on page 19-37
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Call Extrinsic MATLAB Functions in Stateflow Charts
Stateflow charts in Simulink models have an action language property that defines the syntax for
state and transition actions. An icon in the lower-left corner of the chart canvas indicates the action
language for the chart.

•
 MATLAB as the action language.

•
 C as the action language.

In charts that use C as the action language, you can call built-in MATLAB functions and access
MATLAB workspace variables by using the ml namespace operator or the ml function. For more
information, see “Access MATLAB Functions and Workspace Data in C Charts” on page 16-19.

In charts that use MATLAB as the action language, you can call MATLAB functions supported for code
generation directly. To call extrinsic functions that are not supported for code generation, you must
use the coder.extrinsic function. When you declare a function with
coder.extrinisic(function_name), Stateflow creates a call to the function during simulation. In
a Stateflow chart, you only declare coder.extrinsic once. You cannot declare reserved keywords
with coder.extrinsic. For more information, see “Guidelines for Naming Stateflow Objects” on
page 2-5.

For charts that include atomic subcharts, you must declare functions that are not supported for code
generation with coder.extrinsic separately within the atomic subchart.

Use the coder.extrinsic Function
To enable calls to the extrinsic function heaviside (Symbolic Math Toolbox), this model uses
coder.extrinsic.

The chart contains two parallel states, A and B, and one graphical function block, foo. State A
declares the function heaviside, which is not supported for code generation, by using
coder.extrinsic. State B and the graphical function block also use heaviside without
coder.extrinsic.

The input for state A is u1, a sine wave, and the input for state B is u2, a cosine wave. The graphical
function out outputs the value of the heaviside function for the input in.
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You only need to declare heaviside once in your chart using coder.extrinsic. After this you can
use the heaviside function anywhere within your chart without coder.extrinsic. When
generating code the functions that you declare using coder.extrinsic will have a call to the
extrinsic function, and that function will not appear in the generated code.

To visualize the result of this chart, open the scope.
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See Also
heaviside | coder.extrinsic

More About
• “Access MATLAB Functions and Workspace Data in C Charts” on page 16-19
• “Generate Code for Global Data” (MATLAB Coder)
• “Functions and Objects Supported for C/C++ Code Generation” (Simulink)
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Code Generation

• “Generate C or C++ Code from Stateflow Blocks” on page 32-2
• “Select Array Layout for Matrices in Generated Code” on page 32-5
• “Code Generation Using Variant Transitions” on page 32-9
• “Variant Lamp Design” on page 32-14
• “Generate Code from Atomic Subcharts” on page 32-15
• “Set Simulation Parameters Programmatically” on page 32-17
• “Using Absolute Time Temporal Logic in Stateflow Charts” on page 32-20

32



Generate C or C++ Code from Stateflow Blocks
To generate C or C++ code from Simulink models that include a Stateflow chart, you must use
Simulink Coder. In addition to Simulink Coder, you may use Embedded Coder to further enhance the
generated code. Embedded Coder enhancements make your code more readable, more compact, and
faster to execute.

When you generate code for a target, the Stateflow parser evaluates the graphical and nongraphical
objects and data in each Stateflow machine against the supported chart notation and the action
language syntax. For more information, see “Detect Common Modeling Errors During Chart
Simulation” on page 33-37.

Generate Code by Using Simulink Coder
Simulink Coder allows you to generate C and C++ code from models that contain Stateflow charts.
You can then use the generated code for real-time and non-real-time applications, including:

• Simulation acceleration
• Rapid prototyping
• Hardware-in-the-loop (HIL) testing

Using Simulink Coder also allows you access to Classic Accelerator and Rapid Accelerator modes.
Accelerator modes work by generating target code, which is then used for execution. For more
information about these modes, see “How Acceleration Modes Work” (Simulink).

HIL testing allows you to test your controller design and determine if your physical system (plant)
model is valid. For more information about HIL testing, see “Basics of Hardware-In-The-Loop
simulation” (Simscape).

To get started setting up a model for code generation with Simulink Coder, see “Configure Model and
Generate Code” (Simulink Coder).

Generate Code by Using Embedded Coder
With the addition of Embedded Coder you can generate C or C++ code that is more compact, easier
to read, and faster to run. Embedded Coder additionally extends the abilities of Simulink Coder by
allowing you control over generated functions, files, and data. Further, Embedded Coder enables easy
integration for legacy code, data types, and calibration parameters. Embedded Coder supports
software standards for:

• AUTOSAR
• MISRA C
• ASAP2

Embedded Coder also provides support packages with advanced optimizations and device drivers for
specific hardware.

To get started setting up a model for code generation with Embedded Coder, see “Generate Code by
Using the Quick Start Tool” (Embedded Coder).
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Design Tips for Optimizing Generated Code for Stateflow Objects
Do Not Access Machine-Parented Data

This restriction prevents long parameter lists from appearing in the code generated for a graphical
function. You can access local data that resides in the same chart as the graphical function. For more
information, see “Reuse Logic Patterns by Defining Graphical Functions” on page 8-10.

Additionally, Embedded Coder does not support the use of code replacement libraries for machine-
parented data. For more information, see “Code You Can Replace From Simulink Models” (Embedded
Coder).

Be Explicit About the Inline Option of a Graphical Function

When you use a graphical function in a Stateflow chart, select Inline or Function for the property
Function Inline Option. Otherwise, the code generated for a graphical function may not appear as
you want. For more information, see “Specify Properties of Graphical Functions” on page 8-13.

Avoid Using Multiple Edge-Triggered Events in Stateflow Charts

If you use more than one trigger, you generate multiple code statements to handle rising or falling
edge detections. If multiple triggers are required, use function-call events instead. For more
information, see “Activate a Stateflow Chart by Sending Input Events” on page 14-7.

Combine Input Signals of a Chart Into a Single Bus Object

When you use a bus object, you reduce the number of parameters in the parameter list of a generated
function. This guideline also applies to output signals of a chart. For more information, see “Define
Stateflow Structures” on page 29-2.

Use Discrete Sample Times

The code generated for discrete charts that are not inside a triggered or enabled subsystem uses
integer counters to track time instead of Simulink provided time. The generated code uses less
memory, and enables code for use in Software-in-the-Loop (SIL) and Processor-in-the-Loop (PIL)
simulation modes.

Generate Code for Rapid Prototyping and Production Deployment
This table directs you to information about code generation based on your goals.

Goal Simulink Coder Documentation Embedded Coder Documentation
Generate C/C++
source code

“Source Code Generation in Simulink
Coder” (Simulink Coder)

“Code Generation Basics” (Embedded
Coder)

Generate C/C++
source code and
build executable

“Program Building, Interaction, and
Debugging in Simulink Coder”
(Simulink Coder)

Integrate external
code

“External Code Integration” (Simulink
Coder)

“Code Integration” (Embedded Coder)
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Goal Simulink Coder Documentation Embedded Coder Documentation
Include external
code only for
library charts in a
portable, self-
contained library
for use in multiple
models

“Integrate External Code for Library
Charts” (Simulink Coder)

“Integrate External Code for Library
Charts” (Embedded Coder)

Optimize
generated code

“Reduce Memory Usage for Boolean
and State Configuration Variables”
(Simulink Coder)

“Reduce Memory Usage for Boolean
and State Configuration Variables”
(Embedded Coder)

Traceability of Stateflow Objects in Generated Code
Traceability comments provide a way to:

• Verify generated code. You can identify which Stateflow object corresponds to a line of code and
track code from different objects that you have or have not reviewed.

• Include comments in code generated for large-scale models. You can identify objects in generated
code and avoid manually entering comments or descriptions.

To enable traceability comments, you must have Embedded Coder or HDL Coder software. For C/C++
code generation, comments appear in the generated code for embedded real-time (ert) based targets
only. For more information, see “Trace Stateflow Elements in Generated Code” (Embedded Coder)
and “Navigate Between Simulink Model and HDL Code by Using Traceability” (HDL Coder).

See Also

More About
• “Generate Code from Atomic Subcharts” on page 32-15
• “Select Array Layout for Matrices in Generated Code” on page 32-5
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Select Array Layout for Matrices in Generated Code
When generating code from a Stateflow® chart, you can specify the array layout for matrices. For
example, consider this matrix:

By default, the code generator uses column-major layout to convert the matrix into a one-dimensional
array and stores it in memory with this arrangement:

{1, 4, 2, 5, 3, 6}

If you select row-major layout, the code generator converts the matrix into a one-dimensional array
and stores it in memory with this arrangement:

{1, 2, 3, 4, 5, 6}

If you have Embedded Coder®, you can preserve the multidimensionality of the matrix and store it as
a two-dimensional array with this arrangement:

{{1, 2, 3}, {4, 5, 6}}

For more information, see “Code Generation of Matrices and Arrays” (Simulink Coder) and
“Dimension Preservation of Multidimensional Arrays” (Embedded Coder).

Column-Major Array Layout

By default, the Array Layout configuration parameter for a Simulink® model is Column-Major.
When you generate code from a model, the code generator flattens all matrix data into one-
dimensional arrays in the column-major array layout.

For example, this Stateflow chart contains local data x of size [2 3]. The state actions index the
elements in x by row and column number.

To generate code for this model:

1 In the Apps tab, select Simulink Coder or Embedded Coder.
2 In the C Code tab, click Build.
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The file sf_matrix_layout.c implements the local data x in column-major layout with these lines
of code:

...
sf_matrix_layout_DW.x[0] = 1.0;
sf_matrix_layout_DW.x[2] = 2.0;
sf_matrix_layout_DW.x[4] = 3.0;
sf_matrix_layout_DW.x[1] = 4.0;
sf_matrix_layout_DW.x[3] = 5.0;
sf_matrix_layout_DW.x[5] = 6.0;
...

The generated code refers to the elements of x by using only one index. The indices do not appear in
increasing order.

Row-Major Array Layout

Row-major layout can improve the performance of certain algorithms. For example, see “Interpolation
Algorithm for Row-Major Array Layout” (Embedded Coder).

To generate code that uses row-major array layout:

1 Open the Configuration Parameters dialog box.
2 In the Code Generation > Interface pane, set the Array Layout parameter to Row-Major.
3 In the Apps tab, select Simulink Coder or Embedded Coder.
4 In the C Code tab, click Build.

The file sf_matrix_layout.c implements the local data x with these lines of code:

...
sf_matrix_layout_DW.x[0] = 1.0;
sf_matrix_layout_DW.x[1] = 2.0;
sf_matrix_layout_DW.x[2] = 3.0;
sf_matrix_layout_DW.x[3] = 4.0;
sf_matrix_layout_DW.x[4] = 5.0;
sf_matrix_layout_DW.x[5] = 6.0;
...

The generated code refers to the elements of x by using only one index. The indices appear in
increasing order.

When you enable row-major array layout, you can pass chart and message data as arguments to
custom code functions in the row-major array layout. You can also use row-major as the default layout
for custom code variables. To implement row-major as the default array layout for custom code
functions and variables:

1 Open the Configuration Parameters dialog box.
2 In the Code Generation > Interface pane, set the Array Layout parameter to Row-Major.
3 In the Simulation Target pane, select Import custom code. Set Default function array

layout to Row-major.

You can also specify row-major array layout for individual functions. In the Simulation Target pane,
click Exception by function. In the Array Layout for Custom Code Functions window, you can add or
remove functions and specify their individual array layout.
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If you enable row-major array layout in a chart that uses custom C code, global variables and
arguments of custom code functions defined in the custom code must be scalars, vectors, or
structures of scalars and vectors. Specify the size of an n-element vector as n, and not as [n 1] or [1
n].

When you enable row-major array layout in charts that use change detection operators, code
generation produces an error. Before generating code in charts that use change detection operators,
enable column-major array layout. See “Change Detection Operators” on page 16-62.

Multidimensional Array Layout

If you have Embedded Coder, you can generate code that preserves the multidimensionality of
Stateflow data without flattening the data into one-dimensional arrays.

To generate code for the previous example using multidimensional array layout:

1 Enable row-major layout.
2 In the Apps tab, select Embedded Coder.
3 In the C Code tab, select Code Interface > Default Code Mappings to open the Code

Mappings editor and the Property Inspector.
4 In the Code Mappings editor, on the Data Defaults tab, select the Signals, states, and

internal data category and set the Storage Class as Localizable. If the Code Mappings
editor is empty, navigate to the Simulink Model.

5 In the Property Inspector, in the Code section, select PreserveDimensions.
6 In the C Code tab, click Build.

The file sf_matrix_layout.c implements the local data x with these lines of code:

...
sf_matrix_layout_DW.x[0][0] = 1.0;
sf_matrix_layout_DW.x[0][1] = 2.0;
sf_matrix_layout_DW.x[0][2] = 3.0;
sf_matrix_layout_DW.x[1][0] = 4.0;
sf_matrix_layout_DW.x[1][1] = 5.0;
sf_matrix_layout_DW.x[1][2] = 6.0;
...

The generated code refers to the elements of x by using two indices.

Multidimensional array layout is available for:

• Constant and local data in Stateflow charts
• Message data in Stateflow charts
• Parameters and root-level inport and outport data in Simulink models

Multidimensional layout is not available for bus signals containing multidimensional array data.

Multidimensional layout is not supported in reusable charts or charts in reusable parent subsystems.
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For more information, see “Preserve Dimensions of Multidimensional Arrays in Generated Code”
(Embedded Coder).

See Also
Simulink Configuration Parameters
Array layout | Default function array layout | Exception by function

More About
• “Generate C or C++ Code from Stateflow Blocks” on page 32-2
• “Code Generation of Matrices and Arrays” (Simulink Coder)
• “Interpolation Algorithm for Row-Major Array Layout” (Embedded Coder)
• “Dimension Preservation of Multidimensional Arrays” (Embedded Coder)
• “Preserve Dimensions of Multidimensional Arrays in Generated Code” (Embedded Coder)
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Code Generation Using Variant Transitions
With variant transitions, you can create Stateflow charts in Simulink models that generate code that
can be used in a variety of different software situations. Variant transitions allow you to model a full
subset of variations within one Stateflow chart so that you can choose which variation you want when
you generate code or when you compile the generated code.

Variant transitions are guarded by Simulink parameters or MATLAB variables in a condition and
connect states within your chart that are variations from the core chart configuration. Variant
transition conditions are evaluated during code compile or code generation instead of at runtime. In
addition to this, the generated code only contains the data members needed to execute the currently
selected software configuration.

Chart variations are supported only in code generation. Stateflow charts that you develop with
variant transitions simulate according to which portion of your chart is active.

Variant transitions can not be used in conjunction with actions on default transition paths of a state or
a chart.

Create a Variant Configuration
Variant transitions connect variant configurations to your core Stateflow chart. Variant configurations
are only active when the variant transition condition is true.

In this example, you will add variant configurations to a basic control system that turns a lamp on and
off. The variant configurations allow the lamp to dim in multiple ways. Once you add in the variant
configurations to your Stateflow chart, you can choose to generate code for any configuration.

Initially, your Stateflow chart includes two states, Off and On. The light turns on when the event,
SWITCH_ON, is sent to the chart. The light turns off when the event, SWITCH_OFF, is sent to the chart.

Some of the lamps have the ability to be dimmed. Within that subset, there are lamps that can be set
high or low and lamps that can only be set to high, medium, or low. To add these capabilities to the
Stateflow chart, you add in three variations: Dimmer1, Dimmer2, and NoDimmer. Dimmer1 has three
substates, High, Medium, and Low. Dimmer2 has two substates, High and Low.
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Entry to the variant configurations are guarded by a transition condition that uses a Simulink
parameter or MATLAB variable that is defined in the base workspace. To change the transition to a
variant transition, click the transition. In the Transition tab, select Variant Transition. The
transition appears on the chart with a # symbol, which indicates that the transition is a variant
transition.
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In this example, the variant configurations are guarded by a condition with a Simulink parameter. In
this case, HAS_DIMMER1 is a parameter object. In order for the variant configuration to be active, the
condition [HAS_DIMMER1 == 1] must be true. For more information about Simulink parameters, see
“Set Block Parameter Values” (Simulink).

During simulation, your Stateflow chart executes only the active portion of your Stateflow chart. The
inactive portion appears grayed out on the Stateflow canvas. To change which portion of the chart is
currently active, update the guarding parameter in the base workspace.

Generate Code for Variant Configurations
You must have Simulink Coder or Embedded Coder to generate code from your Stateflow chart. By
default, the generated code only contains the active variant state machine.

If you are using Embedded Coder, you can choose to include a preprocessor conditional statement in
your generated code. In the Stateflow editor, on the Modeling tab, under Design Data, select
Property Inspector. Under Advanced, select Generate preprocessor conditionals.
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For more information about generating code, see “Generate Code Using Simulink® Coder™”
(Simulink Coder) and “Generate Code Using Embedded Coder®” (Embedded Coder).

Using the Variant Manager
The Variant Manager is a central tool that allows you to manage variant configurations in your system
model. In the Stateflow editor, on the Modeling tab, under Design Data, select Variant Manager.
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For more information about the Variant Manager, see “Variant Manager Overview” (Simulink).

See Also

More About
• “Variant Lamp Design” on page 32-14
• “Generate C or C++ Code from Stateflow Blocks” on page 32-2
• “Choose Storage Class for Controlling Data Representation in Generated Code” (Simulink

Coder)
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Variant Lamp Design
This example shows how to design a system that uses variant transitions to generate code that can be
used in a variety of different software situations.

Some of the lamps have the ability to be dimmed. Within that subset, there are lamps that can be set
high or low and lamps that can only be set to high, medium, or low.

Entry to the variant configurations are guarded by a transition condition that uses a Simulink
parameter or MATLAB variable that is defined in the base workspace.

In this example, the variant configurations are guarded by a condition with a Simulink parameter. In
this case, HAS_DIMMER1 and HAS_DIMMER2 are parameter objects.

When you generate code from the Simulink model, your code includes only the active variant state
machine. If you are using Embedded Coder, you have the option to include a preprocessor conditional
statement in the generated code.

For more information, see “Code Generation Using Variant Transitions” on page 32-9.
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Generate Code from Atomic Subcharts
To unit test a Stateflow chart in a Simulink model, first break the chart into smaller, independent
components by using atomic subcharts. When you generate code for your chart, a separate file stores
the code for the atomic subchart. Generating reusable code from atomic subcharts is useful for
testing individual parts of your Stateflow chart. For more information, see “Create Reusable
Subcomponents by Using Atomic Subcharts” on page 19-2.

Generate Reusable Code for Unlinked Atomic Subcharts
To specify code generation parameters for an unlinked atomic subchart:

1 In your chart, right-click the atomic subchart and select Properties.
2 In the dialog box, specify these parameters:

a Set Code generation function packaging to Reusable function.
b Set Code generation file name options to User specified.
c For Code generation file name, enter the name of the file with no extension.

3 Open the Configuration Parameters dialog box by pressing Ctrl+E.
4 In the Code Generation tab, set the System target file parameter to ert.tlc.
5 (OPTIONAL) Customize the generated function names for atomic subcharts. In the Configuration

Parameters dialog box, in the Code Generation > Identifiers tab, set the Subsystem methods
parameter. Specify the format of the function names by using a combination of these tokens:

• $R — root model name
• $F — type of interface function for the atomic subchart
• $N — block name
• $H — subsystem index
• $M — name-mangling text

For more information, see “Generate Separate Code for an Atomic Subchart” on page 19-43.

Generate Reusable Code for Linked Atomic Subcharts
To specify code generation parameters for linked atomic subcharts from the same library:

1 Open the library model that contains your atomic subchart.
2 Unlock the library.
3 Right-click the library chart and select Block Parameters.
4 In the dialog box, specify these parameters:

a On the Main tab, select Treat as atomic unit.
b On the Code Generation tab, set Function packaging to Reusable function.
c Set File name options to User specified.
d For File name, enter the name of the file with no extension.

5 In the Code Generation tab, set the System target file parameter to ert.tlc.
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6 (OPTIONAL) Customize the generated function names for atomic subcharts. In the Configuration
Parameters dialog box, in the Code Generation > Identifiers tab, set the Subsystem methods
parameter. Specify the format of the function names by using a combination of these tokens:

• $R — root model name
• $F — type of interface function for the atomic subchart
• $N — block name
• $H — subsystem index
• $M — name-mangling text

When you generate code for your model, a separate file stores the code for linked atomic subcharts
from the same library.

See Also

More About
• “Create Reusable Subcomponents by Using Atomic Subcharts” on page 19-2
• “Generate C or C++ Code from Stateflow Blocks” on page 32-2
• “Generate Separate Code for an Atomic Subchart” on page 19-43
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Set Simulation Parameters Programmatically
In Stateflow charts in Simulink models, you can use the command-line API to set options in the Model
Configuration Parameters dialog box for simulation.

Set Parameters at the Command Line
1 At the MATLAB command prompt, type:

object_name = getActiveConfigSet(gcs)

This command returns a Simulink.ConfigSet object that you can use to access the model
settings in the Model Configuration Parameters dialog box for the current model.

2 To get the current value of a configuration parameter, call the get_param function:

get_param(object_name,'parameter_name')

3 To set a configuration parameter, call the set_param function:

set_param(object_name,'parameter_name',value)

For example, you can set the Reserved names parameter for simulation by entering:

cp = getActiveConfigSet(gcs)
set_param(cp,'SimReservedNameArray',{'abc','xyz'})

Simulation Parameters for Nonlibrary Models
The following table summarizes the parameters and values that you can set for simulation of
nonlibrary models using the command-line API.

Parameter and Values Dialog Box Equivalent Description
SimIntegrity

– 'off', 'on'

Ensure memory integrity Detect violations of memory
integrity in code generated for
MATLAB Function blocks and stop
execution with a diagnostic.

SFSimEcho

– 'off', 'on'

Echo expressions without
semicolons

Enable run-time output to appear in
the MATLAB Command Window
during simulation.

SimCtrlC

– 'off', 'on'

Ensure responsiveness Enable responsiveness checks in
code generated for MATLAB
Function blocks.

SimBuildMode

– 'sf_incremental_build',
'sf_nonincremental_build',
'sf_make', 'sf_make_clean',
'sf_make_clean_objects'

Simulation target build mode Specify how you build the
simulation target for a model.
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Parameter and Values Dialog Box Equivalent Description
SimReservedNameArray

string array – {}

Symbols > Reserved names Enter the names of variables or
functions in the generated code that
match the names of variables or
functions specified in custom code
to avoid naming conflicts.

SimParseCustomCode

– 'off', 'on'

Import custom code Specify whether or not to parse the
custom code and report unresolved
symbols for the C charts in a model.

SimCustomSourceCode

string – ''

Source file Enter code lines to appear near the
top of a generated source code file.

SimCustomHeaderCode

string – ''

Header file Enter code lines to appear near the
top of a generated header file.

SimCustomInitializer

string – ''

Initialize function Enter code statements that execute
once at the start of simulation.

SimCustomTerminator

string – ''

Terminate function Enter code statements that execute
at the end of simulation.

SimUserIncludeDirs

string – ''

Include directories Enter a space-separated list of
folder paths that contain files you
include in the compiled target.

Note If your list includes any
Windows® paths that contain
spaces, each instance must be
enclosed in double quotes within
the argument, for example,
'C:\Project "C:\Custom Files"'

SimUserSources

string – ''

Source files Enter a space-separated list of
source files to compile and link into
the target.

SimUserLibraries

string – ''

Libraries Enter a space-separated list of
static libraries that contain custom
object code to link into the target.

Simulation Parameters for Library Models
The following table summarizes the simulation parameters that apply to library models.
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Parameter and Values Dialog Box Equivalent Description
SimUseLocalCustomCode

– 'off', 'on'

Use local custom code settings
(do not inherit from main
model)

Specify whether a library model can
use custom code settings that are
unique from the main model to
which the library is linked.

SimCustomSourceCode

string – ''

Source file Enter code lines to appear near the
top of a generated source code file.

SimCustomHeaderCode

string – ''

Header file Enter code lines to appear near the
top of a generated header file.

SimCustomInitializer

string – ''

Initialize function Enter code statements that execute
once at the start of simulation.

SimCustomTerminator

string – ''

Terminate function Enter code statements that execute
at the end of simulation.

SimUserIncludeDirs

string – ''

Include directories Enter a space-separated list of
folder paths that contain files you
include in the compiled target.

Note If your list includes any
Windows paths that contain spaces,
each instance must be enclosed in
double quotes within the argument,
for example,
'C:\Project "C:\Custom Files"'

SimUserSources

string – ''

Source files Enter a space-separated list of
source files to compile and link into
the target.

SimUserLibraries

string – ''

Libraries Enter a space-separated list of
static libraries that contain custom
object code to link into the target.

See Also

More About
• “Recommended Settings Summary for Model Configuration Parameters” (Simulink Coder)
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Using Absolute Time Temporal Logic in Stateflow Charts
When you use absolute time temporal logic in your Stateflow Chart blocks in your model for HDL
code generation, use these settings.

For the sample rate of the chart:

• If you use seconds (sec), then the sample time must be an integer 65535 or lower, or a decimal
between 65.535 and 0.001 with no more than three decimal places.

• If you use milliseconds (msec), the sample time must be a decimal between 65.535 and 0.001 with
no more than three decimal places, or a decimal between 0.065535 and 0.000001 with no more
than six decimal places.

• If you use microseconds (usec), the sample time must be a decimal between 0.065535 and
0.000001 with no more than six decimal places, or a decimal between 0.000065535 and
0.000000001 with no more than nine decimal places.

• If the sample time is an integer below 2^16, then use 'sec'.
• If 1000 * sample time is an integer below 2^16, then use 'sec' or 'msec'.
• If 1000000 * sample time is an integer below 2^16, then use 'msec' or 'usec'.
• If 1000000000 * sample time is an integer below 2^16, then use 'usec'.
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Debug and Test Stateflow Charts

• “Debugging Stateflow Charts” on page 33-2
• “Set Breakpoints to Debug Charts” on page 33-3
• “Inspect and Modify Data and Messages While Debugging” on page 33-9
• “Control Chart Execution After a Breakpoint” on page 33-16
• “Debug Run-Time Errors in a Chart” on page 33-20
• “Animate Stateflow Charts” on page 33-23
• “Detect Modeling Errors During Edit Time” on page 33-24
• “Detect Common Modeling Errors During Chart Simulation” on page 33-37
• “Avoid Unwanted Recursion in a Chart” on page 33-41
• “Monitor Test Points in Stateflow Charts” on page 33-43
• “Log Simulation Output for States and Data” on page 33-47
• “Log Data in Library Charts” on page 33-53
• “Commenting Stateflow Objects in a Chart” on page 33-57
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Debugging Stateflow Charts
For Stateflow charts in Simulink models, you can perform most debugging tasks directly from the
Stateflow Editor:

• Set breakpoints to stop execution in specific objects, such as charts, states, transitions, graphical
functions, truth table functions, local events, and input events.

• Enable, disable, and set conditions on breakpoints in the Breakpoints and Watch window.
• Add data that you want to monitor during simulation in the Breakpoints and Watch window.
• After execution stops at a breakpoint, change data values and step through the simulation.

In addition, during simulation, you can display and change the values of Stateflow data in the
MATLAB Command Window.

For information on debugging Stateflow chart objects that you execute in MATLAB, see “Debug a
Standalone Stateflow Chart” on page 35-13.

See Also

More About
• “Set Breakpoints to Debug Charts” on page 33-3
• “Inspect and Modify Data and Messages While Debugging” on page 33-9
• “Control Chart Execution After a Breakpoint” on page 33-16
• “Debug Run-Time Errors in a Chart” on page 33-20

33 Debug and Test Stateflow Charts

33-2



Set Breakpoints to Debug Charts
You enable debugging for a Stateflow chart when you set a breakpoint. A breakpoint is a point on a
Stateflow chart that pauses the simulation so you can examine the status of the chart. While
simulation is paused, you can view Stateflow data, interact with the MATLAB workspace, and step
through the simulation. For more information, see “Debugging Stateflow Charts” on page 33-2.

Breakpoints appear as circular red badges. For example, this chart contains breakpoints on the
upshifting state and the transition from steady_state to upshifting.

Set a Breakpoint for a Stateflow Object
You can set breakpoints on charts, states, transitions, graphical or truth table functions, and events.

Breakpoints on Charts

To set a breakpoint on a chart, right-click inside the chart and select Set Breakpoint on Chart
Entry. This type of breakpoint pauses the simulation before entering the chart.

To remove the breakpoint, right-click inside the chart and clear the Set Breakpoint on Chart Entry
option.

Breakpoints on States and Transitions

You can set different types of breakpoints on states and transitions.
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Object Breakpoint Type
State On State Entry — Pause the simulation before performing the

state entry actions.
During State — Pause the simulation before performing the
state during actions.
On State Exit — Pause the simulation after performing the
state exit actions.

Transition When Transition is Tested — Pause the simulation before
testing that the transition is a valid path. If no condition exists on
the transition, this breakpoint type is not available.
When Transition is Valid — Pause the simulation after the
transition is valid, but before taking the transition.

To set a breakpoint on a state or transition, right-click the state or transition and select Set
Breakpoint. For states, the default breakpoints are On State Entry and During State. For
transitions, the default breakpoint is When Transition is Valid. To change the type of
breakpoint, click the breakpoint badge and select a different configuration of breakpoints. For more
information, see “Change Breakpoint Types” on page 33-5.

To remove the breakpoint, right-click the state or transition and select Clear Breakpoint.

Breakpoints on Stateflow Functions

To set a breakpoint on a graphical or truth table function, right-click the function and select Set
Breakpoint During Function Call. This type of breakpoint pauses the simulation before calling the
function.

To remove the breakpoint, right-click the function and clear the Set Breakpoint During Function
Call option.

Breakpoints on Events

You can select two types of breakpoints on events:

• Start of Broadcast — Pause the simulation before broadcasting the event.
• End of Broadcast — Pause the simulation after a Stateflow object reads the event.

Available breakpoints depend on the scope of the event.

Scope of Event Start of Broadcast End of Broadcast
Local Available Available
Input Available Not available
Output Not available Not available

To set or clear breakpoints on an event, use the Property Inspector or the Model Explorer to modify
the Debugger Breakpoints properties. For more information, see “Debugger Breakpoints” on page
14-6.
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Change Breakpoint Types
A breakpoint badge can represent more than one type of breakpoint. To see a tooltip that lists the
breakpoint types that are set on a Stateflow object, point to its badge. In this example, the badge on
the state upshifting represents two breakpoint types: On State Entry and During State.

To change the type of breakpoint on an object, click the breakpoint badge. In the Breakpoints dialog
box, you can select a different configuration of breakpoints, depending on the object type.

Clearing all of the check boxes in the Breakpoints dialog box removes the breakpoint.

Add Breakpoint Conditions
To limit the number of times that the simulation stops at a breakpoint, add a condition to the
breakpoint. By default, a Stateflow chart pauses whenever it reaches a breakpoint. When you add a
condition to a breakpoint, the chart pauses at the breakpoint only when the condition is true.

To add a condition to a breakpoint:
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1 On the Debug tab, click Breakpoints List to open the Stateflow Breakpoints and Watch window.
Alternatively, you can open the Breakpoints and Watch window by clicking the Breakpoints List
link in the Breakpoints dialog box.

2 Select the Breakpoints tab. The Breakpoints tab lists all of the breakpoints in the chart. For
more information, see “Manage Breakpoints Through the Breakpoints and Watch Window” on
page 33-7.

3 Under the Condition column, enter a condition for the breakpoint. You can use any valid
MATLAB expression that combines numerical values and Stateflow data objects that are in scope
at the breakpoint.

Note You cannot use message data in a breakpoint condition expression.

For example, this chart has a breakpoint on the transition from steady_state to upshifting. This
breakpoint stops the simulation every time that the transition is tested, even if the value of speed is
far below up_th.

To inspect the chart before the transition is taken, you want the breakpoint to pause the simulation
only when the value of speed is approaching the value of up_th. When you set the condition speed
> up_th-2 on the breakpoint, the simulation pauses only when the value of speed is within 2 of the
value of up_th.
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When the simulation pauses, you can inspect the values of the variables speed and up_th and step
through the simulation. For more information, see “Inspect and Modify Data and Messages While
Debugging” on page 33-9 and “Control Chart Execution After a Breakpoint” on page 33-16.

Manage Breakpoints Through the Breakpoints and Watch Window
You can manage all of the breakpoints in the chart in the Stateflow Breakpoints and Watch window. To
open the Breakpoints and Watch window, on the Debug tab, click Breakpoints List. Alternatively,
open the Breakpoints dialog box and click the Breakpoints List link.

• To see a list of all of the breakpoints and their associated conditions, select the Breakpoints tab.
• To inspect data and message values, select the Watch tab. For more information, see “View Data

in the Breakpoints and Watch Window” on page 33-11.

Disable and Reenable Breakpoints

To disable a breakpoint without deleting its associated condition, clear the check box next to the
breakpoint name. For example, in this chart, the breakpoint on the During State breakpoint for the
upshifting state is disabled.

If you disable all the breakpoints for a graphical object, its breakpoint badge changes color from red
to gray. If there is at least one breakpoint enabled for an object, the breakpoint badge remains red.

To reenable a breakpoint, select the box next to the breakpoint name. To disable or reenable all
breakpoints, clear or select the check box at the top of the window.
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Remove Breakpoints

To remove a breakpoint from the chart, point to the name of the breakpoint and click the Remove
this breakpoint icon that appears to the right of the name. When you remove a breakpoint, you also
delete its associated condition.

View Breakpoint Hits

The Hits column displays the number of times that the simulation has paused on each breakpoint.
When you change the condition for a breakpoint, the chart resets the number of hits.

Save and Restore Breakpoints

Breakpoints persist during a MATLAB session. When you close a model, its breakpoints remain in the
Breakpoints and Watch window. If you reopen a model during the same MATLAB session, all of the
breakpoints and their associated conditions are restored.

You can save the breakpoint and watch data lists and reload them in a later MATLAB session. To save
a snapshot of the breakpoint and watch data lists, at the top of the Breakpoints and Watch Window,
click the Save current breakpoints and watches icon. To restore a snapshot, click the Load
breakpoints and watches icon.

See Also

More About
• “Debugging Stateflow Charts” on page 33-2
• “Inspect and Modify Data and Messages While Debugging” on page 33-9
• “Control Chart Execution After a Breakpoint” on page 33-16
• “Debug Run-Time Errors in a Chart” on page 33-20
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Inspect and Modify Data and Messages While Debugging
While your Stateflow chart is in debugging mode, you can examine the status of the chart by
inspecting the values of data, messages, and temporal logic expressions. You can also test the design
of the chart by modifying data values and sending local and output messages. This table summarizes
the interfaces that you can use to perform these debugging tasks. For more information, see
“Debugging Stateflow Charts” on page 33-2.

Debugging Task Stateflow
Editor

Symbols Pane Breakpoints
and Watch
Window

MATLAB
Command
Window

Inspect values of data and
messages

Yes on page 33-
9

Yes on page 33-
10

Yes on page 33-
11

Yes on page 33-
12

Inspect temporal logic
expressions

Yes on page 33-
9

No No No

Modify values of data and
messages

No Yes on page 33-
10

No Yes on page 33-
13

Send messages No No No Yes on page 33-
14

View Data in the Stateflow Editor
While the simulation is paused at a breakpoint, you can examine data values by pointing to a state,
transition, or function in the chart. A tooltip displays the value of the data and the messages that the
selected object uses.

Object Type Tooltip Information
States and transitions Values of data, messages, and temporal logic

expressions that the object uses
Graphical, truth table, and MATLAB
functions

Values of local data, messages, inputs, and outputs in
the scope of the function

For example, the breakpoint in this chart pauses the simulation when the second state evaluates its
during actions. Pointing to the superstate gear displays a tooltip that shows the values of:

• Temporal logic expressions duration(speed >= up_threshold) and duration(speed <=
down_threshold).

• Data, including speed, up_threshold, and up.
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Note If you select the chart properties Export chart level functions and Treat exported
functions as globally visible, the tooltip does not display temporal logic data.

View and Modify Data in the Symbols Pane
While a chart is in debugging mode, the Symbols pane displays the value of each data and message
object in the chart. For example, when this chart pauses at the breakpoint, you can see the values of
all chart data listed in the Value column. The highlighted values changed during the last time step.

In the Symbols pane, you can change the value of:

• Data store memory, local, and output data.
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• Local and output messages.

Click the Value field for a data or message object to enter a new value.

You cannot change the values of constants, parameters, or input data and messages during
simulation.

For more information, see “Manage Symbols in the Stateflow Editor” on page 34-2.

View Data in the Breakpoints and Watch Window
In the Stateflow Breakpoints and Watch window, you can view current data and message values while
the simulation is paused at a breakpoint. To open the Breakpoints and Watch window, on the Debug
tab, click Breakpoints List. Alternatively, open the Breakpoints dialog box and click the
Breakpoints List link.

• To see a list of all of the breakpoints and their associated conditions, select the Breakpoints tab.
For more information, see “Manage Breakpoints Through the Breakpoints and Watch Window” on
page 33-7.

• To inspect data and message values, select the Watch tab.

Track Data in the Watch List

You can use the Breakpoints and Watch window to:

• Add data and message objects to a watch list.
• Track the values that changed since the last time step.
• Expand a message to view the message queue and message data values.

For example, you can add speed, up_threshold, and up to the watch list and track their values as
you step through the simulation. The highlighting indicates that the values of speed and
up_threshold changed during the last time step.

To add a data or message object to the watch list, open the Property Inspector or the Model Explorer.
Select the data or message object you want to watch and click the Add to Watch Window link.

Alternatively, in the Stateflow Editor, right-click a state or transition that uses the data or message.
Select Add to Watch Window and choose the variable name from the drop-down list.
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Format Watch Display

To change the format used to display watch data, select the gear icon  at the top of the window.
Use the drop-down lists to choose a MATLAB format for each data type.

Remove Data from the Watch List

To remove a data or message object from the watch list, point to the path for the watch data and click
the Remove this watch icon that appears to the left of the variable name.

Save and Restore Watch Data

Watch data persists during a MATLAB session. When you close a model, its watch data list remains in
the Breakpoints and Watch Window. If you reopen a model during the same MATLAB session, the
watch data list for that model is restored.

You can save the breakpoint and watch data lists and reload them in a later MATLAB session. To save
a snapshot of the breakpoint and watch data lists, at the top of the Breakpoints and Watch Window,
click the Save current breakpoints and watches icon. To restore a snapshot, click the Load
breakpoints and watches icon.

View and Modify Data in the MATLAB Command Window
While the simulation is paused at a breakpoint, the MATLAB command prompt changes to debug>>.
At this prompt, you can inspect and change the values of Stateflow data, send local and output
messages, and interact with the MATLAB workspace.

For example, suppose that the previous chart has reached a breakpoint. To view the data that is
visible at the current scope, use the whos command.
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whos

  Name                Size            Bytes  Class       Attributes

  TWAIT               1x1                 1  uint8                 
  down                1x1                 1  logical               
  down_th             1x1                 8  double                
  down_threshold      1x1                 8  double                
  gear                1x1                 4  gearType              
  speed               1x1                 8  double                
  throttle            1x1                 8  double                
  up                  1x1                 1  logical               
  up_th               1x1                 8  double                
  up_threshold        1x1                 8  double                

To inspect the values of speed and up_threshold, enter:

speed

speed =

   26.3383

up_threshold

up_threshold =

   41.3601

Modify Data by Using the Debugging Prompt

At the debugging prompt, you can change the value of data store memory, local, and output data. For
example, in the previous chart, you can change the value of up_threshold, up, and gear:

up_threshold = 25;

up = true;

gear = gearType.third;

Follow these rules when modifying data at the debugging prompt.

• To modify vectors and matrices, use MATLAB syntax for indexing, regardless of the action
language property of your chart. See “Indexing Notation” on page 21-4.

For example, to change the element in the diagonal of a 2-by-2 matrix u, enter:

u(1,1) = 6.022e23;
u(2,2) = 6.626e-34

• You can change the dimensions of variable-size data as long as the new size is within the
dimension bounds specified for the data. For example, suppose that v is a variable-size array with
a maximum size of [16 16]. To change the value of v to a 5-by-7 array of ones, enter:

v = ones(5,7);
• To modify enumerated data, explicitly specify the enumerated type by using prefixed identifiers.

See “Notation for Enumerated Values” on page 23-3.

For example, suppose that w has an enumerated data type Colors. To change the value of w to the
enumerated value Red, enter:
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w = Colors.Red
• To modify numerical data, cast to an explicit data type by using a MATLAB type conversion

function. Explicit casting is not required for data of a type double. See “Type Cast Operations” on
page 16-7.

For example, suppose that x has type single, y has type int32, and z has type
fixdt(1,16,12). To change the value of these data objects, enter:

x = single(98.6);
y = int32(100);
z = fi(0.5413,1,16,12);

• You cannot change the values of constants, parameters, or input data at the debugging prompt.

Note To modify data of type int64 or uint64, use the function fi to cast the new value to a fixed-
point type.

Send Messages by Using the Debugging Prompt

At the debugging prompt, you can send local and output messages. For example, in this chart, the
local message M determines which state becomes active after the state DecisionPoint. If the chart
receives the message M with a positive value, the state Received becomes active and the chart
outputs a value of true. Otherwise, the state Missed becomes active and the chart outputs a value
of false .

The initial value of the message is zero. To change the value of the data field to a positive number and
send the message to its local queue, enter:

M = 5;
send(M);

When you advance to the next step of the simulation, the message triggers the transition to the state
Received. For more information, see “Control Chart Execution After a Breakpoint” on page 33-16.

Follow these rules when sending messages from the debugging prompt:

• To read or write to the message data field of a valid message, use the name of the message object.
Do not use dot notation syntax.

• You can send a message from the debugging prompt only when the chart explicitly sends the
message by calling the send operator.
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• You cannot send input messages from the debugging prompt.

For more information, see “Control Message Activity in Stateflow Charts” on page 15-9.

Access the MATLAB Workspace While Debugging

You can enter other MATLAB commands at the debugging prompt, but the results are executed in the
Stateflow workspace. For example, you can save all of the chart variables in a MAT-file by using the
save function:

save(chartVars)

To enter a command in the MATLAB base workspace, use the evalin command with the first
argument 'base'. For example, to list the variables in the MATLAB workspace, use the command:

evalin('base','whos')

See Also
whos | save | evalin | send

More About
• “Debugging Stateflow Charts” on page 33-2
• “Set Breakpoints to Debug Charts” on page 33-3
• “Control Chart Execution After a Breakpoint” on page 33-16
• “Manage Symbols in the Stateflow Editor” on page 34-2
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Control Chart Execution After a Breakpoint
When the simulation of a Stateflow chart pauses at a breakpoint, the chart enters debugging mode.
You can examine the state of the chart and step through the simulation. For more information, see
“Debugging Stateflow Charts” on page 33-2.

Examine the State of the Chart
When a Stateflow chart enters debugging mode, the editor highlights the active elements in blue and
the currently executing object in green. For example, this chart is paused at an entry breakpoint in
the HIGH state. The active state (On) is highlighted in blue and the currently executing substate
(HIGH) is highlighted in green.

An execution status badge appears in the graphical object where the simulation is paused.

Badge Description
Simulation is paused before entering a chart or in a state entry
action.
Simulation is paused in a state during action, graphical function,
or truth table function.
Simulation is paused in a state exit action.

Simulation is paused before testing a transition.

Simulation is paused before taking a valid transition.

To see the execution status, point to the badge. A tooltip indicates:

• Where the simulation is paused
• The simulation time
• The current event (if the simulation is paused during a local or input event)
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To view the values of chart, point to a chart object. A tooltip displays:

• The values of the data and messages that the selected object uses
• Temporal information (if the object contains a temporal logic operator)

For more information, see “Inspect and Modify Data and Messages While Debugging” on page 33-9.

Step Through the Simulation
When the chart is paused at a breakpoint, you can continue the simulation by using:

• Buttons in the Debug tab
• The MATLAB Command Window
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• Keyboard shortcuts

Action Debug Tab
Button

MATLAB
Command

Keyboard
Shortcut

Description

Continue dbcont Ctrl+T Continue simulation to the next
breakpoint.

Step Forward   Exit debug mode and pause
simulation before next time
step.

Step Over dbstep F10 Advance to the next step in the
chart execution. At the chart
level, possible steps include:

• Enter the chart
• Test a transition
• Execute a transition action
• Activate a state
• Execute a state action

For more information, see
“Execution of a Stateflow Chart”
on page 3-25.

Step In dbstep in F11 From a state or transition action
that calls a function, advance to
the first executable statement in
the function.

From a statement in a function
containing another function call,
advance to the first executable
statement in the second
function.

Otherwise, advance to the next
step in the chart execution. (See
Step Over.)

Step Out dbstep out Shift+F11 From a function call, return to
the statement calling the
function.

Otherwise, continue simulation
to the next breakpoint. (See
Continue.)

Run to Cursor   In state or transition actions
containing more than one
statement, execute a group of
statements together.
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Action Debug Tab
Button

MATLAB
Command

Keyboard
Shortcut

Description

Stop dbquit Ctrl+Shift+T Exit debug mode and stop
simulation.

In state or transition actions that contain more than one statement, you can step through the
individual statements one at a time by selecting Step Over. The Stateflow Editor highlights each
statement before executing it.

To execute a group of statements together, click the last statement in the group and select Run to
Cursor.

See Also

More About
• “Debugging Stateflow Charts” on page 33-2
• “Set Breakpoints to Debug Charts” on page 33-3
• “Inspect and Modify Data and Messages While Debugging” on page 33-9
• “Debug Run-Time Errors in a Chart” on page 33-20
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Debug Run-Time Errors in a Chart
In this section...
“Create the Model and the Stateflow Chart” on page 33-20
“Debug the Stateflow Chart” on page 33-21
“Correct the Run-Time Error” on page 33-21

Create the Model and the Stateflow Chart
In this topic, you create a Simulink model with a Stateflow chart to debug. Follow these steps:

1 Create the following Simulink model:

2 Add the following states and transitions to your chart:

3 In your chart, add an event Switch with a scope of Input from Simulink and a Rising edge
trigger.

4 Add a data Shift with a scope of Input from Simulink.

The chart has two states at the highest level in the hierarchy, Power_off and Power_on. By default,
Power_off is active. The event Switch toggles the system between the Power_off and Power_on
states. Power_on has three substates: First, Second, and Third. By default, when Power_on
becomes active, First also becomes active. When Shift equals 1, the system transitions from
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First to Second, Second to Third, Third to First, for each occurrence of the event Switch, and
then the pattern repeats.

In the model, there is an event input and a data input. A Sine Wave block generates a repeating input
event that corresponds with the Stateflow event Switch. The Step block generates a repeating
pattern of 1 and 0 that corresponds with the Stateflow data object Shift. Ideally, the Switch event
occurs at a frequency that allows at least one cycle through First, Second, and Third.

Debug the Stateflow Chart
To debug the chart in “Create the Model and the Stateflow Chart” on page 33-20, follow these steps:

1 Right-click in the chart, and select Set Breakpoint on Chart Entry.
2 Start the simulation.

Because you specified a breakpoint on chart entry, execution stops at that point.
3

Click the Step In button, .

The Step In button executes the next step and stops.
4 Continue clicking the Step In button and watching the animating chart.

After each step, watch the chart animation to see the sequence of execution.

Single-stepping shows that the chart does not exhibit the desired behavior. The transitions from
First to Second to Third inside the state Power_on are not occurring because the transition from
Power_on to Power_off takes priority. The output display of code coverage also confirms this
observation.

Correct the Run-Time Error
In “Debug the Stateflow Chart” on page 33-21, you step through a simulation of a chart and find an
error: the event Switch drives the simulation but the simulation time passes too quickly for the input
data object Shift to have an effect.

Correct this error as follows:

1 Stop the simulation so that you can edit the chart.
2 Add the condition [t > 20.0] to the transition from Power_on to Power_off.
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Now the transition from Power_on to Power_off does not occur until simulation time is greater
than 20.0.

3 Begin simulation again.
4 Click the Step In button repeatedly to observe the new behavior.

33 Debug and Test Stateflow Charts

33-22



Animate Stateflow Charts

Set Animation Speeds
During simulation, animation provides visual verification that your chart behaves as you expect.
Animation highlights active objects in a chart as execution progresses. For charts in a Simulink
model, you can control the speed of chart animation during simulation, or turn off animation. In the
Stateflow Editor, in the Debug tab, under Animation Speed:

• Lightning Fast
• Fast
• Medium
• Slow
• None

Lightning Fast animation provides the fastest simulation speed by buffering the highlights.
During Lightning Fast animation, the more recently highlighted objects are in a bolder, lighter
blue. These highlights fade away as simulation time progresses.

The default animation speed, Fast, shows the active highlights at each time step. To add a delay with
each time step, set the animation speed to Medium or Slow.

Maintain Highlighting
To maintain highlighting of active states in the chart after simulation ends, in the Debug tab, select
Maintain highlighting of active states after simulation ends .

Disable Animation
Animation is enabled by default in Stateflow charts. To turn off animation for a chart, in the Debug
tab, select Remove animation highlighting .

Animate Charts as Generated Code Executes on a Target System
If you have Simulink Coder, you can use external mode to establish communication between a
Simulink model and generated code downloaded to and executing on a target system. Stateflow
software can use the external mode communication channel to animate chart states. Also, you can
designate chart data of local scope to be test points and view the test point data in floating scopes
and signal viewers.

For more information, see:

• “External Mode Simulation by Using XCP Communication” (Simulink Coder)
• “External Mode Simulation with TCP/IP or Serial Communication” (Simulink Coder)

.
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Detect Modeling Errors During Edit Time
When edit-time checking is enabled, the Stateflow Editor detects potential errors and warnings as
you work on your chart. By fixing these issues early in the design process, you can avoid compile-time
or run-time warnings and errors.

The Stateflow editor highlights objects that violate the edit-time checks in red (for errors) or orange
(for warnings). When you point to an object that is highlighted and click the error or warning badge,
a tooltip displays details and possible fixes.

Manage Edit-Time Checks
By default, edit-time checking and syntax error highlighting are enabled. To disable the edit-time
checks, in the Debug tab, clear the Diagnostics > Edit-Time Errors & Warnings check box. Edit-
time checks can also be disabled by using edittime.setDisplayIssues (Simulink).

This table lists edit-time checks that have an associated diagnostic configuration parameter on the
Diagnostics > Stateflow pane of the Configuration Parameters dialog box.

Edit-Time Check Issue Diagnostic Configuration Parameter
“Dangling transition” on page 33-26 “Unreachable execution path” (Simulink)
“Default transition path does not terminate in a
state” on page 33-27

“No unconditional default transitions” (Simulink)

“Transition action precedes a condition action
along this path” on page 33-28

“Transition action specified before condition
action” (Simulink)

“Transition loops outside natural parent” on page
33-29

“Transition outside natural parent” (Simulink)

“Transition shadowing” on page 33-30 “Unreachable execution path” (Simulink)
“Unconditional path out of state with during
actions or child states” on page 33-30

“Transition outside natural parent” (Simulink)

“Unexpected backtracking” on page 33-31 “Unexpected backtracking” (Simulink)
“Unreachable junction” on page 33-32 “Unreachable execution path” (Simulink)

You can control the level of diagnostic action for these edit-time checks by setting the value of their
configuration parameter to error, warning, or none. When you change the setting for a
configuration parameter, the diagnostic level for the corresponding edit-time checks also changes.
For example, if you set the Unreachable execution path configuration parameter to none, then the
Stateflow Editor does not highlight dangling transitions, transition shadowing, or unreachable states.

Edit-Time Checks on States and Subcharts
Atomic subchart contains state actions

• Issue: State actions are not supported on atomic subcharts.
• Diagnostic level: Error.
• Solution: Delete the state actions or move them to a substate of the atomic subchart.
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Default transition is missing

• Issue: In a chart or state with exclusive (OR) decomposition and at least two substates or
junctions, a default transition is required to indicate where the execution begins.

• Diagnostic level: Error.
• Solution: Specify an initial state by adding a default transition. For more information, see

“Default Transitions” on page 2-32.

Graphical function contains a state

• Issue: Because graphical functions execute completely in a single time step, they must not
contain any states.

• Diagnostic level: Error.
• Solution: Replace the states with junctions. For more information, see “Reuse Logic Patterns by
Defining Graphical Functions” on page 8-10.

Invalid intersection

• Issue: States and junctions must not overlap in the Stateflow Editor.
• Diagnostic level: Error.
• Solution: Avoid intersections by separating the states and junctions.

Monitoring leaf or child state activity of parallel states

• Issue: Charts and states with parallel (AND) decomposition do not support monitoring of leaf or
child state activity because parallel substates are active simultaneously.

• Diagnostic level: Warning.
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• Solution: Open the Property Inspector or the Model Explorer. Clear the Create output for
monitoring check box or select Self activity from the drop-down list. For more information,
see “Monitor State Activity Through Active State Data” on page 13-2.

State contains a syntax error

• Issue: A state action does not follow the Stateflow syntax rules. The Stateflow Editor underlines
syntax errors with a red, wavy line. See also Transition Contains a Syntax Error on page
33-27.

• Diagnostic level: Error.
• Solution: Correct the syntax error in the state action. For more information, see “State Labels”

on page 2-10.

Note In the parent chart, subcharts with syntax errors are highlighted in red and an error badge
indicates the syntax issue. In the subchart editor, the syntax error is underlined in red, but there is
no badge to indicate the issue.

Unreachable state

• Issue: A state is unreachable when no valid execution path leads to it.
• Diagnostic level: Depends on the configuration parameter “Unreachable execution path”

(Simulink).
• Solution: Connect the unreachable state with a transition from a reachable state or junction.

Edit-Time Checks on Transitions
Dangling transition

• Issue: Every transition must have a valid destination state or junction.
• Diagnostic level: Depends on the configuration parameter “Unreachable execution path”

(Simulink).
• Solution: Connect the transition to a state or junction. For more information, see “Transitions” on

page 2-21.
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Default transition path does not terminate in a state

• Issue: In charts or states with exclusive (OR) decomposition and at least one substate:

• Every path along the default transition must lead to a substate.
• There must be one default transition path that is not guarded by a condition or triggered by an

event.
• Diagnostic level: Depends on the configuration parameter “No unconditional default transitions”

(Simulink).
• Solution: Terminate every path along the default transition in a substate. Ensure that one default

transition path is not guarded by a condition or triggered by an event.

Invalid default transition path

• Issue: A default transition path must not exit the parent state.
• Diagnostic level: Error.
• Solution: Modify the default transition path so it stays within the parent state.

Transition contains a syntax error

• Issue: In a transition, a condition or action does not follow the Stateflow syntax rules. The
Stateflow Editor underlines syntax errors with a red, wavy line. See also State Contains a
Syntax Error. on page 33-26

• Diagnostic level: Error.
• Solution: Correct the syntax error in the transition condition or action. For more information, see

“Transition Labels” on page 2-22.
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Transition action precedes a condition action along this path

• Issue: When a transition with a transition action is followed by a transition with a condition
action, the actions are not executed in the order of the transitions. Stateflow charts execute
condition actions when the associated condition is evaluated as true. In contrast, charts execute
transition actions only when the transition path is fully executed. As a consequence, a chart takes
a transition path, the condition actions occur before the transition actions.

• Diagnostic level: Depends on the configuration parameter “Transition action specified before
condition action” (Simulink).

• Solution: Place the transition action after the last condition action on the path.

Transition begins or ends in a parallel state

• Issue: In charts and states with parallel (AND) decomposition, all sibling substates are active or
inactive at the same time.

• Diagnostic level: Warning.
• Solution: Remove the transitions or change the decomposition of the parent state to exclusive

(OR).

Transition connects to a box

• Issue: Transitions can only connect to states and junctions.
• Diagnostic level: Error.
• Solution: Move or delete the transitions attached to the box.

Transition crosses parallel states

• Issue: Standalone charts in MATLAB do not support transitions that cross the boundary of a
parallel state.

• Diagnostic level: Error.
• Solution: Delete the transition crossing into or out of the parallel states.
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Transition enters or exits graphical function

• Issue: Transitions must not enter or exit a graphical function. Flow charts in graphical functions
must be completely contained inside the function.

• Diagnostic level: Error.
• Solution: Delete the transition entering or exiting the graphical function.

Transition is not connected to entry/exit port

• Issue: Transition is not connected to the entry or exit port near its source or destination.
• Diagnostic level: Warning.
• Solution: Connect the transition to the port or move the transition source or destination to a
different location.

Transition loops outside natural parent

• Issue: If a transition goes outside the parent state between the source and destination, the chart
executes the exit and entry actions of the parent state before the destination state becomes
active.

• Diagnostic level: Depends on the configuration parameter “Transition outside natural parent”
(Simulink).

• Solution: Move the transition so that it is contained within the parent state.
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Transition shadowing

• Issue: When an unconditional transition executes before other outgoing transitions from the same
source, it prevents the other transitions from executing.

• Diagnostic level: Depends on the configuration parameter “Unreachable execution path”
(Simulink).

• Solution: Create no more than one unconditional transition from each state or junction. Explicitly
specify that the unconditional transition executes after any transitions with conditions. For more
information, see “Transition Evaluation Order” on page 3-40.

Unconditional path out of state with during actions or child states

• Issue: Unconditional transitions leading out of a state inhibit the execution of the during actions
in the state and the default transitions to child states.

• Diagnostic level: Depends on the configuration parameter “Transition outside natural parent”
(Simulink).

• Solution: Add a condition to the transition or remove during actions and child states from the
state.

Edit-Time Checks on Junctions
Cycle contains transitions with transition actions

• Issue: Cycles should not contain transitions with transition actions.
• Diagnostic level: Error.
• Solution: Remove the transition action or remove the cycle by deleting a transition.

Invalid history junction

• Issue: A history junction is invalid when:

• The history junction is contained in the chart level of the hierarchy.
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• The history junction is contained in a state with parallel (AND) decomposition.
• The history junction is contained inside a graphical function.
• There are multiple history junctions contained in the same state.
• The history junction is the source of a transition.

• Diagnostic level: Error.
• Solution: Remove the history junction from the chart level of the hierarchy, a state with parallel

(AND) decomposition, or a graphical function. Remove all but one history junction from the state.
Move the transition source to a connective junction or a state. For more information, see “Record
State Activity by Using History Junctions” on page 2-46.

Junction has no unconditional escape from cycle

• Issue: A junction must have an unconditional escape path from a cycle to a state or terminating
junction.

• Diagnostic level: Error.
• Solution: Create an unconditional path from the junction to a state or terminating junction.

Unexpected backtracking

• Issue: Unexpected backtracking of control flow can occur when multiple transition paths from the
same source lead to a junction and the junction does not have an unconditional path to a state or
terminating junction.

• Diagnostic level: Depends on the configuration parameter “Unexpected backtracking”
(Simulink).

• Solution: Create an unconditional path from the junction to a state or terminating junction. For
more information, see “Backtrack in Flow Charts” on page A-30.

For example, the highlighted junction in this chart does not have an unconditional transition path
to state A. If ConditionA and ConditionB are true and ConditionC is false, the chart
backtracks to the first junction in the path multiple times. As a result, the chart executes the three
condition actions.
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To avoid backtracking, combine the conditions and create an unconditional path from the second
junction to the destination state. After the change, the chart executes only one condition action.

Unreachable junction

• Issue: A junction is unreachable when no valid execution path leads to it.
• Diagnostic level: Depends on the configuration parameter “Unreachable execution path”

(Simulink).
• Solution: Connect the unreachable junction with a transition from a reachable state or junction.

Edit-Time Checks on Functions
Function is unused

• Issue: A function is unused when a chart when there are no statements that call the function.
• Diagnostic level: Warning.
• Solution: Call the function from a state or transition action or from another function.

Invalid use of keywords as function arguments

• Issue: A function definition uses a reserved keyword as an argument.
• Diagnostic level: Error.
• Solution: Rename the argument to the function. For a list of reserved keywords, see “Guidelines

for Naming Stateflow Objects” on page 2-5.

33 Debug and Test Stateflow Charts

33-32



Edit-Time Checks on Entry and Exit Ports
Entry or exit junction at top level of chart

• Issue: Entry and exit junctions are supported only in exclusive (OR) states and atomic subcharts.
• Diagnostic level: Error.
• Solution: Move the junction to an exclusive (OR) state or atomic subchart or delete the junction.

Entry junctions must have an unconditional path to a state

• Issue: An entry junction must have one transition path that is not guarded by a condition or
triggered by an event.

• Diagnostic level: Error.
• Solution: Add an unconditional path from the entry junction to a state.

Entry junctions must have outgoing transitions

• Issue: An entry junction does not connect to an outgoing transition path.
• Diagnostic level: Error.
• Solution: Attach transitions to the entry junction or remove the junction.

Exit ports must have an unconditional path to a state

• Issue: An exit port must have one transition path that is not guarded by a condition or triggered
by an event.

• Diagnostic level: Error.
• Solution: Add an unconditional path from the exit port to a state.

 Detect Modeling Errors During Edit Time

33-33



Exit ports must have outgoing transitions

• Issue: An exit port does not connect to an outgoing transition path.
• Diagnostic level: Error.
• Solution: Attach transitions to the exit port or remove the port.

Invalid entry or exit junction

• Issue: Entry and exit junctions are supported only in exclusive (OR) states and atomic subcharts.
• Diagnostic level: Error.
• Solution: Move the junction to an exclusive (OR) state or atomic subchart or delete the junction.

Missing entry or exit junction

• Issue: An entry or exit port must have a matching entry or exit junction.
• Diagnostic level: Error.
• Solution: Delete the port or create a matching junction with the same label.

Multiple entry or exit junctions with same label

• Issue: Entry and exit junctions in the same parent must have unique labels.
• Diagnostic level: Error.
• Solution: Delete one of the junctions or change one of the labels.

Path from entry junction contains a terminal junction

• Issue: Every path from an entry junction must lead to a state.
• Diagnostic level: Error.
• Solution: Replace the terminal junction with a state.
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Path from exit port contains a terminal junction

• Issue: Every path from an exit port must lead to a state.
• Diagnostic level: Error.
• Solution: Replace the terminal junction with a state.

Transition path from an entry junction to a history junction

• Issue: Transition paths from entry junctions must not connect to history junctions.
• Diagnostic level: Error.
• Solution: Remove the path from the entry junction to the history junction.

Transition path from an inner transition to an exit junction

• Issue: Inner transition paths must not connect to an exit junction.
• Diagnostic level: Error.
• Solution: Remove the path from the inner transition to the exit junction.

Transition path from entry junction or to exit junction must be contained in parent

• Issue: Transition paths that start at entry junctions or end at exit junctions must be contained in
the parent state.

• Diagnostic level: Error.
• Solution: Modify the transition path to be contained in the parent state.
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Unreachable port or junction

• Issue: A port or junction is unreachable when no valid execution path leads to it.
• Diagnostic level: Depends on the configuration parameter “Unreachable execution path”

(Simulink).
• Solution: Connect the unreachable entry port or exit junction with a transition from a reachable

state or junction.

See Also

More About
• “Detect Common Modeling Errors During Chart Simulation” on page 33-37
• “Modeling Guidelines for Stateflow Charts” on page 3-21
• “Stateflow Semantics” on page 3-2
• “Model Configuration Parameters: Stateflow Diagnostics” (Simulink)
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Detect Common Modeling Errors During Chart Simulation
To avoid common design errors, you can run diagnostic checks that test the completeness of your
Stateflow chart during compilation and simulation. Stateflow diagnostics detect state inconsistencies,
violations in data ranges, and cyclic behavior in Stateflow charts in Simulink models.

When you simulate a model, the Stateflow parser evaluates the graphical and nongraphical objects
and data in each Stateflow machine against the supported chart notation and the action language
syntax. You can also check the syntax of your chart by selecting Update Chart in the Modeling tab
of the Stateflow Toolstrip.

If syntax errors exist in your chart, the chart automatically appears with the highlighted object that
causes the first error. You can select the error in the diagnostic window to bring its source chart to
the front with the source object highlighted. Any unresolved data or events in the chart are flagged in
the Symbol Wizard.

State Inconsistencies
In a Stateflow chart, states are inconsistent if they violate one of these rules:

• An active state with exclusive (OR) decomposition and at least one substate has exactly one active
substate.

• All substates of an active state with parallel (AND) decomposition are active.
• All substates of an inactive state are inactive regardless of the state decomposition.

While you edit your chart, the Stateflow Editor displays potential causes for state inconsistencies by
highlighting objects in red or orange. For more information, see “Detect Modeling Errors During Edit
Time” on page 33-24.

Causes of State Inconsistency

One type of state inconsistency occurs when all of these conditions are true:

• A state with multiple substates has exclusive (OR) decomposition.
• The state does not contain a history junction.
• Every default path that leads to a substate is guarded by a condition or triggered by an event.
• Not all transitions into the state are supertransitions leading directly to a substate.

For example, this chart has a state inconsistency because there is no default transition to indicate
which substate becomes active first.
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Adding an unconditional default transition to one of the states resolves the state inconsistency.

Detect State Inconsistencies

At compile time, Stateflow charts detect state inconsistencies caused by the omission of an
unconditional default transition. To control the level of diagnostic action, open the Model
Configuration Parameters dialog box. In the Diagnostics > Stateflow pane, for the diagnostic No
unconditional default transitions, you can select error, warning, or none. The default setting is
error. For more information, see “No unconditional default transitions” (Simulink).

Data Range Violations
During simulation, a data range violation occurs when:

• An integer or fixed-point operation overflows the numeric capacity of its result type. See “Handle
Integer Overflow for Chart Data” on page 12-36 and “Fixed-Point Operations in Stateflow Charts”
on page 26-19.

• The value of a data object is outside the range of the values specified by the Initial value,
Minimum, and Maximum properties. See “Initial Value” on page 12-8 and “Limit Range” on
page 12-10.

For example, this chart contains local data a that has a Minimum value of 0 and a Maximum value
of 2. The entry action in state A initializes a to 1. The during action increments the value of a by 1.
After two time steps, the value of a exceeds its specified range, resulting in a data range violation.

Detect Data Range Violations

At run time, Stateflow charts detect data range violations. To control the level of diagnostic action,
open the Model Configuration Parameters dialog box. In the Diagnostics > Data Validity pane, you
can select error, warning, or none for these diagnostics:
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• Simulation range checking detects violations based on minimum-and-maximum range checks.
The default setting is none.

• Wrap on overflow and Saturate on overflow detect violations that occur when integer or fixed-
point operations exceed the numeric capacity of their result type. The default setting is warning.

For more information, see “Simulation range checking” (Simulink), “Wrap on overflow” (Simulink),
and “Saturate on overflow” (Simulink).

Cyclic Behavior
Cyclic behavior occurs when a step or sequence of steps is repeated indefinitely during chart
simulation.

For example, the actions in this chart produce an infinite cycle of recursive event broadcasts.

• The during action in state C broadcasts the event E1.
• The event E1 triggers the transition from state A.A1 to state A.A2. The condition action for this

transition broadcasts the event E2.
• The event E2 triggers the transition from state B.B1 to state B.B2. The condition action for this

transition broadcasts the event E1.

The event broadcasts in states A and B occur in condition actions, so the transitions do not take place
until the chart processes the resulting events. The substates A.A1 and B.B1 remain active, so new
event broadcasts continue to trigger the transitions and the process repeats indefinitely.

Because undirected local event broadcasts can cause unwanted recursive behavior, use of the send
operator to broadcast directed local events is recommended. For more information, see “Broadcast
Local Events to Synchronize Parallel States” on page 14-23.

Detect Cyclic Behavior During Simulation

During chart simulation, Stateflow charts use cycle detection algorithms to detect a class of infinite
recursions caused by event broadcasts. To enable cycle detection, open your Stateflow chart. In the
Debug tab, select Diagnostics > Detect Cyclical Behavior. Cyclic behavior checking is selected by
default.
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Stateflow charts also detect undirected local event broadcasts. To control the level of diagnostic
action, open the Model Configuration Parameters dialog box. In the Diagnostics > Stateflow pane,
for the Undirected event broadcasts diagnostic, you can select error, warning, or none. The
default setting is warning. For more information, see “Undirected event broadcasts” (Simulink).

Limitations of Cyclic Behavior Detection

Stateflow cycle detection is limited to cases of recursion due to event broadcasts and does not extend
to other types of cyclic behavior.

For instance, Stateflow cannot detect the infinite cycle in this flow chart. In this example, the default
transition initializes the local data i to 0. The next transition segment increments i. The transition to
the terminating junction is valid only when the condition [i < 0] is true. Because this condition is
never true, an infinite cycle results.

To see additional suggestions for fixing cyclic behavior in flow charts enter:

openExample("stateflow/FixCycleErrorExample")

See Also

More About
• “Detect Modeling Errors During Edit Time” on page 33-24
• “Model Configuration Parameters: Stateflow Diagnostics” (Simulink)
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Avoid Unwanted Recursion in a Chart
Recursion can be useful for controlling substate transitions among parallel states at the same level of
the chart hierarchy. For example, you can send a directed event broadcast from one parallel state to a
sibling parallel state to specify a substate transition. This type of recursive behavior is desirable and
efficient. For details, see “Broadcast Local Events to Synchronize Parallel States” on page 14-23.

However, unwanted recursion can also occur during chart execution. To avoid unwanted recursion, do
not use recursive function calls or undirected local event broadcasts.

Recursive Function Calls
Suppose that you have functions named f, g, and h in a chart. These functions can be any
combination of graphical functions, truth table functions, MATLAB functions, or Simulink functions.

To avoid recursive behavior, do not:

• Have f calling g calling h calling f.
• Have f, g, or h calling itself.

Undirected Local Event Broadcasts
An undirected event broadcast sends a local event to all states in which it is visible. The format of an
undirected event broadcast is

send(event_name)

where event_name is a local event.

To avoid recursive behavior, replace undirected event broadcasts with directed event broadcasts by
using the syntax

send(event_name,state_name)

where event_name is a local event in the chart and state_name is a destination state.

• If the local event broadcast occurs in a state action, ensure that the destination state is not an
ancestor of the source state in the chart hierarchy.

• If the local event broadcast occurs in a transition, ensure that:

• The destination state is not an ancestor of the transition in the chart hierarchy.
• The transition does not connect to the destination state.

For more information, see “Broadcast Local Events to Synchronize Parallel States” on page 14-23.

During simulation, Stateflow charts can detect undirected local event broadcasts. To control the level
of diagnostic action, open the Model Configuration Parameters dialog box. In the Diagnostics >
Stateflow pane, for the Undirected event broadcasts diagnostic, you can select none, warning, or
error. The default setting is warning. For more information, see “Undirected event broadcasts”
(Simulink).

See Also
send
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More About
• “Broadcast Local Events to Synchronize Parallel States” on page 14-23
• “Detect Common Modeling Errors During Chart Simulation” on page 33-37
• “Model Configuration Parameters: Stateflow Diagnostics” (Simulink)
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Monitor Test Points in Stateflow Charts
This example shows you how to specify data or states as test points that you can plot with a floating
scope or log to the MATLAB® base workspace during simulation.

About Test Points in Stateflow Charts

A Stateflow® test point is a signal that you can observe during simulation, for example, by using a
Floating Scope block. You can designate states or local data with these properties as test points:

• Size - scalar, one-dimensional, or two-dimensional
• Type - any data type except ml
• Location - descendant of a Stateflow chart

You can specify individual data or states as test points by setting their TestPoint property via the
Stateflow API, in the Property Inspector, or in the Model Explorer.

You can monitor individual Stateflow test points with a floating scope during model simulation. You
can also log test point values into MATLAB workspace objects.

You can also use active state output to view or log state activity data in Simulink®. For more
information, see “Monitor State Activity Through Active State Data” on page 13-2.

Set Test Points for Stateflow States and Data with the Property Inspector

You can explicitly set individual states, local data, and output data as test points in the Model
Explorer. The following procedure shows how to set individual test points for Stateflow states and
data.

1. Open the model.

In the Stateflow chart, state A and its substate X are entered on the first tic event. State A and
substate X stay active until 10 tic events have occurred, and then state B is entered. On the next
event, state A and substate X are entered and the cycle continues. The data data belongs to substate
X. The entry and during actions for substate X increment data while X is active for 10 tic events.
When state B is entered, data reinitializes to zero, and then the cycle repeats.
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2. Open the Property Inspector. In the Modeling tab, click Property Inspector.

3. Select state A. Then, in the Logging section of the Property Inspector, select Test Point.

4. Repeat this for state X and B.

5. Open the Symbol viewer. In the Modeling tab, click Symbols Pane.

6. Select the data data. Then, in the Logging section of the Property Inspector, select Test Point.

You can also log these test points. For instructions, see “Log Multiple Signals” on page 33-48.

Monitor Data Values and State Self Activity Using a Floating Scope

In this section, you configure a Floating Scope block to monitor a data value and the self activity of a
state.

1. Open the model.

2. Double-click the Floating Scope block.

3. In the Floating Scope window, select Simulation > Signal Selector. The Simulink canvas
changes to selection mode.

4. From the canvas, select the chart. In the Connect pop-up window, select the signals.

5. To exit selection mode, click the X in the upper-right corner of the canvas.

33 Debug and Test Stateflow Charts

33-44



5. Simulate the model.
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When state A.X is active, the signal value is 1. When that state is inactive, the signal value is 0.
Because this value can be very low or high compared to other data, you might want to add a second
Floating Scope block to compare the activity signal with other data.

See Also

More About
• “Configure Signals as Test Points” (Simulink)
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Log Simulation Output for States and Data
When you simulate a Stateflow chart in a Simulink model, you can log values for local, output, and
active state data into a Simulink.SimulationData.Dataset object. After simulation, you can
access this object through the Simulation Data Inspector, the Logic Analyzer, or in the MATLAB
workspace. The workflow for logging data is:

1 Enable signal logging for the chart and choose a logging format. See “Enable Signal Logging” on
page 33-47.

2 Configure states and data for signal logging. See “Configure States and Data for Logging” on
page 33-47.

3 Simulate the chart.
4 Access the logged data. See “Access Signal Logging Data” on page 33-49.

Enable Signal Logging
Signal logging is enabled by default for models and charts. To disable or reenable signal logging:

1 Open the Model Configuration Parameters dialog box.
2 Select Data Import/Export.
3 In the Signals pane, select the Signal logging check box to enable logging for the chart. To

disable logging, clear the check box.
4 (Optional) Specify a custom name for the signal logging object. The default name is logsout.

Using this object, you can access the logging data in a MATLAB workspace variable. For more
information, see “Export Signal Data Using Signal Logging” (Simulink).

5 (Optional) In the Format field, select a signal logging format. Options include:

• Array
• Structure
• Structure with time
• Dataset

The default setting is Dataset. For more information, see “Time, State, and Output Data
Format” (Simulink).

6 Click OK.

Configure States and Data for Logging
You can set logging properties for states, local data, and output data from inside the chart, through
the Stateflow Signal Logging dialog box, or programmatically from the command line.

Log Individual States and Data

Configure logging properties for one state or data object at a time through the Property Inspector, the
Model Explorer, or the properties dialog box for the state or data object. Select the Logging tab and
modify properties as needed. For more information, see “Logging Properties” on page 12-16.

For example, in the sf_semantics_hotel_checkin model:
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1 Open the Hotel chart.
2 Open the Symbols pane. In the Simulation tab, in Prepare, click Symbols Pane.
3 Open the Property Inspector. In the Simulation tab, in Prepare, click Property Inspector.
4 Configure the service local data for logging.

a In the Symbols pane, select service.
b In the Property Inspector, under Logging, select the Log signal data check box.

5 Configure the Dining_area state for logging.

a On the Stateflow Editor, select the Dining_area state.
b In the Simulation tab, in Prepare, select Log Self Activity. Alternatively, in the Property

Inspector,under Logging, select the Log self activity check box.
c By default, the logging name for this state is the hierarchical signal name

Check_in.Checked_in.Executive_suite.Dining_area. To assign a shorter name to
the state, set Logging Name to Custom and enter Dining Room.

Log Multiple Signals

Configure logging properties for multiple states and data objects through the Stateflow Signal
Logging dialog box. Select which chart objects to log from a list of all states, local, and output data.
For more information, see “Logging Properties” on page 12-16.

For example, in the sf_semantics_hotel_checkin model:

1 Open the Hotel chart.
2 To log multiple signals, press and hold shift to select the states for logging. In the Simulation

tab, under Prepare, select Log Self Activity .
3

The logging badge  marks logged signals in the model.

Add an Output Port

You can add an output port to monitor chart activity. From the Stateflow Editor, in the Simulation
tab, click Add Output Port. A new port appears on your Stateflow chart. Connect this port to a
viewer to monitor the chart child activity.

Log Chart Signals by Using the Command-Line API

Configure logging properties for states and data objects programmatically from the command line. To
enable logging for a states or data object, get a handle for the object and set its
LoggingInfo.DataLogging property to 1. For more information on the Stateflow Programmatic
Interface, see “Overview of the Stateflow API”.

For example, in the sf_semantics_hotel_checkin model:

1 Open the Hotel chart.
2 Access the Stateflow.State object that corresponds to the Dining_area state:

diningState = find(sfroot,'-isa','Stateflow.State','Name','Dining_area');

3 Access the Stateflow.Data object that corresponds to the local data service:
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serviceData = find(sfroot,'-isa','Stateflow.Data','Name','service');

4 Enable logging for the Dining_area state and the service data:
diningState.LoggingInfo.DataLogging = true;
serviceData.LoggingInfo.DataLogging = true;

5 Change the logging name of the Dining_area state to the custom name Dining Room:
% Enable custom naming
diningState.LoggingInfo.NameMode = 'Custom';

% Enter the custom name
diningState.LoggingInfo.LoggingName = 'Dining Room';

Access Signal Logging Data
During simulation, Stateflow saves logged data in a Simulink.SimulationData.Dataset signal
logging object.

For example, suppose that you configure the sf_semantics_hotel_checkin model to log the
service local data and the activity of the Dining_area state. After starting the simulation, you
check into the hotel by toggling the first switch and order room service multiple times by toggling the
second switch. After stopping the simulation, you can view the logged data through the Simulation
Data Inspector, Logic Analyzer, or in the MATLAB workspace.

View Logged Data Through the Simulation Data Inspector

When you simulate the model, the Simulation Data Inspector icon is highlighted to indicate that it
has new simulation data.

1
To open the Simulation Data Inspector, in the Simulation tab, click the icon .

2 Inspect and compare the signals logged during simulation. See Simulation Data Inspector
(Simulink).

View Logged Data Through the Logic Analyzer

When you simulate the model, the Logic Analyzer icon is highlighted to indicate that it has new
simulation data. To use the Logic Analyzer, you must have DSP System Toolbox or SoC Blockset.

1
To open the Logic Analyzer, in the Simulation tab, click the icon .

2 View, measure and compare the states logged during simulation. See Logic Analyzer (DSP
System Toolbox).

View Logged Data in the MATLAB Workspace
1 To access the signal logging object, at the MATLAB command prompt, enter:

logsout = out.logsout

logsout = 

Simulink.SimulationData.Dataset 'logsout' with 2 elements

                        Name         BlockPath                        
                        ___________  ________________________________ 
    1  [1x1 State]      Dining Room  sf_semantics_hotel_checkin/Hotel
    2  [1x1 Data ]      service      sf_semantics_hotel_checkin/Hotel
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2 To access logged elements, use the get function. You can access logged elements by name,
index, or block path.

diningLog = get(logsout,'Dining Room')

diningLog = 

  Stateflow.SimulationData.State
  Package: Stateflow.SimulationData

  Properties:
         Name: 'Dining Room'
    BlockPath: [1×1 Simulink.SimulationData.BlockPath]
       Values: [1×1 timeseries]

serviceLog = get(logsout,'service')

serviceLog = 

  Stateflow.SimulationData.Data
  Package: Stateflow.SimulationData

  Properties:
         Name: 'service'
    BlockPath: [1×1 Simulink.SimulationData.BlockPath]
       Values: [1×1 timeseries]

3 To access the logged data and time of each logged element, use the Values.Data and
Values.Time properties. For example:

• Arrange logged data in tabular form by using the table function.

T1 = table(diningLog.Values.Time,diningLog.Values.Data);
T1.Properties.VariableNames = {'Time','Data'}

T1 =

  6×2 table

       Time       Data
    __________    ____

             0     0  
    1.8607e+06     1  
    1.9653e+06     0  
    1.9653e+06     1  
    1.9653e+06     0  
    2.2912e+06     1  

T2 = table(serviceLog.Values.Time,serviceLog.Values.Data);
T2.Properties.VariableNames = {'Time','Data'}

T2 =

  6×2 table

       Time       Data
    __________    ____
    1.7076e+06     0  
    1.8607e+06     1  
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    1.9653e+06     2  
    1.9653e+06     3  
    1.9653e+06     4  
    2.2912e+06     5  

• View logged data in a figure window by using the plot function.

X = serviceLog.Values.Time;
Y = serviceLog.Values.Data;
plot(X,Y,'-o')
xlabel('Time')
ylabel('Data')

• Export logged data to an Excel® spreadsheet by passing an array of logged values to the
xlswrite function:

A = [double(diningLog.Values.Time) double(diningLog.Values.Data)];
xlswrite('dining_log.xls',A);

Log Multidimensional Data
Stateflow logs each update to a multidimensional signal as a single change. For example, updating
two elements of a matrix A separately

A[1][1] = 1;
A[1][2] = 1;

produces two different changes in the logged data. In contrast, updating a matrix A in a single
command

A = 1;

produces a single change in the logged data, even though the command implies A[i][j] = 1 for all
values of i and j.

 Log Simulation Output for States and Data

33-51



Limitations on Logging Data
When simulating models in external mode, logging of Stateflow data is not supported.

If you log state activity or data from a chart with Fast Restart enabled, any run after the first run
duplicates the first logged data points. When you run algorithms that process these data points, you
must account for this duplication.

See Also
Objects
Simulink.SimulationData.Dataset | Stateflow.SimulationData.Data |
Stateflow.SimulationData.State

Functions
plot | table | xlswrite

Tools
Signal Properties

More About
• “Configure a Signal for Logging” (Simulink)
• “Export Signal Data Using Signal Logging” (Simulink)
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Log Data in Library Charts
In Simulink, you can create your own block libraries as a way to reuse the functionality of blocks or
subsystems in one or more models. Similarly, you can reuse a set of Stateflow algorithms by
encapsulating the functionality in a library chart.

As with other Simulink block libraries, you can specialize each instance of chart library blocks in your
model to use different data types, sample times, and other properties. Library instances that inherit
the same properties can reuse generated code.

For more information about Simulink block libraries, see “Custom Libraries” (Simulink).

How Library Log Settings Influence Linked Instances
Chart instances inherit logging properties from the library chart to which they are linked. You can
override logging properties in the instance, but only for signals you select in the library. You cannot
select additional signals to log from the instance.

Override Logging Properties in Chart Instances
To override properties of logged signals in chart instances, use one of the following approaches.

Approach How To Use
Simulink Signal Logging
Selector dialog box

See “Override Logging Properties with the Logging Selector” on page
33-53

Command-line interface See “Override Logging Properties with the Command-Line API” on page
33-54

Override Logging Properties in Atomic Subcharts
The model sf_atomic_sensor_pair simulates a redundant sensor pair as atomic subcharts
Sensor1 and Sensor2 in the chart RedundantSensors. Each atomic subchart contains instances of
the states Fail, FailOnce, and OK from the library chart sf_atomic_sensor_lib.

Override Logging Properties with the Logging Selector

1 Open the example library sf_atomic_sensor_lib.
2 Unlock the library. In the Simulation tab, click Locked Library.
3 In the Simulink Editor, select the Stateflow SingleSensor chart. In the Simulation tab, click

Log States from List.
4 In Stateflow Signal Logging dialog box, set the following logging properties, then click OK.

For Signal: What to Specify:
Fail • Select the Log signal data check box.

• Change Logging name to the custom name LogFail.
• Click Apply.
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For Signal: What to Specify:
FailOnce • Select the Log signal data check box.

• Change Logging name to the custom name LogFailOnce.
• Click Apply.

OK • Select the Log signal data check box.
• Change Logging name to the custom name LogOK.
• Click Apply.

5 Open the model sf_atomic_sensor_pair. This model contains two instances of the library
chart.

6 Open the Model Configuration Parameters dialog box.
7 In the Data Import/Export pane, click Configure Signals to Log to open the Simulink Signal

Logging Selector.
8 In the Model Hierarchy pane, expand RedundantSensors, and click Sensor1 and Sensor2.

Each instance inherits logging properties from the library chart. For example:

9 Now, override some logging properties for Sensor1:

a In the Model Hierarchy pane, select Sensor1.
b Change Logging Mode to Override signals.

The selector clears all DataLogging check boxes for the model.
c Enable logging only for the Fail and FailOnce states in Sensor1:

Select DataLogging for these two signals. Leave DataLogging cleared for the OK signal.
d Append the text Sensor1 to the logging names for Fail and FailOnce:

Double-click the logging names for signals Fail and FailOnce, and rename them
LogFailSensor1 and LogFailOnceSensor1, respectively.

The settings should look like this:

Override Logging Properties with the Command-Line API

1 Open the example library sf_atomic_sensor_lib.
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2 Log the signals Fail, FailOnce, and OK in the SingleSensor chart using these commands:

% Get states in the SingleSensor chart
rt=sfroot;
states = rt.find('-isa', 'Stateflow.State');

% Enable logging for each state
for i = 1: length(states)
   states(i).LoggingInfo.DataLogging = 1;
end

3 Open the model sf_atomic_sensor_pair. This model contains two instances of the library
chart.

4 Create a ModelLoggingInfo object for the model.

This object contains a vector Signals that stores all logged signals.

mi = Simulink.SimulationData.ModelLoggingInfo. ...
createFromModel('sf_atomic_sensor_pair')

The result is:

mi = 

  Simulink.SimulationData.ModelLoggingInfo
  Package: Simulink.SimulationData

  Properties:
                     Model: 'sf_atomic_sensor_pair'
               LoggingMode: 'OverrideSignals'
    LogAsSpecifiedByModels: {}
                   Signals: [1x6 Simulink.SimulationData.SignalLoggingInfo]

The Signals vector contains the signals marked for logging in the library chart:

• Library instances of Fail, FailOnce, and OK states in atomic subchart Sensor1
• Library instances of Fail, FailOnce, and OK states in atomic subchart Sensor2

5 Make sure that LoggingMode equals 'OverrideSignals'.
6 Create a block path to each logged signal whose properties you want to override.

To access signals inside Stateflow charts, use
Simulink.SimulationData.BlockPath(paths, subpath), where subpath represents a
signal inside the chart.

To create block paths for the signals Fail, FailOnce, and OK in the atomic subchart Sensor1 in
the RedundantSensors chart:

failPath = Simulink.SimulationData. ...
BlockPath('sf_atomic_sensor_pair/RedundantSensors/Sensor1','Fail')

failOncePath = Simulink.SimulationData. ...
BlockPath('sf_atomic_sensor_pair/RedundantSensors/Sensor1','FailOnce')

OKPath = Simulink.SimulationData. ...
BlockPath('sf_atomic_sensor_pair/RedundantSensors/Sensor1','OK')

7 Get the index of each logged signal in the Simulink.SimulationData.BlockPath object.

To get the index for the signals Fail, FailOnce, and OK:

failidx = mi.findSignal(failPath);
failOnceidx = mi.findSignal(failOncePath);
OKidx = mi.findSignal(OKPath);
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8 Override some logging properties for the signals in Sensor1:

a Disable logging for signal OK:
mi.Signals(OKidx).LoggingInfo.DataLogging = 0;

b Append the text Sensor1 to the logging names for Fail and FailOnce:

% Enable custom naming
mi.Signals(failidx).LoggingInfo.NameMode = 1;
mi.Signals(failOnceidx).LoggingInfo.NameMode = 1;

% Enter the custom name
mi.Signals(failidx).LoggingInfo.LoggingName = 'LogFailSensor1';
mi.Signals(failOnceidx).LoggingInfo.LoggingName = 'LogFailOnceSensor1';

9 Apply the changes:
set_param(bdroot, 'DataLoggingOverride', mi);

See Also
Simulink.SimulationData.ModelLoggingInfo | Simulink.SimulationData.BlockPath
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Commenting Stateflow Objects in a Chart
In this section...
“Comment Out a Stateflow Object” on page 33-57
“How Commenting Affects the Chart and Model” on page 33-57
“Add Text to a Commented Object” on page 33-59
“Limitations on Commenting Objects” on page 33-59

Comment Out a Stateflow Object
Commenting out a Stateflow object excludes it from simulation. To comment out a Stateflow object,
right-click the object and select Comment Out. Use commenting to:

• Debug a chart by making minor changes between simulation runs.
• Test and verify the effects of objects on simulation results.
• Create incremental changes for rapid, iterative design.

How Commenting Affects the Chart and Model
A commented object is not visible to the rest of the chart and the model. Commented objects in a
chart are excluded from:

• Simulation
• Logging
• Code generation
• Animation
• Debugging
• Active state output

References to commented functions or states result in compile-time errors.

When you explicitly comment out a Stateflow object with Comment Out, the object appears gray
with a badge . The software implicitly comments out some associated objects. Implicitly
commented objects also appear gray, but do not have a badge. For example, if you explicitly comment
out a state or junction, all incoming and outgoing transitions are implicitly commented out. In this
image of sf_car, the state steady_state is explicitly commented. The transitions in and out of
steady_state are implicitly commented.
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Explicitly Commented Stateflow Object Implicit Results
States All incoming and outgoing transitions, and child

objects are implicitly commented out.
Transitions None
Junctions All connected transitions are implicitly commented

out.
Functions The software cannot invoke a commented function

from any chart or model.
Data You cannot explicitly comment out data. If you

comment out the parent object, then the software
cannot reference the data.

Events You cannot explicitly comment out events. If you
comment out the parent object, then the software
cannot reference the event.

To uncomment an object, right-click the commented object and select Uncomment. All implicitly
commented objects are restored as well. Implicitly commented objects cannot be uncommented
directly.
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Add Text to a Commented Object

Add a note to the commented object by clicking the badge . Point to a badge to see the associated
comments. You cannot add notes to implicitly commented objects.

Limitations on Commenting Objects
When you comment out an atomic subchart, the objects inside the chart do not appear implicitly
commented. However, a commenting badge is displayed in the lower-left corner of the chart.
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Explore and Modify Charts

• “Manage Symbols in the Stateflow Editor” on page 34-2
• “Use the Model Explorer with Stateflow Objects” on page 34-10
• “Use the Search and Replace Tool” on page 34-14
• “Visualize Chart Execution with the Activity Profiler” on page 34-20
• “Connect Dashboard Blocks to Stateflow” on page 34-25
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Manage Symbols in the Stateflow Editor
In the Symbols pane, you can view and manage data, events, and messages while working in the
Stateflow Editor. In the Modeling tab, select Symbols Pane.

From the Symbols pane you can:

• Add and delete data, events, and messages.
• Set the object type and scope.
• Change the port number.
• Edit the name of an object and update all instances of the object name in the chart.
• Undo and redo changes in type, name, and port number.
• Detect unused objects.
• Detect and fix unresolved objects.
• Trace between objects in the window and where the objects are used in the chart.
• View and edit object properties in the Property Inspector.

The rows in the Symbols pane display object hierarchy. Expand an object in the window to see data,
events, and messages parented by that object. By default, all the nongraphical objects in a chart are
listed in the window. To view only the objects that are used at the current level of hierarchy and

below, select the  icon. To search for specific symbols, type in the Filter search box .

Add and Modify Data, Events, and Messages
To add a nongraphical object to a Stateflow block, in the Symbols pane:

1 Select one of these icons.

Icon Description
Add data

Add event

Add message

2 In the row for the new object, under TYPE, choose the object type.
3 Edit the name of the object.
4 For input and output objects, under PORT, choose a port number.
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5 To view the object in the Property Inspector, right-click the object and select Inspect.
6 In the Property Inspector, modify the object properties.

After you add objects through the Symbols pane, the objects appear as unused until you reference
them in your Stateflow design.

In the Symbols pane, you can modify the name, type, and port number of Stateflow objects. Edit the
name of objects in the NAME field. When you rename an object, select Shift+Enter to rename all
instances of the object throughout the state machine. To change the type or port number of an object,
click the corresponding field and select from the available options. To delete an object from the state
machine, right-click the object and select Delete.

Detect Unused Data in the Symbols Pane
Symbols that appear in your chart but that you have not added as data, events, or messages are
undefined or unresolved. The Symbols pane indicates unused data, messages, functions, and events

with a yellow warning icon . You can resolve undefined symbols by using the Symbols pane or the
Symbol Wizard.

The following types of unused data are not detected:

• Machine-parented data
• Inputs and outputs of MATLAB functions
• Data of parameter scope in a chart that contains atomic subcharts

For each undefined symbol, based on the symbol usage in the chart, Stateflow infers these properties:

• Size
• Type
• Complexity

To delete unused objects, right-click the object in the Symbols pane and select Delete. By removing
objects that have no effect on simulation, you can reduce the size of your model. In this chart, after
you add data, it first appears as unused. After you reference data in the chart, the warning sign
disappears.

Resolve Symbols Through the Symbols Pane
As you edit your chart, Stateflow detects undefined symbols and marks them in the Symbols pane

with a red error icon . For each undefined symbol, the TYPE column displays the class and scope
inferred from the usage in the chart. You can resolve undefined symbols individually or collectively.
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• To define a symbol with the inferred class and scope, click the error icon and select Fix.
• To define a symbol with a different class or scope, select another combination of class and scope

from the TYPE drop-down list.
• To resolve all of the undefined symbols with their inferred classes and scopes, click the Resolve

undefined symbols button .

Resolve Symbols Through the Symbol Wizard
If your chart contains any undefined symbols when you update the chart, update the model, or
simulate the model, the Symbol Wizard opens and lists the undefined symbols. For each undefined
symbol, the Class and Scope columns display the class and scope inferred from the usage in the
chart. You can accept, modify, or reject each symbol definition that the Symbol Wizard suggests.

• To accept a definition with the inferred class and scope, select the check box in front of the
symbol.

• To modify a definition, select a different class or scope from the Class or Scope drop-down lists.
• To reject a definition, clear the check box in front of the symbol.

After you edit the symbol definitions, add the symbols to the Stateflow hierarchy by clicking OK.
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Detect Symbol Definitions in Custom Code
Detection of symbols defined in custom code depends on the model configuration parameter Import
custom code.

• If you select Import custom code, the Stateflow parser tries to find unresolved chart symbols in
the custom code. If the custom code does not define these symbols, they appear in the Symbol
Wizard.

• If you do not select Import custom code, the Stateflow parser considers unresolved data
symbols in the chart as defined in the custom code. If the custom code does not define these
symbols, simulating and generating code from the model results in an error.

The Import custom code option is not available for charts that use MATLAB as the action language.
For more information, see “Import custom code” (Simulink).

Trace Data, Events, and Messages
Stateflow provides traceability between the state machine and nongraphical symbols. When you
select a symbol in the Symbols pane, Stateflow highlights sections of the chart that access that
symbol. When you select an object in your chart, Stateflow highlights the symbols that the object
uses.

To control when the objects and symbols are highlighted, select the preference button . A drop-
down menu appears.

For Stateflow to highlight symbols in the Symbols pane that an object uses, select Highlight used
symbols. If you want Stateflow to highlight objects in the chart that use an symbol, select Highlight
uses on diagram. With Highlight uses on diagram, you can choose to highlight:

• All uses of the symbol in your chart.
• Objects from where the symbol is read.
• Objects to where the symbol is written.
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For example, open the model sf_tetris2 and double-click the chart TetrisLogic. In the Symbols
pane, when you select constant ARENA_HEIGHT, the states and functions that use ARENA_HEIGHT are
highlighted.

To see the uses of the constant ARENA_HEIGHT, open the function freeze.

You can also select a graphical object such as a state, transition, or function in the chart and view the
symbols that the object uses. For example, in the chart TetrisLogic, expand the symbol MainArea
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in the Symbols pane. If you select the state FreezeShape in the chart, then the local data shape and
the function freeze() are highlighted in the Symbols pane. This highlighting indicates that those
objects are used inside the state FreezeShape.

When in debugging mode, the values of each data are displayed in the VALUE column of the Symbols
pane. Stateflow updates the values periodically when the simulation is running. The value column
highlights changes to data values as the changes occur. When the debugger is stopped at a
breakpoint, you can update the initial value or change the value of a symbols in either the command
prompt or the Symbols pane.

Data or Message Update Initial Value Update During Debugging
Input No No
Output Yes Yes
Parameter No No
Constant Yes No
Data Store Memory No Yes
Local Yes Yes

For bus elements, you can change the value of a symbols in either the command prompt or the
Symbols pane.

Bus Element Update Initial Value Update During Debugging
Input No No
Output No Yes
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Bus Element Update Initial Value Update During Debugging
Parameter No No
Constant No No
Data Store Memory No Yes
Local No Yes

In the Symbols pane multidimensional arrays appear as the data type and size of the array. If the
array does not exceed more than 100 elements, hover over the symbol to view the elements. For
arrays that contain more than 100 elements, view the elements by using the command prompt.

When simulation is paused, hover over messages in the canvas to view payloads in the queue. This is
similar to the hover functionality on the canvas. For other non-scalar objects, the size and data type
appear. To see these values, use the Watch window. See “Inspect and Modify Data and Messages
While Debugging” on page 33-9 and “Track Data in the Watch List” on page 33-11.

Symbols Pane Limitations
You cannot add data, events, or messages the Symbols pane if they are:

• Parented by a state.
• Inside a function.
• Parented by a state machine.

Data and events parented by the state machine are also not visible in the Symbols pane. To add these
types of objects, use the Model Explorer. As a best practice, avoid using machine-parented data.
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• When you modify the code in a MATLAB function, the changes are not updated in the Symbols
pane until after you save the MATLAB function.

• You cannot undo or redo changes to input and output for MATLAB functions.
• You cannot recover deleted data, events, or messages from a state transition table.
• You cannot undo scope changes to data parented by graphical functions, MATLAB functions, and

truth tables.
• You cannot undo renaming an object for truth tables.
• When you delete data for objects contained in a Simulink based state, the object remains in your

Simulink based state and the data symbol is shown as undefined in the Symbols pane.

See Also

More About
• “Add Stateflow Data” on page 12-2
• “Set Data Properties” on page 12-5
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Use the Model Explorer with Stateflow Objects
In this section...
“View Stateflow Objects in the Model Explorer” on page 34-10
“Edit Chart Objects in the Model Explorer” on page 34-11
“Add Data and Events in the Model Explorer” on page 34-11
“Rename Objects in the Model Explorer” on page 34-11
“Set Properties for Chart Objects in the Model Explorer” on page 34-11
“Move and Copy Data and Events in the Model Explorer” on page 34-12
“Change the Port Order of Input and Output Data and Events” on page 34-13
“Delete Data and Events in the Model Explorer” on page 34-13

View Stateflow Objects in the Model Explorer
You can use one of these methods for opening the Model Explorer:

• In the Modeling tab, select Model Explorer.
• Right-click an empty area in the chart and select Explore.

The Model Explorer appears something like this:

The main window has two panes: a Model Hierarchy pane on the left and a Contents pane on the
right. When you open the Model Explorer, the Stateflow object you are editing appears highlighted in
the Model Hierarchy pane and its objects appear in the Contents pane. This example shows how
the Model Explorer appears when opened from the chart.
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The Model Hierarchy pane displays the elements of all loaded Simulink models, which includes
Stateflow charts. A preceding plus (+) character for an object indicates that you can expand the
display of its child objects by double-clicking the entry or by clicking the plus (+). A preceding minus
(-) character for an object indicates that it has no child objects.

Clicking an entry in the Model Hierarchy pane selects that entry and displays its child objects in the
Contents pane. A hypertext link to the currently selected object in the Model Hierarchy pane
appears after the Contents of: label at the top of the Contents pane. Click this link to display that
object in its native editor. In the preceding example, clicking the link sfbus_demo/Chart displays
the contents of the chart in its editor.

Each type of object, whether in the Model Hierarchy or Contents pane, appears with an adjacent
icon. Subcharted objects (states, boxes, or graphical functions) appear altered with shading.

The display of child objects in the Contents pane includes properties for each object, most of which
are directly editable. You can also access the properties dialog box for an object from the Model
Explorer. See “Set Properties for Chart Objects in the Model Explorer” on page 34-11 for more
details.

Edit Chart Objects in the Model Explorer
To edit a chart object that appears in the Model Hierarchy pane of the Model Explorer:

1 Right-click the object.
2 Select Open from the context menu.

The selected object appears highlighted in the chart.

Add Data and Events in the Model Explorer
To add data or events using the Model Explorer, see the following links:

• “Add Data Through the Model Explorer” on page 12-3
• “Add Events Through the Model Explorer” on page 14-3

Rename Objects in the Model Explorer
To rename a chart object in the Model Explorer:

1 Right-click the object row in the Contents pane of the Model Explorer and select Rename.

The name of the selected object appears in a text edit box.
2 Change the name of the object and click outside the edit box.

Set Properties for Chart Objects in the Model Explorer
To change the property of an object in the Contents pane of the Model Explorer:

1 In the Contents pane, click in the row of the displayed object.
2 Click an individual entry for a property column in the highlighted row.
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• For text properties, such as the Name property, a text editing field with the current text value
overlays the displayed value. Edit the field and press the Enter key or click anywhere outside
the edit field to apply the changes.

• For properties with enumerated entries, such as the Scope, Trigger, or Type properties, select
from a drop-down combo box that overlays the displayed value.

• For Boolean properties (properties that are set on or off), select or clear the box that appears
in place of the displayed value.

To set all the properties for an object displayed in the Model Hierarchy or Contents pane of the
Model Explorer:

1 Right-click the object and select Properties.

The properties dialog box for the object appears.
2 Edit the appropriate properties and click Apply or OK.

To display the properties dialog box dynamically for the selected object in the Model Hierarchy or
Contents pane of the Model Explorer:

1 Select View > Show Dialog Pane.

The properties dialog box for the selected object appears in the far right pane of the Model
Explorer.

Move and Copy Data and Events in the Model Explorer

Note If you move an object to a level in the hierarchy that does not support the Scope property for
that object, the Scope automatically changes to Local.

To move data and event objects to another parent:

1 Select the data or event to move in the Contents pane of the Model Explorer.

You can select a contiguous block of items by highlighting the first (or last) item in the block and
then using Shift + click for highlighting the last (or first) item.

2 Click and drag the highlighted objects from the Contents pane to a new location in the Model
Hierarchy pane to change its parent.

A shadow copy of the selected objects accompanies the mouse cursor during dragging. If no
parent is chosen or the parent chosen is the current parent, the mouse cursor changes to an X
enclosed in a circle, indicating an invalid choice.

To cut or copy the selected data or event:

1 Select the event or data to cut or copy in the Contents pane of the Model Explorer.
2 In the Model Explorer, select Edit > Cut or Edit > Copy.

If you select Cut, the selected items are deleted and then copied to the clipboard for copying
elsewhere. If you select Copy, the selected items are left unchanged.
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You can also right-click a single selection and select Cut or Copy from the context menu. The
Model Explorer also uses the keyboard equivalents of Ctrl+X (Cut) and Ctrl+C (Copy) on a
computer running the UNIX® or Windows operating system.

3 Select a new parent object in the Model Hierarchy pane of the Model Explorer.
4 Select Edit > Paste. The cut items appear in the Contents pane of the Model Explorer.

You can also paste the cut items by right-clicking an empty part of the Contents pane and
selecting Paste from the context menu. The Model Explorer also uses the keyboard equivalent of
Ctrl+V (Paste) on a computer running the UNIX or Windows operating system.

Change the Port Order of Input and Output Data and Events
Input data, output data, input events, and output events each have numerical sequences of port index
numbers. You can change the order of indexing for event or data objects with a scope of Input or
Output in the Contents pane of the Model Explorer as follows:

1 Select one of the input or output data or event objects.
2 Click the Port property for the object.
3 Enter a new value for the Port property for the object.

The remaining objects in the affected sequence are automatically assigned a new value for their
Port property.

Delete Data and Events in the Model Explorer
Delete data and event objects in the Contents pane of the Model Explorer as follows:

1 Select the object.
2 Press the Delete key.

You can also select Edit > Cut or Ctrl+X from the keyboard to delete an object.
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Use the Search and Replace Tool
To open the Search & Replace dialog box:

1 Open a chart.
2 In the Modeling tab, select Find > Find & Replace in Chart.

Search for
In the Search for field, enter search pattern text. You can select the interpretation of the search
pattern with the Match case check box and the Match options field, which is unlabeled and just to
the right of the Search in field.

Match case
By selecting the Match case option, you enable case-sensitive searching. In this case, the Search &
Replace tool finds only text matching the search pattern exactly.

By clearing the Match case option, you enable case-insensitive searching. In this case, search
pattern characters entered in lower- or uppercase find matching text with the same sequence of base
characters in lower- or uppercase. For example, the search entry"AnDrEw" finds the matching text
"andrew" or "Andrew" or "ANDREW".
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Replace with
Specify the text to replace the text found when you select any of the Replace buttons.

Button Description
Replace When you select the Replace button, the current instance of text

matching the text in the Search for field is replaced by the text you
entered in the Replace with field. The Search & Replace tool then
searches for the next occurrence of the Search for text.

Replace all When you select the Replace all button, all instances of text matching
the Search for field are replaced by the text entered in the Replace
with field. Replacement starts at the point of invocation to the end of
the current Stateflow chart. If you initially skip through some search
matches with the Search button, these matches are also skipped when
you select the Replace all button.

Replace all in this object When you select the Replace all in this object button, all instances of
text matching the Search for field are replaced by text you entered in
the Replace with field everywhere in the current Stateflow object
regardless of previous searches.

Preserve case
If you choose the Preserve case option, matching text is replaced based on one of these conditions:

Condition Description
Matching text has only
lowercase characters

Matching text is replaced entirely with the lowercase equivalent of all
replacement characters. For example, if the replacement text is
"ANDREW", the matching text "bill" is replaced by "andrew".

Matching text has only
uppercase characters

Matching text is replaced entirely with the uppercase equivalent of all
replacement characters. For example, if the replacement text is
"Andrew", the matching text "BILL" is replaced by "ANDREW".

Matching text has
uppercase characters in the
first character position of
each word

Matching text is replaced entirely with the case equivalent of all
replacement characters. For example, if the replacement text is
"andrew johnson", the matching text "Bill Monroe" is replaced
by "Andrew Johnson".

Matching text has an
uppercase character in the
first character position of a
sentence with all other
sentence characters in
lowercase

Matching text is replaced in like manner, with the first character of the
sentence given an uppercase equivalent and all other sentence
characters set to lowercase. For example, if the replacement text is
"andrew is tall.", the matching text "Bill is tall." is
replaced by "Andrew is tall.".

If the matching text does not follow any of these patterns, then the text and case replacement match
the user input.
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Search in
By default, the Search & Replace tool searches for and replaces text only within the current Stateflow
chart that you are editing in the Stateflow Editor. You can select to search the machine owning the
current Stateflow chart or any other loaded machine or chart by accessing this selection box.

You can select a whole machine or individual chart for searching in the Search in field. By default,
the current chart in which you opened the Search & Replace tool is selected.

To select a machine, follow these steps:

1 Select the down arrow of the Search in field.

A list of the currently loaded machines appears with the current machine expanded to reveal its
Stateflow charts.

2 Select a machine.

To select a Stateflow chart for searching, follow these steps:

1 Select the down arrow of the Search in field again.

This list contains the previously selected machine expanded to reveal its Stateflow charts.
2 Select a chart from the expanded machine.

Match options
This field is unlabeled and just to the right of the Search in field. You can modify the meaning of your
search text by entering one of the selectable search options:

Match Option Description
Match whole word Select this option to specify that the search pattern in the Search for

field is a whole word expression used in a Stateflow chart with
beginning and end delimiters consisting of a blank space or a
character that is not alphanumeric and not an underscore character
(_).

Contains word Select this option to specify that the search pattern text is a whole
word expression used in a Stateflow chart with no specific beginning
and end delimiters. In other words, find the specified text in any
setting.
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Match Option Description
Regular expression Set the Match options field to Regular expression to search for text

that varies from character to character within defined limits.

A regular expression is text composed of letters, numbers, and special
symbols that defines one or more candidates. Some characters have
special meaning when used in a regular expression, while other
characters are interpreted as themselves. Any other character
appearing in a regular expression is ordinary, unless a back slash (\)
character precedes it.

If the Match options field is set to Regular expression in the
previous example of a state named throt_fail, searching for
"fail_" matches the "fail_" text that is part of the second line,
character for character. Searching with the regular expression "\w*_"
also finds the text "fail_". This search uses the regular expression
shorthand "\w" that represents any part-of-word character, an asterisk
(*) that represents any number of any characters, and an underscore
(_) that represents itself.

Object types
Limit your search by deselecting one or more object types.

Field types
Under the Search in field are the selection boxes for Field types.You can limit your search by
clearing one or more field types.

Names

Machines, charts, data, and events have valid Name fields. States have a Name defined as the top
line of their labels. You can search and replace text belonging to the Name field of a state in this
sense. However, if the Search & Replace tool finds matching text in a state's Name field, the rest of
the label is subject to later searches for the specified text whether or not the label is chosen as a
search target.

The Name field of machines and charts is an invalid target for the Search & Replace tool. Use the
Simulink model window to change the names of machines and charts.

Labels

States and transitions have labels that you can use the search tool to find.

Descriptions

All objects have searchable “Description” on page 28-8 fields.

Document links

All objects have searchable “Document Link” on page 28-9 fields.
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Viewing Search Results
Click Search to begin your search. If an object match is made, its text fields appear in the Viewer
pane in the middle of the Search & Replace dialog box. If the object is graphical (state, transition,
junction, chart), the matching object appears highlighted in a Portal pane below the Viewer pane.
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View Area

The view area of the Search & Replace dialog box displays matching text and its containing object. In
the previous example, taken from the sf_pool model, a search for the word "friction" finds the
Description field for the state TotalDynamics.

To display the highlighted object in the Stateflow Editor, double-click anywhere in the Portal pane.

Search Order

If you specify an entire machine as your search scope in the Search in field, the Search & Replace
tool starts searching at the beginning of the first chart of the model, regardless of the Stateflow chart
that appears in the Stateflow Editor when you begin your search. After searching the first chart, the
Search & Replace tool continues searching each chart in model order until all charts for the model
have been searched.

If you specify a Stateflow chart as your search scope, the Search & Replace tool begins searching at
the beginning of the chart. The Search & Replace tool continues searching the chart until all the
chart objects have been searched.

The search order when searching an individual chart for matching text is equivalent to a depth-first
search of the Model Explorer. Starting at the highest level of the chart, the Model Explorer hierarchy
is searched downward from parent to child until an object with no child is encountered. At this point,
the search begins again at an unsearched sibling is found and the process repeats.

See Also

More About
• “Stateflow Editor Operations” on page 4-20
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Visualize Chart Execution with the Activity Profiler
The Activity Profiler allows you to examine the behavior of your Stateflow chart. When you enable the
Activity Profiler, after simulation, your Stateflow chart is highlighted to show which states were
entered, transitions were taken, or functions were executed during the time that the simulation is
running, also known as the simulation time. Additionally, you can see the duration of time that was
spent in each state. To adjust the simulation time, in the Simulation tab, change the Stop time
number.

With the Activity Profiler, you can quickly

1 Assess the behavior of your chart.
2 View states and transitions of your chart that are never entered or taken.

The Activity Profiler is not supported in referenced models or with fast restart mode.

Debug with the Activity Profiler
You can use the Activity Profiler as a complement to the Stateflow debugger. With the Activity
Profiler, you can immediately see areas in your chart that were never reached or were constantly
active, which can result in a faster debugging process. Additionally, you can view atomic states to see
how often they are entered and how often their corresponding transitions are taken. With this
information, it is easier to identify transition logic issues and solve problem areas in your chart such
as:

• Transitions that are taken too often and serve no purpose
• Charts that are activated too often and slow down performance, such as an unexpected loop
• A bottleneck, such as a controller state that has multiple incoming transitions

After finding the specific problem areas, you can then set breakpoints to debug your chart. Without
the Activity Profiler, you would have to set many breakpoints within your chart to pinpoint the
problem area.

Enable the Activity Profiler
To enable the Activity Profiler, in the Stateflow editor, in the Debug tab, click Activity Profiler. On
the bottom of the Stateflow Editor, the Activity Profiler pane appears below your chart.

To show how each state, transition, and function is executed, click Run. In the Stateflow editor, your
chart is highlighted to show how many times a state is entered, a transition is taken, or a function is
executed. The Activity Profiler pane shows four columns: State, Duration, Duration Percentage, and
Number of Entries.
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The Activity Profiler pane remains empty any time that the simulation is running, or paused for
debugging. Once the simulation is complete the Activity Profiler pane populates and the canvas
highlighting appears.

The State column lists the states in your Stateflow chart, along with their child states. The Duration
column displays the duration of time (in seconds) spent in each state during the simulation. The
Duration Percentage column shows a bar that represents what percentage of the runtime was
spent in each state in relation to the parent chart. The Number of Entries column is the number of
times each state was entered during simulation time.

You can also hover over a state or transition to see this data.

After running the simulation, you can toggle the highlighting and the Activity Profiler table off and on.
In the Debug tab, open the Activity Profiler drop-down.
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To turn off the canvas highlighting, clear Canvas Highlight. To turn off the Activity Profiler table,
clear Table View.

Activity Profiler Preferences
The Activity Profiler is customizable. You have the option to highlight specific group of objects in the
chart or change the color scheme. Specifying the highlighting allows you to focus on only one area.
Changing the color scheme can help you visualize the data in different ways.

Highlighting Options

To change the highlighting options, in the Activity Profiler table, select the Activity Profiler

preferences drop-down menu . Under Canvas Highlight Options, you can choose to enable
highlighting for:

• States
• Transitions
• Functions

This is a global setting. If you change this setting in one model, all other models will only appear this
way.

Color Scheme Options

The Stateflow Activity Profiler allows you to configure how to view the Activity Profiler through
different color schemes. To change the color scheme, select the Activity Profiler preferences drop-

down menu . Under Color Scheme, select a color. You can choose from the following color
schemes:

• Blue
• Red
• Green
• HotCold
• Autumn
• Cool
• Jet
• Parula

The table at the top of the Activity Profiler table shows how the colors appear on the map.
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This legend for the Blue scheme shows how the color becomes gradually darker as the state is
entered more often.

HotCold is a highlighting scheme that is used to visualize the top 80% and low 20% of objects in a
Stateflow chart.

The legend for HotCold shows how states or transitions that are entered: 0% to 20% relative to the
parent chart are highlighted blue. States that are entered 80% to 100% are highlighted in red.
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In this chart, you can see that the states upshifting, downshifting, and first were active for 20% or
less of the total runtime. The states gear_state, selection_state, and steady_state were all active
for 80% or more of the runtime. The states second and third were active between 20 and 80% of the
runtime. The state fourth was not entered at all and remains not highlighted.

Explore
To view only subcharts and their child states, in the Activity Profiler table, right-click on the subchart
name and select Explore. The Activity Profiler table adjusts to only include data about that subchart
and its child states. Once you select the subchart as the current scope for the Activity Profiler pane,
the duration percentage is in relation to the selected subchart.

See Also

More About
• “Manage Symbols in the Stateflow Editor” on page 34-2
• “Detect Common Modeling Errors During Chart Simulation” on page 33-37
• “Set Data Properties” on page 12-5
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Connect Dashboard Blocks to Stateflow
Dashboard blocks help you to control and visualize your Stateflow chart during simulation and while
your simulation is paused. Dashboard blocks can be used to bind to Stateflow in order to:

• Monitor self, child, and leaf activity of a state.
• Monitor local and output data within states, transitions, or graphical functions.

To connect a Dashboard block to data or to a Stateflow state, point to the Dashboard block. Above the
block, a connect button appears.

Click the Connect button, and navigate to the Stateflow object you want to connect to.

Note The Double-click to connect feature is not supported in Stateflow.

Click a state or transition, and choose which activity or data you want to connect.

Dashboard block connection is not supported for MATLAB Functions, Simulink Functions, or truth
tables. For more information on Dashboard blocks, see “Control Simulations with Interactive
Displays” (Simulink).
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Monitor a Boiler with Dashboard Blocks
In this Stateflow chart, Dashboard blocks are used to control the temperature setpoint for a boiler,
visualize when the boiler is on or off and what mode it is operating in.

To open the model, in the command prompt type:

openExample('stateflow/DashboardBoilerExample')
sfDashboardBoiler

Dashboard blocks are also used to visualize the temperature output by the boiler, which should match
the temperature setpoint.

When you simulate the model, the LED light flashes to show if the boiler is off or on. A red light
indicates that the boiler is off, while a green light indicates that the boiler is on. The Boiler Activity -
Hight/Normal/Off block shows you if the boiler is operating in high or normal mode. When the
boiler is not active, this block displays OFF.
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See Also

More About
• “Tune and Visualize Your Model with Dashboard Blocks” (Simulink)
• “Decide How to Visualize Simulation Data” (Simulink)
• “Model Battery Management with Custom Code” on page 31-19
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Standalone Stateflow Charts for
Execution in MATLAB

• “Create Stateflow Charts for Execution as MATLAB Objects” on page 35-2
• “Execute and Unit Test Stateflow Chart Objects” on page 35-8
• “Debug a Standalone Stateflow Chart” on page 35-13
• “Execute Stateflow Chart Objects Through Scripts and Models” on page 35-18
• “Design Human-Machine Interface Logic by Using Stateflow Charts” on page 35-24
• “Model a Communications Protocol by Using Chart Objects” on page 35-28
• “Implement a Financial Strategy by Using Stateflow” on page 35-32
• “Model a Fitness App by Using Standalone Charts” on page 35-35
• “Automate Control of Intelligent Vehicles by Using Stateflow Charts” on page 35-40
• “Model Bluetooth Low Energy Link Layer Using Stateflow” on page 35-42
• “Create an App for Analog Triggered Data Acquisition by Using Stateflow Charts” on page 35-45
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Create Stateflow Charts for Execution as MATLAB Objects
To combine the advantages of state machine programming with the full functionality of MATLAB,
create a standalone Stateflow chart outside of a Simulink model. Save the standalone chart with the
extension .sfx and execute it as a MATLAB object. Refine your design by using chart animation and
graphical debugging tools.

With standalone charts, you can create MATLAB applications such as:

• MATLAB App Designer user interfaces that use mode logic to manage the behavior of widgets. See
“Design Human-Machine Interface Logic by Using Stateflow Charts” on page 35-24.

• Communication protocols and data stream processing applications that use sequential logic. See
“Model a Communications Protocol by Using Chart Objects” on page 35-28.

• Data Acquisition Toolbox™ or Instrument Control Toolbox™ applications that use timer-based
logic to monitor and control external tasks. See “Implement a Financial Strategy by Using
Stateflow” on page 35-32.

These applications can be shared and executed without requiring a Stateflow license. For more
information, see “Share Standalone Charts” on page 35-4.

Construct a Standalone Chart
To construct a standalone Stateflow chart, open the Stateflow Editor by using the edit function. For
example, at the MATLAB Command Window, enter:

edit chart.sfx

If the file chart.sfx does not exist, the Stateflow Editor opens an empty chart with the name
chart. Otherwise, the editor opens the chart defined by the sfx file.

In the Stateflow Editor, create a standalone chart by combining states, transitions, data, and other
elements. For more information, see “Construct and Run a Stateflow Chart”.

After you save the standalone chart, the help function displays information about executing it in
MATLAB:

help chart.sfx

To close the standalone chart from the MATLAB Command Window, use the sfclose function:

sfclose chart

Create a Stateflow Chart Object
To execute a standalone chart in MATLAB, first create a Stateflow chart object. Use the name of the
sfx file for the standalone chart as a function. Specify the initial values of data as name-value pairs.
For example, suppose that you defined a standalone chart with data objects called data1 and data2.
Then this command creates the chart object chartObject, initializes data1 and data2, and
executes its default transition:

chartObject = chart('data1',value1,'data2',value2)

To display chart information, such as the syntax for execution, the values of the chart data, and the
list of active states, use the disp function:
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disp(chartObject)

Execute a Standalone Chart
After you define a Stateflow chart object, you can execute the standalone chart by calling the step
function (with data values, if necessary):

step(chartObject,'data1',value1,'data2',value2)

Alternatively, you can call one of the input event functions:

event_name(chartObject,'data1',value1,'data2',value2)

In either case, the values are assigned to local data before the chart executes.

If your chart has graphical or MATLAB functions, you can call them directly in the MATLAB Command
Window. Calling a chart function does not execute the standalone chart.

function_name(chartObject,u1,u2)

Note If you use nargin in a graphical or MATLAB function in your chart, nargin counts the chart
object as one of the input arguments. The value of nargin is the same whether you call the function
from the chart or from the MATLAB Command Window.

You can execute a standalone chart without opening the Stateflow Editor. If the chart is open, then
the Stateflow Editor highlights active states and transitions through chart animation.

For the purposes of debugging and unit testing, you can execute a standalone chart directly from the
Stateflow Editor. During execution, you enter data values and broadcast events from the user
interface. For more information, see “Execute and Unit Test Stateflow Chart Objects” on page 35-8.

You can execute a standalone chart from a MATLAB script, a Simulink model, or an App Designer
user interface. For more information, see:

• “Execute Stateflow Chart Objects Through Scripts and Models” on page 35-18
• “Design Human-Machine Interface Logic by Using Stateflow Charts” on page 35-24

Stop Chart Execution
To stop executing a chart, destroy the chart object by calling the delete function:

delete(chartObject)

After the chart object is deleted, any handles to the chart object remain in the workspace, but
become invalid. To remove the invalid handle from the workspace, use the command clear:

clear chartObject

If you clear a valid chart object handle and there are other handles to the same chart object, the
chart object is not destroyed. For example, when you are executing a chart, the Stateflow Editor
contains internal handles to the chart object. Clearing the chart object handle from the workspace
does not destroy the chart object or remove the chart animation highlighting in the editor. To reset
the animation highlighting, right-click the chart canvas and select Remove Highlighting.
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Share Standalone Charts
You can share standalone charts with collaborators who do not have a Stateflow license.

If your collaborators have the same or a later version of MATLAB than you have, they can execute
your standalone charts as MATLAB objects without opening the Stateflow Editor. Chart animation and
debugging are not supported. Run-time error messages do not link to the state or transition in the
chart where the error occurs.

Note To run standalone charts that you saved in R2019a or R2019b, your collaborators must have
the same version of MATLAB.

If your collaborators have an earlier version of MATLAB, export a standalone chart to a format that
they can use. You can only export to R2019a and later releases. To complete the export process, you
need access to the versions of Stateflow from which and to which you are exporting.

1 Using the later version of Stateflow, open the standalone chart.
2 On the State Chart tab, select Save > Previous Version.
3 In the Export to Previous Version dialog box, specify a file name for the exported chart.
4 From the Save as type list, select the earlier version to which to export the chart.
5 Click Save.
6 Using the earlier version of Stateflow, open and resave the exported chart.

To export a chart from the MATLAB Command Window, call the Stateflow function
exportToVersion. For more information, see “Export Chart to an Earlier Version of MATLAB”.

Note Attempting to execute an exported chart before resaving it will result in an error.

Properties and Functions of Stateflow Chart Objects
A Stateflow chart object encapsulates data and operations in a single structure by providing:

• Private properties that contain the internal state variables for the standalone chart.
• A step function that calls the various operations implementing the chart semantics.

A chart object can have other properties and functions that correspond to the various elements
present in the chart.

Standalone Chart Elements Chart Object Elements
Local and constant data Public properties
Input events Functions that execute the chart
Graphical and MATLAB functions Functions that you can call from the MATLAB

Command Window

Chart Object Configuration Options

When you create a chart object, you can specify chart behavior by including these configuration
options as name-value pairs.
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Configuration
Option

Description Example

-
animationDelay

Specify the delay that the chart
animation uses to highlight each
transition segment. The default value is
0.01 seconds. To produce a chart with
no animation delays, set to zero.

Create a chart object that has slow
animation by specifying one-second
delays.

chartObject = chart('-animationDelay',1)

-
enableAnimatio
n

Enable chart animation and debugging
instrumentation. The default value is
true.

Create a chart object that has
animation and debugging
instrumentation disabled.

chartObject = chart('-enableAnimation',false)

-
eventQueueSize

Specify the size of the queue used for
events and temporal logic operations.
The default value is 20. To disable the
queuing of events, set to zero. For more
information, see “Events in Standalone
Charts” on page 3-56.

Create a chart object that ignores all
events without warning if they occur
when the chart is processing another
operation.

chartObject = chart('-eventQueueSize',0)

-
executeInitSte
p

Enable the initial execution of default
transitions. The default value is true.

Create a chart object but do not
execute the default transition.

chartObject = chart('-executeInitStep',false)

-
warningOnUnini
tializedData

Enable the warning about empty chart
data after initializing the chart object.
The default value is true.

Eliminate the warning when creating a
chart object.

chartObject = chart('-warningOnUninitializedData',false)

Initialization of Chart Data

In the Stateflow Editor, you can use the Symbols pane to specify initial values for chart data. When
you create a chart object, chart data is initialized in alphabetical order according to its scope.
Constant data is initialized first. Local data is initialized last.

If you use an expression to specify an initial value, then the chart attempts to resolve the expression
by:

• Using the values of other data in the chart.
• Calling functions on the search path.

For example, suppose that you specify an initial value for the local data x by using the expression y.
Then:

• If the chart has a constant called y, y is initialized before x. The local data x is assigned the same
initial value as y.

• If the chart has a local data called y, x is initialized before y. The local data x is assigned to an
empty array. If the configuration option -warningOnUninitializedData is set to true, a
warning occurs.

• If the chart has no data named y, x is initialized by calling the function y. If the file y.m is not on
the search path, this error occurs:

Undefined function or variable 'y'.
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Stateflow does not search the MATLAB workspace to resolve initial values, so this error occurs even if
there is a variable called y in the MATLAB workspace.

Capabilities and Limitations
Supported Features

• Classic chart semantics with MATLAB as the action language. You can use the full functionality of
MATLAB, including those functions that are restricted for code generation in Simulink. See
“Execute Stateflow Chart Objects Through Scripts and Models” on page 35-18.

Note In standalone Stateflow charts, the operating system command symbol ! is not supported.
To execute operating system commands, use the function system.

• Exclusive (OR) and Parallel (AND) state decomposition with hierarchy. See “State Decomposition”
on page 2-19 and “State Hierarchy” on page 2-17.

• Flow charts, graphical functions, and MATLAB functions. See “Reusable Components in Charts”.
• Conversion of MATLAB code to graphical functions by using the Pattern Wizard. See “Convert

MATLAB Code into Stateflow Flow Charts” on page 5-18.
• Chart local and constant data without restriction to type. See “Execute and Unit Test Stateflow

Chart Objects” on page 35-8.
• Input events. See “Design Human-Machine Interface Logic by Using Stateflow Charts” on page

35-24.
• Operators hasChanged, hasChangedFrom, and hasChangedTo that detect changes in the values

of local data.

Note Standalone Stateflow charts do not support change detection on an element of a matrix or a
field in a structure.

• Temporal logic operators:

• after, at, and every operate on the number of input events, chart invocations (tick), and
absolute time (sec). Use these operators in state on actions and as transition triggers.

• count operates on the number of chart invocations (tick).
• temporalCount operates on absolute time (sec, msec, and usec).
• elapsed operates on absolute time (sec).

Standalone charts define absolute-time temporal logic in terms of wall-clock time, which is limited
to 1 millisecond precision.

• Function getActiveStates to access the states that are active during execution of the chart. To
store the active states as a cell array, enter:

states = getActiveStates(chartObject)

• Stateflow function exportAsClass that exports the standalone chart as the equivalent MATLAB
class. Use this function to debug run-time errors that are otherwise difficult to diagnose. For
example, suppose that you encounter an error while executing a Stateflow chart that controls a
MATLAB application. If you export the chart as a MATLAB class file, you can replace the chart
with the class in your application and diagnose the error by using the MATLAB debugger. To
export the chart chart.sfx as a class file chart.m, enter:
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Stateflow.exportAsClass('chart.sfx')

When you execute the MATLAB class, the Stateflow Editor does not animate the original chart.

Limitations

Content specific to Simulink:

• Sample time and continuous-time semantics.
• C action language.
• Simulink functions and Simulink subsystems as states.
• Input, output, and parameter data.
• Data store memory data.
• Output and local events.
• Input, output, and local messages.

Other limitations:

• No Mealy or Moore semantics.
• No State Transition Tables.
• No Truth Table functions.
• No state-parented local data or functions.
• No transition actions (actions that execute after the source state for the transition is exited but

before the destination state is entered).

See Also
disp | edit | exportAsClass | exportToVersion | help | sfclose

More About
• “Execute and Unit Test Stateflow Chart Objects” on page 35-8
• “Execute Stateflow Chart Objects Through Scripts and Models” on page 35-18
• “Design Human-Machine Interface Logic by Using Stateflow Charts” on page 35-24
• “Implement a Financial Strategy by Using Stateflow” on page 35-32
• “Model a Communications Protocol by Using Chart Objects” on page 35-28
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Execute and Unit Test Stateflow Chart Objects
A standalone Stateflow chart is a MATLAB class that defines the behavior of a finite state machine.
Standalone charts implement classic chart semantics with MATLAB as the action language. You can
program the chart by using the full functionality of MATLAB, including those functions that are
restricted for code generation in Simulink. For more information, see “Create Stateflow Charts for
Execution as MATLAB Objects” on page 35-2.

Example of a Standalone Stateflow Chart
The file sf_chart.sfx contains the standalone Stateflow chart sf_chart. The chart has local data
u, x, and y.

This example shows how to execute this chart from the Stateflow Editor and in the MATLAB
Command Window.

Execute a Standalone Chart from the Stateflow Editor
To unit test and debug a standalone chart, you can execute the chart directly from the Stateflow
Editor. During execution, you enter data values and broadcast events from the user interface.

1 Open the chart in the Stateflow Editor:

edit sf_chart.sfx
2

In the Symbols pane, enter a value of u = 1 and click Run . The chart executes its default
transition and:

• Initializes x to the value of 0.
• Makes state A the active state.
• Assigns y to the value of 1.
• Increases the value of x to 1.

The chart animation highlights the active state A. The Symbols pane displays the values u = 1, x
= 1, and y = 1. The chart maintains its current state and local data until the next execution
command.
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3
Click Step . Because the value of u does not satisfy the condition [u<0] to transition out of
state A, this state remains active and the values of x and y increase to 2. The Symbols pane now
displays the values u = 1, x = 2, and y = 2.

4
In the Symbols pane, enter a value of u = −1 and click Step . The negative data value
triggers the transition to state B. The Symbols pane displays the values u = −1, x = 1, and y = 3.

5 You can modify the value of any chart data in the Symbols pane. For example, enter a value of x
= 3. The chart will use this data value in the next time execution step.

6
Enter a value of u = 2 and click Step . The chart transitions back to state A. The Symbols
pane displays the values u = 2, x = 4, and y = 5.

7
To stop the chart animation, click Stop .

To interrupt the execution and step through each action in the chart, add breakpoints before you
execute the chart. For more information, see “Debug a Standalone Stateflow Chart” on page 35-13.

Execute a Standalone Chart in MATLAB
You can execute a standalone chart in MATLAB without opening the Stateflow Editor. If the chart is
open, then the editor highlights active states and transitions through chart animation.

1 Open the chart in the Stateflow Editor. In the MATLAB Command Window, enter:

edit sf_chart.sfx
2 Create the Stateflow chart object by using the name of the sfx file for the standalone chart as a

function. Specify the initial value for the data u as a name-value pair.

s = sf_chart('u',1)
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Stateflow Chart

   Execution Function
    y = step(s)

   Local Data
      u         : 1
      x         : 1
      y         : 1
   Active States: {'A'}

This command creates the chart object s, executes the default transition, and initializes the
values of x and y. The Stateflow Editor animates the chart and highlights the active state A.

3 To execute the chart, call the step function. For example, suppose that you call the step
function with a value of u = 1:

step(s,'u',1)

disp(s)

Stateflow Chart

   Execution Function
    y = step(s)

   Local Data
      u         : 1
      x         : 2
      y         : 2
   Active States: {'A'}

Because the value of u does not satisfy the condition [u<0] to transition out of state A, this state
remains active and the values of x and y increase to 2.

4 Execute the chart again, this time with a value of u = −1:

step(s,'u',-1)

disp(s)

Stateflow Chart

   Execution Function
    y = step(s)
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   Local Data
      u         : -1
      x         : 1
      y         : 3
   Active States: {'B'}

The negative data value triggers the transition to state B. The value of x decreases to 1 and the
value of y increases to 3.

5 To access the value of any chart data, use dot notation. For example, you can assign a value of 3
to the local data x by entering:

s.x = 3

Stateflow Chart

   Execution Function
    y = step(s)

   Local Data
      u         : -1
      x         : 3
      y         : 3
   Active States: {'B'}

The standalone chart will use this data value in the next time execution step.
6 Execute the chart with a value of u = 2:

step(s,'u',2)

disp(s)

Stateflow Chart

   Execution Function

    y = step(s)

   Local Data
      u         : 2
      x         : 4
      y         : 5
   Active States: {'A'}

The chart transitions back to state A and modifies the values of x and y.
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7 To stop the chart animation, delete the Stateflow chart object s:

delete(s)

Execute Multiple Chart Objects
You can execute multiple chart objects defined by the same standalone chart. Concurrent chart
objects maintain their internal state independently, but remain associated to the same chart in the
editor. The chart animation reflects the state of the chart object most recently executed. Executing
multiple chart objects while the Stateflow Editor is open can produce confusing results and is not
recommended.

See Also
disp | edit | delete

More About
• “Create Stateflow Charts for Execution as MATLAB Objects” on page 35-2
• “Debug a Standalone Stateflow Chart” on page 35-13
• “Execute Stateflow Chart Objects Through Scripts and Models” on page 35-18
• “Design Human-Machine Interface Logic by Using Stateflow Charts” on page 35-24
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Debug a Standalone Stateflow Chart
A standalone Stateflow chart is a MATLAB class that defines the behavior of a finite state machine.
Standalone charts implement classic chart semantics with MATLAB as the action language. You can
program the chart by using the full functionality of MATLAB, including those functions that are
restricted for code generation in Simulink. For more information, see “Create Stateflow Charts for
Execution as MATLAB Objects” on page 35-2.

To enable debugging, set a breakpoint in the standalone chart or in a MATLAB script that executes
the chart. Breakpoints pause the execution of a chart. While the execution is paused, you can step
through each action in the chart, view data values, and interact with the MATLAB workspace to
examine the state of the chart.

Note When debugging a standalone chart that you execute from a MATLAB script, first open the
Stateflow Editor. Attempting to debug a standalone chart before opening the editor at least once can
produce unexpected results.

For information on debugging Stateflow charts in Simulink models, see “Debugging Stateflow Charts”
on page 33-2.

Set and Clear Breakpoints
Breakpoints appear as circular red badges. For example, this chart contains breakpoints on the state
A and on the transition from A to B.

You can set breakpoints on charts, states, and transitions.

Breakpoints on Charts

To set a breakpoint on a chart, right-click inside the chart and select Set Breakpoint on Chart
Entry. This type of breakpoint pauses the execution before entering the chart.

To remove the breakpoint, right-click inside the chart and clear the Set Breakpoint on Chart Entry
option.

Breakpoints on States and Transitions

You can set different types of breakpoints on states and transitions.

Object Breakpoint Type
State On State Entry — Pause the execution before performing the

state entry actions.
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Object Breakpoint Type
During State — Pause the execution before performing the state
during actions.
On State Exit — Pause the execution after performing the state
exit actions.

Transition When Transition is Tested — Pause the execution before
testing that the transition is a valid path. If no condition exists on
the transition, this breakpoint type is not available.
When Transition is Valid — Pause the execution after the
transition is valid, but before taking the transition.

To set a breakpoint on a state or transition, right-click the state or transition and select Set
Breakpoint. For states, the default breakpoints are On State Entry and During State. For
transitions, the default breakpoint is When Transition is Valid. To change the type of
breakpoint, click the breakpoint badge and select a different configuration of breakpoints. For more
information, see “Manage Breakpoint Types and Conditions” on page 35-14.

To remove the breakpoint, right-click the state or transition and select Clear Breakpoint. To remove
all of the breakpoints in a chart, right-click inside the chart and select Clear All Breakpoints In
Chart.

Manage Breakpoint Types and Conditions
A breakpoint badge can represent more than one type of breakpoint. To see a tooltip that lists the
breakpoint types that are set on a state or transition, point to its badge. In this example, the badge on
the state A represents two breakpoint types: On State Entry and During State.

To change the type of breakpoint on an object, click the breakpoint badge. In the Breakpoints dialog
box, you can select a different configuration of breakpoints, depending on the object type. Clearing all
of the check boxes in the Breakpoints dialog box removes the breakpoint.

To limit the number of times that the execution stops at a breakpoint, add a condition to the
breakpoint. By default, a Stateflow chart pauses whenever it reaches a breakpoint. When you add a
condition to a breakpoint, the chart pauses at the breakpoint only when the condition is true. For
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example, with these conditions, the breakpoints on state A pause the execution of the chart only when
the value of x is negative.

To specify a condition for the breakpoint, you can use any valid MATLAB expression that combines
numerical values and Stateflow data objects that are in scope at the breakpoint.

Control Chart Execution After a Breakpoint
When execution stops at a breakpoint, Stateflow enters debugging mode.

• The MATLAB command prompt changes to K>>.
• The Symbols pane displays the value of each data object in the chart.
• The chart highlights active elements in blue and the currently executing object in green.

For example, when the execution stops at the breakpoint in state A, the border of the state and the
first statement in the state entry action appear highlighted in green.

An execution status badge appears in the graphical object where execution pauses.

Badge Description
Execution is paused before entering a chart or in a state entry
action.
Execution is paused in a state during action.

Execution is paused in a state exit action.

Execution is paused before testing a transition.

Execution is paused before taking a valid transition.

When the chart is paused at a breakpoint, you can continue the execution by using:

• Buttons in the Debug tab
• The MATLAB Command Window
• Keyboard shortcuts

 Debug a Standalone Stateflow Chart

35-15



Action Debug Tab
Button

MATLAB
Command

Keyboard
Shortcut

Description

Continue dbcont Ctrl+T Continue execution to the next
breakpoint.

Step Over dbstep F10 Advance to the next step in the
chart execution. At the chart
level, possible steps include:

• Enter the chart
• Execute a transition action
• Activate a state
• Execute a state action

For more information, see
“Execution of a Stateflow Chart”
on page 3-25.

Step In dbstep in F11 From a state or transition action
that calls a function, advance to
the first executable statement in
the function.

From a statement in a function
containing another function call,
advance to the first executable
statement in the second
function.

Otherwise, advance to the next
step in the chart execution. (See
the Step Over option.)

Step Out dbstep out Shift+F11 From a function call, return to
the statement calling the
function.

Otherwise, continue execution
to the next breakpoint. (See the
Continue option.)

Stop dbquit Ctrl+Shift+T Exit debug mode and interrupt
the execution.

When you execute the
standalone chart from the
Stateflow Editor, this action
removes the chart object from
the MATLAB workspace.

In state or transition actions containing more than one statement, you can step through the individual
statements one at a time by selecting Step Over. The Stateflow Editor highlights each statement
before executing it.
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Note Because standalone charts define temporal logic in terms of wall-clock time, a temporal logic
operator can become valid while a chart is paused at a breakpoint. In this case, the chart exits
debugging mode and the execution continues to the next breakpoint.

Examine and Change Values of Chart Data
When Stateflow is in debug mode, the Symbols pane displays the value of each data object in the
chart. You can also examine data values by pointing to a state or a transition in the chart. A tooltip
displays the value of each data object used in the selected state or transition.

To test the behavior of your chart, in the Symbols pane, you can change the value of a data object
during execution. Alternatively, at the debugging prompt, enter the new value by using the keyword
this in place of the chart object name. For instance, to change the value of the local data x, enter:

this.x = 7

The new value appears in the Symbols pane.

Note When debugging a chart in a Simulink model, do not use the keyword this. Instead, you can
access all Stateflow data directly at the debugging prompt. For more information, see “View and
Modify Data in the MATLAB Command Window” on page 33-12.

See Also

More About
• “Create Stateflow Charts for Execution as MATLAB Objects” on page 35-2
• “Execute and Unit Test Stateflow Chart Objects” on page 35-8
• “Debugging Stateflow Charts” on page 33-2
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Execute Stateflow Chart Objects Through Scripts and Models
A standalone Stateflow chart is a MATLAB class that defines the behavior of a finite state machine.
Standalone charts implement classic chart semantics with MATLAB as the action language. You can
program the chart by using the full functionality of MATLAB, including those functions that are
restricted for code generation in Simulink. For more information, see “Create Stateflow Charts for
Execution as MATLAB Objects” on page 35-2.

This example shows how to execute a standalone Stateflow chart by using a MATLAB script or a
Simulink model.

Count Ways to Make Change for Currency
The file sf_change.sfx defines a standalone Stateflow chart that counts the number of ways to
make change for a given amount of money. The chart contains these data objects:

• x is the amount of money to change. The default value is 100.
• coinValues is a vector of coin denominations arranged in increasing order. coinNames is an

array of corresponding coin names. The default values represent standard American coins
(pennies, nickels, dimes, and quarters).

• tally is the number of valid change configurations.
• tabula is an array containing the different valid change configurations.
• chg, done, i, and n are local data used by the change-counting algorithm.
• textWidth and quietMode are local data that control how the chart displays its results.
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The chart begins with a potential change configuration consisting entirely of the lowest-value coins,
specified by an index of 1. At each execution step, the state exchange modifies this configuration in
one of two ways:

• The substate move_up exchanges some lowest-value coins for a coin with a higher value, specified
by the index i.

• The substate move_down exchanges all of the coins with the value specified by the index i for
lowest-value coins. Then move_up exchanges some lowest-value coins for a coin with a value
specified by the index i+1 or higher.

A potential change configuration is valid when the number of cents represented by the lowest-value
coins is divisible by the value of that type of coin. When the chart encounters a new valid
configuration, it increments tally and appends the new configuration to tabula.

When no more coin exchanges are possible, the state stop becomes active. This state prints the
results of the computation, transforms the contents of tabula to a table, and sets the value of done
to true.

Execute Standalone Chart in a MATLAB Script
To run the change-counting algorithm to completion, you must execute the standalone chart multiple
times. For example, the MATLAB script sf_change_script.m creates a chart object chartObj and
initializes the value of the local data x to 27. The configuration option '-
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warningOnUninitializedData', which the script sets to false, eliminates the warning that
tabula is an empty array in the new chart object. The while loop executes the chart until the local
data done becomes true. Finally, the script displays the value of tabula.

chartObj = sf_change('x',27,'-warningOnUninitializedData',false);

while ~chartObj.done
    step(chartObj);
end

disp(chartObj.tabula)

When you run this script, the standalone chart calculates the number of ways to make change for 27
cents by using standard American coins:

sf_change_script

.............
There are 13 ways to make change for 27 cents.
    Pennies    Nickels    Dimes    Quarters
    _______    _______    _____    ________

      27          0         0         0    
      22          1         0         0    
      17          2         0         0    
      12          3         0         0    
       7          4         0         0    
       2          5         0         0    
      17          0         1         0    
      12          1         1         0    
       7          2         1         0    
       2          3         1         0    
       7          0         2         0    
       2          1         2         0    
       2          0         0         1    

To determine the number of ways to make change for a different amount, or to use a different system
of currency, change the values of x and coinValues. For example, to use British currency, initialize
coinValues to [1 2 5 10 20 25 50].

Execute Standalone Chart in a Simulink Model
You can execute a standalone Stateflow chart from within a Simulink model. For example, the model
sf_change_model contains two Stateflow charts that use the standalone chart sf_change to count
the number of ways to make change for 27 cents in two different currency systems. You can simulate
the model, but the functions that execute the standalone chart do not support code generation.
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Each chart contains these states:

• Initialize creates a local chart object chartObj that implements the change-counting
algorithm for the input value x.

• Execute calls the step function to execute the standalone chart and stores the result as the
output data tally.

• Finish displays the results of the algorithm in the Diagnostic Viewer window and sets the value
of the output data done to true.

When both charts reach their respective Finish state, the simulation of the model stops and the
Display blocks show the final values of the two tallies.

Execution Using MATLAB as the Action Language

The chart MATLAB syntax uses MATLAB as the action language. To execute the standalone
Stateflow chart, this chart must follow these guidelines:

• The local variable chartObj that contains the handle to the chart object has type Inherit:
From definition in chart.

• Before creating the chart object, the Initialize state calls the coder.extrinsic function to
declare sf_change as an extrinsic function that is restricted for code generation in Simulink. See
“Call Extrinsic MATLAB Functions in Stateflow Charts” on page 31-30.

• The Execute and Finish states access the local data for the standalone chart by calling the get
function.
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When you simulate this chart with an input of x = 27, the Display block Olde English shows a tally
of 4. The Diagnostic Viewer window shows these results:

   Pennies    Shillings    Florins
   _______    _________    _______
     27           0           0
     15           1           0
      3           2           0
      3           0           1

Execution Using C as the Action Language

The chart C syntax uses C as the action language. To execute the standalone Stateflow chart, this
chart must follow these guidelines:

• The local variable chartObj that contains the handle to the chart object has type ml.

• The Initialize state calls the ml function to create the chart object.

• The Execute and Finish states use the ml namespace operator to access the step, get, and
displ functions to execute the standalone chart, access its local data, and display the results of
the algorithm.

For more information, see “Access MATLAB Functions and Workspace Data in C Charts” on page 16-
19.
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When you simulate this chart with an input of x = 27, the Display block Modern American shows a
tally of 13. The Diagnostic Viewer window shows these results:

   Safety    FieldGoal    TouchDown
   ______    _________    _________
     12          1            0
      9          3            0
      6          5            0
      3          7            0
      0          9            0
     10          0            1
      7          2            1
      4          4            1
      1          6            1
      5          1            2
      2          3            2
      3          0            3
      0          2            3

See Also

More About
• “Create Stateflow Charts for Execution as MATLAB Objects” on page 35-2
• “Execute and Unit Test Stateflow Chart Objects” on page 35-8
• “Call Extrinsic MATLAB Functions in Stateflow Charts” on page 31-30
• “Access MATLAB Functions and Workspace Data in C Charts” on page 16-19
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Design Human-Machine Interface Logic by Using Stateflow
Charts

This example shows how to model the logic of a graphical user interface in a standalone Stateflow®
chart. Standalone charts implement classic chart semantics with MATLAB® as the action language.
You can program the chart by using the full functionality of MATLAB, including those functions that
are restricted for code generation in Simulink®. For more information, see “Create Stateflow Charts
for Execution as MATLAB Objects” on page 35-2.

You can execute a standalone Stateflow chart by invoking its input events and using temporal
operators. The event- and timer-driven execution workflow is suitable for designing the logic
underlying human-machine interfaces (HMIs) and graphical user interfaces (UIs).

• When you use the MATLAB App Designer, callback functions from the interface widgets invoke
events in the chart.

• In the Stateflow chart, temporal operators and local data control the properties of the user
interface.

For more information on how to use MATLAB to create graphical user interfaces, see “Develop Apps
Using App Designer”.

Control an App Designer User Interface

This user interface contains an On-Off switch that controls a lamp. When the switch is in the On
position, the lamp lights up in one of two modes, solid or blinking, depending on the position of the
Mode option button. You control the rate of blinking by moving the Blink Rate slider. To start the app,
in the App Designer toolstrip, click Run.

The file sf_lamp_logic.sfx defines a standalone Stateflow chart that implements the logic for the
user interface. The chart has input events (ON, OFF, BLINKING, and SOLID) and local data (delay
and app). The actions in the chart control which widgets are accessible from each state. For instance,
the actions in the Off state cause the Lamp widget, the Mode option buttons, and the Blink Rate
slider in the user interface to appear dimmed.
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In the On state, the substates Solid and Blinking denote the two modes of operation. To implement
a blinking lamp, the chart relies on the temporal logic operator after. When the chart enters the
state Blinking.Off, the expression after(delay,sec) on the outgoing transition creates a
MATLAB timer object that executes the chart after a number of seconds. The chart then transitions to
the state Blinking.On and creates another timer object to trigger the transition back to
Blinking.Off. While the chart continually transitions between the two states, you can adjust the
rate of blinking by changing the value of the local data delay or transition out of blinking mode by
invoking the input events SOLID or OFF.

The history junction in the On state preserves information on the most recently active substate so that
the user interface returns to the previous mode of operation when you turn on the lamp.

Execute Standalone Chart by Using Events

You can execute the standalone chart by calling its input event functions in the MATLAB Command
Window. The Stateflow Editor shows the effects of each of these commands by highlighting active
states and transitions through chart animation.

1. Create the chart object L and initialize the value of delay to 0.5. This value corresponds to a
blinking rate of one flash per second (on for 0.5 seconds and off for 0.5 seconds).

L = sf_lamp_logic('delay',0.5);

2. Turn on the lamp.

ON(L)
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3. Switch to blinking mode.

BLINKING(L)

4. Set the value of delay to 0.25. This value corresponds to a blinking rate of two flashes per second
(on for 0.25 seconds and off for 0.25 seconds).

L.delay = 0.25;

5. Switch to solid mode.

SOLID(L)

6. Turn off the lamp.

OFF(L)

7. Delete the chart object L from the MATLAB workspace.

delete(L)

Connect Standalone Chart to User Interface

To establish a bidirectional connection between the user interface and the standalone Stateflow
chart, open the App Designer window and select Code View.

1. In the App Designer window, create a private property lampLogic to store the handle to the
Stateflow chart object.

properties (Access = private)
    lampLogic
end

2. Create a StartupFcn callback function that creates the chart object and sets its local data app to
the user interface handle. Assign the chart object handle to the lampLogic private property.

% Code that executes after component creation
function StartupFcn(app)
    app.lampLogic = sf_lamp_logic('delay',0.5,'app',app);
end

3. Create a CloseRequestFcn callback function that deletes the chart object when you close the
user interface.

% Close request function: UIFigure
function UIFigureCloseRequest(app, event)
    delete(app.lampLogic);
    delete(app);
end

4. For each one of the user interface widgets, add a callback function that invokes the appropriate
event on the standalone chart.

• ValueChangedFcn callback function for Switch widget:

function SwitchValueChanged(app,event)
    value = app.Switch.Value;
    switch lower(value)
        case 'off'
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            OFF(app.lampLogic);
        case 'on'
            ON(app.lampLogic);
    end
end

• SelectionChangedFcn callback function for Mode Button widget:

function ModeButtonGroupSelectionChanged(app,event)
    selectedButton = app.ModeButtonGroup.SelectedObject;
    if app.SolidButton == selectedButton
        SOLID(app.lampLogic);
    else
        BLINKING(app.lampLogic);
    end
end

• ValueChangedFcn callback function for Blink Rate Slider widget:

function BlinkRateSliderValueChanged(app,event)
    app.lampLogic.delay = round(0.5/app.BlinkRateSlider.Value,2);
end

When you run the user interface, you can observe the effects of adjusting the control widgets on the
chart canvas and on the lamp widget.

See Also
after

More About
• “Create Stateflow Charts for Execution as MATLAB Objects” on page 35-2
• “Activate a Stateflow Chart by Sending Input Events” on page 14-7
• “Control Chart Execution by Using Temporal Logic” on page 16-34
• “Record State Activity by Using History Junctions” on page 2-46
• “Develop Apps Using App Designer”
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Model a Communications Protocol by Using Chart Objects
This example shows how to use a standalone Stateflow® chart to model a frame-synchronization and
symbol-detection component in a communications system. Standalone charts implement classic chart
semantics with MATLAB® as the action language. You can program the chart by using the full
functionality of MATLAB, including those functions that are restricted for code generation in
Simulink®. For more information, see “Create Stateflow Charts for Execution as MATLAB Objects”
on page 35-2.

Implement a Symbol-Detection Algorithm

In this example, the input to the communications system consists of a binary signal of zeros and ones
received every 10 milliseconds. The input signal can contain any combination of:

• A 770-ms pulse (77 consecutive ones) to mark the beginning and end of a frame of data and to
ensure system synchronization.

• A 170-ms pulse (17 consecutive ones) to indicate symbol A.

• A 470-ms pulse (47 consecutive ones) to indicate symbol B.

The file sf_frame_search.sfx defines a standalone Stateflow chart that implements this
communication protocol. The chart consists of two outer states in parallel decomposition. The
Initialize state resets the value of the local data symbol at the start of each execution step. The
Search state contains the logic that defines the symbol-detection algorithm. When this state detects
one of the pulses allowed by the communication protocol, the name of the corresponding symbol is
stored as symbol and displayed in the MATLAB Command Window. Parallel decomposition enables
the chart to preprocess the input data. For more information, see “State Decomposition” on page 2-
19.
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To track the length of a pulse through several execution steps, the chart uses the count operator.
This operator simplifies the design of the chart by eliminating the need for a manual counter. For
example, the condition [count(pulse)==17] guards the outgoing transition from the substate
NewFrame. This condition becomes true when the data pulse is one for 17 consecutive execution
steps. In this case, the chart transitions to the CouldBeA substate. If this transition is followed by an
input of zero, then the chart registers the reception of symbol A and transitions back to the
NewFrame substate. Otherwise, the chart transitions to the SearchForB state from which the
condition [count(pulse)==29] searches for an additional 29 ones to mark symbol B.

Execute Standalone Chart

In the MATLAB script sf_frame_tester.m, the sample code generates a short signal consisting of
several valid pulses and one transmission error. The error consists of a 470-ms pulse that is too long
to represent symbol A and too short to represent symbol B.

%% Test Symbol Detection Algorithm
% Generate a short signal consisting of several valid pulses and one
% transmission error.

f = sf_frame_search('pulse','0');    % create chart object
sendPulse(f,77);                     % frame marker
sendPulse(f,17);                     % A
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sendPulse(f,47);                     % B
sendPulse(f,37);                     % transmission error
sendPulse(f,47);                     % B
sendPulse(f,17);                     % A
sendPulse(f,77);                     % frame marker
delete(f);                           % delete chart object

function sendPulse(f,n)
% Send a pulse of n ones and one zero to chart object f.

for i = 1:n
    step(f,'pulse',1);
    printDot(1)
end

printDot(0)
step(f,'pulse',0);

    function printDot(x)
        persistent k
        if isempty(k)
            k = 1;
        end
        
        if x == 0
            fprintf('\n');
            k = 1;
        elseif k == 50
            fprintf('.\n');
            k = 1;
        else
            fprintf('.');
            k = k+1;
        end
    end
end

Running the script produces these results in the MATLAB Command Window:

..................................................

...........................
frame
.................
A
...............................................
B
.....................................
error
...............................................
B
.................
A
..................................................
...........................
frame
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During the simulation, the chart animation provides a visual indication of the runtime behavior of the
algorithm.

See Also
count

More About
• “Create Stateflow Charts for Execution as MATLAB Objects” on page 35-2
• “Execute Stateflow Chart Objects Through Scripts and Models” on page 35-18
• “Control Chart Execution by Using Temporal Logic” on page 16-34
• “State Decomposition” on page 2-19
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Implement a Financial Strategy by Using Stateflow
This example shows how to use a standalone Stateflow® chart to model a financial trading strategy
known as Bollinger Bands. Standalone charts implement classic chart semantics with MATLAB® as
the action language. You can program the chart by using the full functionality of MATLAB, including
those functions that are restricted for code generation in Simulink®. For more information, see
“Create Stateflow Charts for Execution as MATLAB Objects” on page 35-2.

Compute Bollinger Bands

The Bollinger Bands trading strategy is to maintain a moving average of N stock prices for some
commodity and issuing trading instructions depending on the value of the stock:

• "Buy" when the value of the stock drops K standard deviations below the moving average.
• "Sell" when the value of the stock rises K standard deviations above the moving average.
• "Hold" when the value of the stock is within K standard deviations of the moving average.

Typical implementations for this strategy use values of N = 20 and K = 2.

The file sf_stock_watch.sfx defines a standalone Stateflow chart that implements this financial
strategy. The chart consists of two outer states in parallel decomposition.

• The StockTicker subchart records the current price of a stock. The subchart hides the details
for calculating stock prices. To access real-time market data from financial data providers, one
possible implementation involves the use of the Datafeed Toolbox™. For details, see “Datafeed
Toolbox”.

• The FinancialAdvisor state uses the last N stock prices to compute high and low bands.
Depending on the current price relative to these bands, the state generates "buy," "sell," or "hold"
instructions. The action on every(1,sec) creates a MATLAB® timer to execute the chart every
second. See “Control Chart Execution by Using Temporal Logic” on page 16-34.

Parallel decomposition is a common design pattern that enables your algorithm to preprocess input
data. For more information, see “State Decomposition” on page 2-19.
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Execute Standalone Chart

To execute the standalone chart, create a Stateflow chart object w:

w = sf_stock_watch();

The chart generates a stream of stock prices and issues "buy," "sell," or "hold" instructions.

Note: Chart execution continues until you delete the chart object.
Loading data... Ready in 5 4 3 2 1 0:
HOLD at 14.1942
SELL at 14.2802
SELL at 14.2471
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HOLD at 14.2025
BUY at 14.1444

To stop the chart execution, delete the chart object w:

delete(w);

See Also

More About
• “Create Stateflow Charts for Execution as MATLAB Objects” on page 35-2
• “Control Chart Execution by Using Temporal Logic” on page 16-34
• “State Decomposition” on page 2-19
• “Datafeed Toolbox”
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Model a Fitness App by Using Standalone Charts
This example shows how to create an application composed of multiple standalone Stateflow® charts
and a MATLAB® app. The standalone charts model the control and plant systems for the application
and interface with the MATLAB app. For more information on connecting a standalone chart to a
MATLAB app, see “Design Human-Machine Interface Logic by Using Stateflow Charts” on page 35-
24. For a version of this example that uses Stateflow charts in a Simulink® model, see “Model a
Fitness Tracker” on page 30-59.

In this example, a MATLAB app models a fitness tracker. When you run the app, you can adjust the
settings for the tracker and select an activity (Sleep, Rest, Walk, or Exercise). When you choose
Exercise, you can also set the intensity of your workout.

The standalone chart sf_fitness_interface provides a bidirectional connection between the
MATLAB app and the other standalone charts in the example, sf_fitness_human and
sf_fitness_tracker. These charts model a human simulator and provide the core logic for the
fitness tracker, respectively. When you interact with the widgets in the app, the
sf_fitness_interface chart communicates your selections to the other charts in the example.
Conversely, the chart uses the output of the fitness tracker to update the numeric and text fields in
the app.

This schematic diagram illustrates the transfer of information between the app and the charts in the
example.
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To start the example, run the sf_fitness_sfx_app app. The app creates a chart object for
sf_fitness_interface. This chart, in turn, creates chart objects for the other two charts in the
example. The chart also creates a MATLAB timer object that executes all three charts at a frequency
proportional to the heart rate in the human simulator chart. While the example is running, one
second of simulation represents one minute of exercise time. To stop the example, close the app.

Connect Chart to MATLAB App

The chart sf_fitness_interface is configured to communicate with the MATLAB app
sf_fitness_sfx_app.

• The chart uses the local data object app to interface with the MATLAB app. The chart uses this
local data object when it calls the helper functions updateStatus, updateClock, updateText,
updateSteps, and updateHeartRate. In the app, these helper functions change the contents of
the activity status, clock, and step counter fields, and create the animation effects in the heartbeat
and footstep displays. For example, when there is a new notification from the fitness tracker, the
substate MainDisplay calls the helper function updateText. This function replaces the contents
of the clock display with a customized notification. After a short delay, the substate calls the
helper function updateClock to restore the clock display.

• The app uses a property called chart to interface with the chart. The app uses this property to
read the chart local data. For example, the helper functions updateHeartRate and
updateSteps read the chart local data heart_rate and total_steps, respectively.
Additionally, when you close the app, the UIFigureCloseRequest callback uses the chart
property to stop the execution of the charts in the example by deleting their chart objects.

For more information on how to create a bidirectional connection between your MATLAB app and a
standalone Stateflow chart, see “Design Human-Machine Interface Logic by Using Stateflow Charts”
on page 35-24.
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To establish communications with the human simulator and fitness tracker charts, the
sf_fitness_interface chart saves their chart objects as the local data human and tracker. The
chart-level MATLAB functions updateHuman and updateTracker use these objects to write to and
read from the local data in the charts. For example, when you select a new activity or change the
intensity of your workout in the Human Simulator pane of the app, updateHuman sets the value of
the local data activity and intensity in the human simulator chart. Similarly, when you change
the value of one of the fields in the Settings pane of the app, updateTracker updates the value of
the corresponding local data in the fitness tracker chart.

Simulate Vital Signs Based on Activity

The human simulator chart sf_fitness_human models the vital signs of a human engaged in the
activity you select in the app. The chart stores these vital signs (representing your heart rate, speed,
and the number of steps that you have taken) as local variables that the fitness tracker can access.
When you select a new activity or adjust the intensity of your workout, the chart calls the function
transition to ensure that these vital signs change gradually over time. To detect changes in
activity or exercise intensity, the chart calls the hasChanged operator. For more information, see
“Detect Changes in Data and Expression Values” on page 16-62.
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Determine Fitness Tracker Output

The chart sf_fitness_tracker models the core logic of the fitness tracker. The chart consists of
four subcharts that correspond to the possible activities. The chart registers your activity status
based on the heart rate and speed produced by the human simulator chart and transitions between
these subcharts. To filter out signal noise, the chart uses the count operator to implement simple
debouncing logic. For instance, when you are at rest, you can make some quick and sudden
movements that do not correspond to exercise. The chart determines that you are walking or
exercising only if your motion lasts longer than two evaluations of the chart object.

The chart uses other temporal logic operators to track the amount of time you spend in each activity
and determine when to send notifications to the app:

• The exit actions in each subchart call the elapsed operator to determine how long the subchart
was active.

• The chart uses the after operator to determine when you sleep or walk for longer than five
minutes, rest or exercise for longer than the threshold you specify in the app, or exercise at a high
intensity (taking more than 4 steps a second) for longer than 15 minutes. In each of these cases,
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the chart updates the value of the local data notification. The sf_fitness_interface chart
reads this value and causes a notification to appear in the main display of the app. Depending on
the type of notification, the notification button changes color.

See Also
count | elapsed | hasChanged

More About
• “Model a Fitness Tracker” on page 30-59
• “Design Human-Machine Interface Logic by Using Stateflow Charts” on page 35-24
• “Detect Changes in Data and Expression Values” on page 16-62
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Automate Control of Intelligent Vehicles by Using Stateflow
Charts

This example shows how to model a highway scenario with intelligent vehicles that are controlled by
the same decision logic. Each vehicle determines when to speed up, slow down, or change lanes
based on the logic defined by a standalone Stateflow® chart. Because the driving conditions
(including the relative position and speed of nearby vehicles) differ from vehicle to vehicle, separate
chart objects in MATLAB® control the individual vehicles on the highway.

Open Driving Scenario

To start the example, run the script sf_driver_demo.m. The script displays a 3-D animation of a
long highway and several vehicles. The view focuses on a single vehicle and its surroundings. As this
vehicle moves along the highway, the standalone Stateflow chart sf_driver shows the decision logic
that determines its actions.

Starting from a random position, each vehicle attempts to travel at a target speed. Because the target
speeds are chosen at random, the vehicles can obstruct one another. In this situation, a vehicle will
try to change lanes and resume its target speed.

The class file HighwayScenario defines a drivingScenario (Automated Driving Toolbox)
object that represents the 3-D environment that contains the highway and the vehicles on it. To
control the motion of the vehicles, the drivingScenario object creates an array of Stateflow chart
objects. Each chart object controls a different vehicle in the simulation.

Execute Decision Logic for Vehicles

The Stateflow chart sf_driver consists of two top-level states, LaneKeep and LaneChange.

When the LaneKeep state is active, the corresponding vehicle stays in its lane of traffic. In this state,
there are two possible substates:
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• Cruise is active when the zone directly in front of the vehicle is empty and the vehicle can travel
at its target speed.

• Follow becomes active when the zone directly in front of the vehicle is occupied and its target
speed is faster than the speed of the vehicle in front. In this case, the vehicle is forced to slow
down and attempt to change lanes.

When the LaneChange state is active, the corresponding vehicle attempts to change lanes. In this
state, there are two possible substates:

• Continue is active when the zone next to the vehicle is empty and the vehicle can change lanes
safely.

• Abort becomes active when the zone next to the vehicle is occupied. In this case, the vehicle is
forced to remain in its lane.

The transitions between the states LaneKeep and LaneChange are guarded by the value of
isLaneChanging. In the LaneKeep state, the chart sets this local data to true when the substate
Follow is active and there is enough room beside the vehicle to change lanes. In the LaneChange
state, the chart sets this local data to false when the vehicle finishes changing lanes.

See Also
drivingScenario

More About
• “Create Stateflow Charts for Execution as MATLAB Objects” on page 35-2
• “Create Driving Scenario Programmatically” (Automated Driving Toolbox)
• “Create Actor and Vehicle Trajectories Programmatically” (Automated Driving Toolbox)
• “Define Road Layouts Programmatically” (Automated Driving Toolbox)
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Model Bluetooth Low Energy Link Layer Using Stateflow
This example shows how to use a standalone Stateflow® chart to model the state machine in a
Bluetooth® low energy (BLE) link layer.

Bluetooth technology is a wireless interface intended to replace the cables connecting portable and
fixed electronic equipment. The Bluetooth Special Interest Group industry consortium defines two
groups of standards for this technology: Bluetooth low energy (BLE) and Bluetooth basic rate/
enhanced data rate (BR/EDR). BLE devices are characterized by low power consumption and low
cost. These devices have an operating radio frequency in the range 2.4000 GHz to 2.4835 GHz. The
operating band is divided into 40 channels, each with a bandwidth of 2 MHz. User data packets are
transmitted using channels in the range from 0 to 36. Advertising data packets are transmitted in
channels 37, 38, and 39.

The functionality of the BLE protocol stack is divided between three main layers:

• The controller layer includes the low energy physical layer (PHY), the link layer (LL), and the
controller-side host controller interface (HCI). The state machine modeled by this example is part
of the link layer in this portion of the BLE protocol stack.

• The host layer includes the host-side HCI, logical link control and adaptation protocol (L2CAP),
attribute protocol (ATT), generic attribute profile (GATT), security manager protocol (SMP), and
generic access profile (GAP). This layer also contains the BLE mesh stack, which consists of the
advertising bearer, network, lower transport, upper transport, access, foundational model, and
model layers.

• The application profiles and services layer (APP) is the user interface that defines usage profiles
and enables interoperability between Bluetooth applications.

For more information, see “What Is Bluetooth?” (Communications Toolbox), “Bluetooth Protocol
Stack” (Communications Toolbox), and “Bluetooth Mesh Networking” (Communications Toolbox).

Determine the Operating Mode of the BLE Device

In the BLE protocol stack, the link layer manages the state of the radio to define the role of a device
as advertiser or scanner. This layer interfaces directly with the PHY layer, which uses the three
advertising channels (37, 38, and 39) to transmit and receive data packets.

In this example, the standalone Stateflow chart sf_bluetooth.sfx defines the operating modes of
the link layer. The chart has three states: Standby, Advertising, and Scanning. Initially, the
Standby state is active, indicating that the device is idle. In the next time step, the chart transitions
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to the Advertising or Scanning state, depending on the value of the local data TxData. This value
indicates whether there is data from the advertising bearer in the host layer available for
transmission.

If there is data available, the chart transitions to the Advertising state. When this state is active,
the device cycles through the three advertising channels and transmits the same data packet in each
channel. The chart remains in the Advertising state for an advertising interval before it returns to
the Standby state. The advertising interval is divided into three checkpoint timestamps that
correspond to the three advertising channels. In this example, the advertising interval consists of a
minimum of 20 milliseconds, with checkpoint timestamps at 1 millisecond (for channel 37), 9
milliseconds (for channel 38), and 17 milliseconds (for channel 39).

If there is no data available, the chart transitions to the Scanning state. When this state is active,
the PHY layer passively scans one of the advertising channels for new data. If the PHY layer receives
a data packet, the link layer passes it to the advertising bearer layer. The chart remains in the
Scanning state for a scanning interval before it returns to the Standby state. At that point, if there
is still no data available, the chart selects a new advertising channel and starts another scanning
interval. In this example, the scanning interval consists of 50 milliseconds.

Simulate the BLE Link Layer

The script sf_bluetooth_demo.m creates a BLE link layer object bleLinkLayer and simulates 10
seconds of mesh communications over an advertising bearer. The link layer object relies on the
standalone chart sf_bluetooth.sfx for control logic and on the link layer queue object bleQueue
for storing data from the advertising bearer.

The simulation consists of 10,000 time steps. Each time step represents an execution of the link layer
object (which corresponds to 1 millisecond of simulation time) and typically consists of these steps:

1 If the link layer queue is not empty, read a data packet. The data in the queue represents the
advertising data packets that the link layer obtains from the advertising bearer layer.

2 Set the value of the chart data TxData and execute the standalone chart. In this step, the chart
determines whether the device acts as an advertiser or scanner.

3 If the chart is in the Advertising.Transmit state, generate a BLE link layer advertising
channel protocol data unit (PDU) using the data read from the link layer queue. The PDU
represents a transmission by the PHY layer. For more information on generating and configuring
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the advertising channel PDU, see bleLLAdvertisingChannelPDU (Communications Toolbox)
and bleLLAdvertisingChannelPDUConfig (Communications Toolbox).

There are two exceptional cases:

• Every 1000 time steps, the script pushes data into the link layer queue before executing the link
layer object. This data represents the advertising data packets that the link layer obtains from the
advertising bearer layer.

• Every 2500 time steps, the script generates a BLE link layer advertising channel PDU that
represents an advertising data packet received by the PHY layer. Then the script executes the link
layer object. If the chart is in the Scanning state, the link layer object attempts to decode the
PDU and, if the decoding is successful, passes the PDU to the advertising bearer layer. For more
information on PDU decoding, see bleLLAdvertisingChannelPDUDecode (Communications
Toolbox).

When the simulation is complete, the script prints a summary that lists the number of data packets
and bytes transmitted and received by the link layer.

Number of PDUs transmitted from link layer: 27
Number of bytes transmitted from link layer: 702
Number of PDUs received at link layer: 4
Number of bytes received at link layer: 112

During the simulation, the chart animation provides a visual indication of the runtime behavior of the
algorithm. Note that chart animation slows down performance. To reduce the running time of the
example, close the chart before running the script.

See Also
bleLLAdvertisingChannelPDU | bleLLAdvertisingChannelPDUDecode |
bleLLAdvertisingChannelPDUConfig

More About
• “Create Stateflow Charts for Execution as MATLAB Objects” on page 35-2
• “Execute Stateflow Chart Objects Through Scripts and Models” on page 35-18
• “What Is Bluetooth?” (Communications Toolbox)
• “Bluetooth Protocol Stack” (Communications Toolbox)
• “Bluetooth Mesh Networking” (Communications Toolbox)
• “Bluetooth Packet Structure” (Communications Toolbox)
• “Link Layer State Machine for BLE Devices Using Stateflow” (Communications Toolbox)

35 Standalone Stateflow Charts for Execution in MATLAB

35-44



Create an App for Analog Triggered Data Acquisition by Using
Stateflow Charts

This example shows how to create an analog-triggered data acquisition app by using Stateflow®,
Data Acquisition Toolbox™, and App Designer.

Data Acquisition Toolbox provides functionality for acquiring measurement data from a DAQ device or
audio soundcard. For certain applications, an analog-triggered acquisition that starts capturing or
logging data based on a condition in the analog signal being measured is recommended. Software-
analog triggered acquisition enables you to capture only a segment of interest out of a continuous
stream of measurement data. For example, you can capture an audio recording when the signal level
passes a certain threshold.

This example app, created by using App Designer and Stateflow, shows how to implement these
operations:

• Control the app state logic by using a Stateflow chart.
• Discover available DAQ devices and select which device to use.
• Configure device acquisition parameters.
• Display a live plot in the app UI during acquisition.
• Perform a triggered data capture based on a programmable trigger condition.
• Save captured data to a MATLAB® base workspace variable.
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By default, the app opens in design mode in App Designer. To run the app click the Run button or
execute the app from the command line:

AnalogTriggerAppStateflow

Requirements

This example app requires:

• MATLAB R2020a or later.
• Data Acquisition Toolbox (supported on Windows® only).
• Stateflow (for creating and editing charts only).
• A supported DAQ device or sound card. For example, any National Instruments or Measurement

Computing device that supports analog input Voltage or IEPE measurements and background
acquisition.

• Corresponding hardware support package and device drivers.

App States and the Stateflow Chart

When creating an app that has complex logic, consider the various states that correspond to the
operating modes of the app. You can use a Stateflow chart to visualize and organize these app states.
Use transitions between states to implement the control logic of your app. For example, the file
AnalogTriggerAppLogic.sfx defines the Stateflow chart that controls the logic for this app. The
chart can transition between states based on an action in the app UI or on a data-driven condition.
For example, if you click the Start button, the chart transitions from the Configuration state to the
Acquisition state. If the value of the signal crosses the specified trigger level, the chart transitions
from the LookingForTrigger state to the CapturingData state.

Integrating the App with the Stateflow Chart

To establish a bidirectional connection between the MATLAB app and the Stateflow chart, in the
startupFcn function of your app, create a chart object and store its handle in an app property.

app.Chart = AnalogTriggerAppLogic('app',app);

The app uses this handle to trigger state transitions in the chart. For example, when you click Start,
the StartButtonPushed app callback function calls the acquisitionStart input event for the
chart. This event triggers the transition from the Configuration state to the Acquisition state.

To evaluate transition conditions that are not events in the chart, the app calls the step function for
the chart object. For example, while acquiring data from the device, the dataAvailable_Callback
app function periodically calls the step function. When the trigger condition is detected, the chart
transitions from the LookingForTrigger State to the CapturingData state.

In the Stateflow chart, store the app object handle as chart local data. To share public properties and
call public functions of the app, the Stateflow chart can use this handle in state actions, transition
conditions, or transition actions.

See Also
Chart
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More About
• “Design Human-Machine Interface Logic by Using Stateflow Charts” on page 35-24
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Semantic Examples
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Categories of Semantic Examples
The following examples show the detailed semantics (behavior) of Stateflow charts.

“Transition Between Exclusive States” on page A-4

• “Transition from State to State with Events” on page A-4
• “Transition from a Substate to a Substate with Events” on page A-7

“Control Chart Execution by Using Condition Actions” on page A-9

• “Condition Action Behavior” on page A-9
• “Condition and Transition Action Behavior” on page A-9
• “Create Condition Actions Using a For-Loop” on page A-10
• “Broadcast Events to Parallel (AND) States Using Condition Actions” on page A-11
• “Avoid Cyclic Behavior” on page A-12

“Control Chart Execution by Using Default Transitions” on page A-14

• “Default Transition in Exclusive (OR) Decomposition” on page A-14
• “Default Transition to a Junction” on page A-14
• “Default Transition and a History Junction” on page A-15
• “Labeled Default Transitions” on page A-16

“Process Events in States Containing Inner Transitions” on page A-18

• “Process One Event in an Exclusive (OR) State” on page A-18
• “Process a Second Event in an Exclusive (OR) State” on page A-18
• “Process a Third Event in an Exclusive (OR) State” on page A-19
• “Process the First Event with an Inner Transition to a Connective Junction” on page A-20
• “Process a Second Event with an Inner Transition to a Connective Junction” on page A-21
• “Inner Transition to a History Junction” on page A-21

“Represent Multiple Paths by Using Connective Junctions” on page A-23

• “If-Then-Else Decision Construct” on page A-23
• “Self-Loop Transition” on page A-24
• “For-Loop Construct” on page A-25
• “Flow Chart Notation” on page A-26
• “Transition from a Common Source to Multiple Destinations” on page A-28
• “Transition from Multiple Sources to a Common Destination” on page A-29
• “Transition from a Source to a Destination Based on a Common Event” on page A-30

“Control Chart Execution by Using Event Actions in a Superstate” on page A-32

“Undirected Broadcast Events in Parallel States” on page A-33

• “Broadcast Events in State Actions” on page A-33
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• “Broadcast Events in Transition Actions” on page A-34
• “Broadcast Events in Condition Actions” on page A-36

“Broadcast Local Events in Parallel States” on page A-39

• “Directed Event Broadcast Using Send” on page A-39
• “Directed Event Broadcast Using Qualified Event Name” on page A-40
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Transition Between Exclusive States

Label Format for a State-to-State Transition
The following example shows the general label format for a transition entering a state.

A chart executes this transition as follows:

1 When an event occurs, state S1 checks for an outgoing transition with a matching event
specified.

2 If a transition with a matching event is found, the condition for that transition ([condition]) is
evaluated.

3 If the condition is true, condition_action is executed.
4 If there is a valid transition to the destination state, the transition is taken.
5 State S1 is exited.
6 The transition_action is executed when the transition is taken.
7 State S2 is entered.

Transition from State to State with Events
The following example shows the behavior of a simple transition focusing on the implications of
whether states are active or inactive.
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Process a First Event

Initially, the chart is asleep. State On and state Off are OR states. State On is active. Event E_one
occurs and awakens the chart, which processes the event from the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of E_one. A valid transition
from state On to state Off is detected.

2 State On exit actions (exitOn()) execute and complete.
3 State On is marked inactive.
4 The event E_one is broadcast as the transition action.

This second event E_one is processed, but because neither state is active, it has no effect. If the
second broadcast of E_one resulted in a valid transition, it would preempt the processing of the
first broadcast of E_one. See “Early Return Logic” on page 3-55.

5 State Off is marked active.
6 State Off entry actions (entOff()) execute and complete.
7 The chart goes back to sleep.

This sequence completes the execution of the Stateflow chart associated with event E_one when
state On is initially active.

Process a Second Event

Using the same example, what happens when the next event, E_one, occurs while state Off is active?
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Initially, the chart is asleep. State Off is active. Event E_one occurs and awakens the chart, which
processes the event from the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of E_one.

A valid transition from state Off to state On is detected.
2 State Off exit actions (exitOff()) execute and complete.
3 State Off is marked inactive.
4 State On is marked active.
5 State On entry actions (entOn()) execute and complete.
6 The chart goes back to sleep.

This sequence completes the execution of the Stateflow chart associated with the second event
E_one when state Off is initially active.

Process a Third Event

Using the same example, what happens when a third event, E_two, occurs?

Notice that the event E_two is not used explicitly in this example. However, its occurrence (or the
occurrence of any event) does result in behavior. Initially, the chart is asleep and state On is active.
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1 Event E_two occurs and awakens the chart.

Event E_two is processed from the root of the chart down through the hierarchy of the chart.
2 The chart root checks to see if there is a valid transition as a result of E_two. There is none.
3 State On during actions (durOn()) execute and complete.
4 The chart goes back to sleep.

This sequence completes the execution of the Stateflow chart associated with event E_two when
state On is initially active.

Tip Avoid using undirected local event broadcasts. Undirected local event broadcasts can cause
unwanted recursive behavior in your chart. Instead, send local events by using directed broadcasts.
For more information, see “Broadcast Local Events to Synchronize Parallel States” on page 14-23.

You can set the diagnostic level for detecting undirected local event broadcasts. In the Configuration
Parameters dialog box, open the Diagnostics > Stateflow pane and set the Undirected event
broadcasts parameter to none, warning, or error. The default setting is warning.

Transition from a Substate to a Substate with Events
This example shows the behavior of a transition from an OR substate to an OR substate.

Initially, the chart is asleep. State A.A1 is active. Condition C_one is true. Event E_one occurs and
awakens the chart, which processes the event from the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of E_one. There is a valid
transition from state A.A1 to state B.B1. (Condition C_one is true.)

2 State A during actions (durA()) execute and complete.
3 State A.A1 exit actions (exitA1()) execute and complete.
4 State A.A1 is marked inactive.
5 State A exit actions (exitA()) execute and complete.
6 State A is marked inactive.
7 The transition action, A, is executed and completed.
8 State B is marked active.
9 State B entry actions (entB()) execute and complete.

 Transition Between Exclusive States

A-7



10 State B.B1 is marked active.
11 State B.B1 entry actions (entB1()) execute and complete.
12 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with event E_one.
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Control Chart Execution by Using Condition Actions

Condition Action Behavior
This example shows the behavior of a simple condition action in a transition path with multiple
segments. The chart uses implicit ordering of outgoing transitions (see “Implicit Ordering” on page 3-
41).

Initially, the chart is asleep. State A is active. Conditions C_one and C_two are false. Event E_one
occurs and awakens the chart, which processes the event from the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of E_one. A valid transition
segment from state A to a connective junction is detected. The condition action A_one is detected
on the valid transition segment and is immediately executed and completed. State A is still active.

2 Because the conditions on the transition segments to possible destinations are false, none of the
complete transitions is valid.

3 State A during actions (durA()) execute and complete.

State A remains active.
4 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with event E_one when
state A is initially active.

Condition and Transition Action Behavior
This example shows the behavior of a simple condition and transition action specified on a transition
from one exclusive (OR) state to another.
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Initially, the chart is asleep. State A is active. Condition C_one is true. Event E_one occurs and
awakens the chart, which processes the event from the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of E_one. A valid transition
from state A to state B is detected. The condition C_one is true. The condition action A_one is
detected on the valid transition and is immediately executed and completed. State A is still
active.

2 State A exit actions (ExitA()) execute and complete.
3 State A is marked inactive.
4 The transition action A_two is executed and completed.
5 State B is marked active.
6 State B entry actions (entB()) execute and complete.
7 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with event E_one when
state A is initially active.

Create Condition Actions Using a For-Loop
Condition actions and connective junctions are used to design a for loop construct. This example
shows the use of a condition action and connective junction to create a for loop construct. The chart
uses implicit ordering of outgoing transitions (see “Implicit Ordering” on page 3-41).
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See “For-Loop Construct” on page A-25 to see the behavior of this example.

Broadcast Events to Parallel (AND) States Using Condition Actions
This example shows how to use condition actions to broadcast events immediately to parallel (AND)
states. The chart uses implicit ordering of parallel states (see “Implicit Ordering of Parallel States” on
page 3-62).
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See “Broadcast Events in Condition Actions” on page A-36 to see the behavior of this example.

Tip Avoid using undirected local event broadcasts. Undirected local event broadcasts can cause
unwanted recursive behavior in your chart. Instead, send local events by using directed broadcasts.
For more information, see “Broadcast Local Events to Synchronize Parallel States” on page 14-23.

You can set the diagnostic level for detecting undirected local event broadcasts. In the Configuration
Parameters dialog box, open the Diagnostics > Stateflow pane and set the Undirected event
broadcasts parameter to none, warning, or error. The default setting is warning.

Avoid Cyclic Behavior
This example shows a notation to avoid when using event broadcasts as condition actions because the
semantics results in cyclic behavior.

Initially, the chart is asleep. State On is active. Event E_one occurs and awakens the chart, which
processes the event from the root down through the hierarchy:
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1 The chart root checks to see if there is a valid transition as a result of E_one.

A valid transition from state On to state Off is detected.
2 The condition action on the transition broadcasts event E_one.
3 Event E_one is detected on the valid transition, which is immediately executed. State On is still

active.
4 The broadcast of event E_one awakens the chart a second time.
5 Go to step 1.

Steps 1 through 5 continue to execute in a cyclical manner. The transition label indicating a trigger
on the same event as the condition action broadcast event results in unrecoverable cyclic behavior.
This sequence never completes when event E_one is broadcast and state On is active.

Tip Avoid using undirected local event broadcasts. Undirected local event broadcasts can cause
unwanted recursive behavior in your chart. Instead, send local events by using directed broadcasts.
For more information, see “Broadcast Local Events to Synchronize Parallel States” on page 14-23.

You can set the diagnostic level for detecting undirected local event broadcasts. In the Configuration
Parameters dialog box, open the Diagnostics > Stateflow pane and set the Undirected event
broadcasts parameter to none, warning, or error. The default setting is warning.

See Also

More About
• “Transitions” on page 2-21
• “Broadcast Local Events to Synchronize Parallel States” on page 14-23
• “Supported Operations for Chart Data” on page 16-4
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Control Chart Execution by Using Default Transitions

Default Transition in Exclusive (OR) Decomposition
This example shows a transition from an OR state to a superstate with exclusive (OR) decomposition,
where a default transition to a substate is defined.

Initially, the chart is asleep. State A is active. Event E_one occurs and awakens the chart, which
processes the event from the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of E_one. There is a valid
transition from state A to superstate B.

2 State A exit actions (exitA()) execute and complete.
3 State A is marked inactive.
4 The transition action, A, is executed and completed.
5 State B is marked active.
6 State B entry actions (entB()) execute and complete.
7 State B detects a valid default transition to state B.B1.
8 State B.B1 is marked active.
9 State B.B1 entry actions (entB1()) execute and complete.
10 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with event E_one when
state A is initially active.

Default Transition to a Junction
The following example shows the behavior of a default transition to a connective junction. The default
transition to the junction is valid only when state B is first entered, not every time the chart wakes
up.
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For this example, initially, the chart is asleep. State B.B1 is active. Condition [C_two] is true. An
event occurs and awakens the chart, which processes the event from the root down through the
hierarchy:

1 State B checks to see if there is a valid transition as a result of any event. There is none.
2 State B during actions (durB()) execute and complete.
3 State B1 checks to see if there is a valid transition as a result of any event. There is none.
4 State B1 during actions (durB1()) execute and complete.

This sequence completes the execution of this Stateflow chart associated with the occurrence of any
event.

Default Transition and a History Junction
This example shows the behavior of a superstate with a default transition and a history junction. The
chart uses implicit ordering of outgoing transitions (see “Implicit Ordering” on page 3-41).
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Initially, the chart is asleep. State A is active. A history junction records the fact that state B4 is the
previously active substate of superstate B. Event E_one occurs and awakens the chart, which
processes the event from the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of E_one.

There is a valid transition from state A to superstate B.
2 State A exit actions (exitA()) execute and complete.
3 State A is marked inactive.
4 State B is marked active.
5 State B entry actions (entB()) execute and complete.
6 State B uses the history junction to determine the substate destination of the transition into the

superstate.

The history junction indicates that substate B.B4 was the last active substate, which becomes the
destination of the transition.

7 State B.B4 is marked active.
8 State B.B4 entry actions (entB4()) execute and complete.
9 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with event E_one.

Labeled Default Transitions
This example shows the use of a default transition with a label. The chart uses implicit ordering of
outgoing transitions (see “Implicit Ordering” on page 3-41).
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Initially, the chart is asleep. State A is active. Event E_one occurs and awakens the chart, which
processes the event from the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of E_one.

There is a valid transition from state A to superstate B. The transition is valid if event E_one or
E_two occurs.

2 State A exit actions execute and complete (exitA()).
3 State A is marked inactive.
4 State B is marked active.
5 State B entry actions execute and complete (entB()).
6 State B detects a valid default transition to state B.B1. The default transition is valid as a result of

E_one.
7 State B.B1 is marked active.
8 State B.B1 entry actions execute and complete (entB1()).
9 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with event E_one when
state A is initially active.
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Process Events in States Containing Inner Transitions

Process Events with an Inner Transition in an Exclusive (OR) State
This example shows what happens when processing three events using an inner transition in an
exclusive (OR) state.

Process One Event in an Exclusive (OR) State

This example shows the behavior of an inner transition. The chart uses implicit ordering of outgoing
transitions (see “Implicit Ordering” on page 3-41).

Initially, the chart is asleep. State A is active. Condition [C_one] is false. Event E_one occurs and
awakens the chart, which processes the event from the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of E_one. A potentially valid
transition from state A to state B is detected. However, the transition is not valid, because
[C_one] is false.

2 State A during actions (durA()) execute and complete.
3 State A checks its children for a valid transition and detects a valid inner transition.
4 State A remains active. The inner transition action A_two is executed and completed. Because it

is an inner transition, state A's exit and entry actions are not executed.
5 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with event E_one.

Process a Second Event in an Exclusive (OR) State

Using the previous example, this example shows what happens when a second event E_one occurs.
The chart uses implicit ordering of outgoing transitions (see “Implicit Ordering” on page 3-41).
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Initially, the chart is asleep. State A is still active. Condition [C_one] is true. Event E_one occurs and
awakens the chart, which processes the event from the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of E_one.

The transition from state A to state B is now valid because [C_one] is true.
2 State A exit actions (exitA()) execute and complete.
3 State A is marked inactive.
4 The transition action A_one is executed and completed.
5 State B is marked active.
6 State B entry actions (entB()) execute and complete.
7 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with event E_one.

Process a Third Event in an Exclusive (OR) State

Using the previous example, this example shows what happens when a third event, E_two, occurs.
The chart uses implicit ordering of outgoing transitions (see “Implicit Ordering” on page 3-41).

Initially, the chart is asleep. State B is now active. Condition [C_two] is false. Event E_two occurs
and awakens the chart, which processes the event from the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of E_two.

A potentially valid transition from state B to state A is detected. The transition is not valid
because [C_two] is false. However, active state B has a valid self-loop transition.

2 State B exit actions (exitB()) execute and complete.
3 State B is marked inactive.
4 The self-loop transition action, A_four, executes and completes.
5 State B is marked active.
6 State B entry actions (entB()) execute and complete.
7 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with event E_two. This
example shows the difference in behavior between inner and self-loop transitions.
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Process Events with an Inner Transition to a Connective Junction
This example shows the behavior of handling repeated events using an inner transition to a
connective junction.

Process the First Event with an Inner Transition to a Connective Junction

This example shows the behavior of an inner transition to a connective junction for the first event.
The chart uses implicit ordering of outgoing transitions (see “Implicit Ordering” on page 3-41).

Initially, the chart is asleep. State A1 is active. Condition [C_two] is true. Event E_one occurs and
awakens the chart, which processes the event from the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition at the root level as a result of E_one.
There is no valid transition.

2 State A during actions (durA()) execute and complete.
3 State A checks itself for valid transitions and detects that there is a valid inner transition to a

connective junction.

The conditions are evaluated to determine whether one of the transitions is valid. Because
implicit ordering applies, the segments labeled with a condition are evaluated before the
unlabeled segment. The evaluation starts from a 12 o'clock position on the junction and
progresses in a clockwise manner. Because [C_two] is true, the inner transition to the junction
and then to state A.A2 is valid.

4 State A.A1 exit actions (exitA1()) execute and complete.
5 State A.A1 is marked inactive.
6 State A.A2 is marked active.
7 State A.A2 entry actions (entA2()) execute and complete.
8 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with event E_one when
state A1 is active and condition [C_two] is true.
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Process a Second Event with an Inner Transition to a Connective Junction

Continuing the previous example, this example shows the behavior of an inner transition to a junction
when a second event E_one occurs. The chart uses implicit ordering of outgoing transitions (see
“Implicit Ordering” on page 3-41).

Initially, the chart is asleep. State A2 is active. Condition [C_two] is true. Event E_one occurs and
awakens the chart, which processes the event from the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition at the root level as a result of E_one.
There is no valid transition.

2 State A during actions (durA()) execute and complete.
3 State A checks itself for valid transitions and detects a valid inner transition to a connective

junction.

The conditions are evaluated to determine whether one of the transitions is valid. Because
implicit ordering applies, the segments labeled with a condition are evaluated before the
unlabeled segment. The evaluation starts from a 12 o'clock position on the junction and
progresses in a clockwise manner. Because [C_two] is true, the inner transition to the junction
and then to state A.A2 is valid.

4 State A.A2 exit actions (exitA2()) execute and complete.
5 State A.A2 is marked inactive.
6 State A.A2 is marked active.
7 State A.A2 entry actions (entA2()) execute and complete.
8 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with event E_one when
state A2 is active and condition [C_two] is true. For a state with a valid inner transition, an active
substate can be exited and reentered immediately.

Inner Transition to a History Junction
This example shows the behavior of an inner transition to a history junction.
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Initially, the chart is asleep. State A.A1 is active. History information exists because superstate A is
active. Event E_one occurs and awakens the chart, which processes the event from the root down
through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of E_one. There is no valid
transition.

2 State A during actions execute and complete.
3 State A checks itself for valid transitions and detects that there is a valid inner transition to a

history junction. Based on the history information, the last active state, A.A1, is the destination
state.

4 State A.A1 exit actions execute and complete.
5 State A.A1 is marked inactive.
6 State A.A1 is marked active.
7 State A.A1 entry actions execute and complete.
8 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with event E_one when
there is an inner transition to a history junction and state A.A1 is active. For a state with a valid inner
transition, an active substate can be exited and reentered immediately.
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Represent Multiple Paths by Using Connective Junctions

Label Format for Transition Segments
The label format for a transition segment entering a junction is the same as for transitions entering
states, as shown in the following example. The chart uses implicit ordering of outgoing transitions
(see “Implicit Ordering” on page 3-41).

Execution of a transition in this example occurs as follows:

1 When an event occurs, state S1 is checked for an outgoing transition with a matching event
specified.

2 If a transition with a matching event is found, the transition condition for that transition (in
brackets) is evaluated.

3 If condition_1 evaluates to true, the condition action condition_action (in braces) is
executed.

4 The outgoing transitions from the junction are checked for a valid transition. Since
condition_2 is true, a valid state-to-state transition from S1 to S2 exists.

5 State S1 exit actions execute and complete.
6 State S1 is marked inactive.
7 The transition action transition_action executes and completes.
8 The completed state-to-state transition from S1 to S2 occurs.
9 State S2 is marked active.
10 State S2 entry actions execute and complete.

If-Then-Else Decision Construct
This example shows the behavior of an if-then-else decision construct. The chart uses implicit
ordering of outgoing transitions (see “Implicit Ordering” on page 3-41).
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Initially, the chart is asleep. State A is active. Condition [C_two] is true. Event E_one occurs and
awakens the chart, which processes the event from the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of E_one.

A valid transition segment from state A to the connective junction exists. Because implicit
ordering applies, the transition segments beginning from a 12 o'clock position on the connective
junction are evaluated for validity. The first transition segment, labeled with condition [C_one], is
not valid. The next transition segment, labeled with the condition [C_two], is valid. The complete
transition from state A to state C is valid.

2 State A exit actions (exitA()) execute and complete.
3 State A is marked inactive.
4 State C is marked active.
5 State C entry actions (entC()) execute and complete.
6 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with event E_one.

Self-Loop Transition
This example shows the behavior of a self-loop transition using a connective junction. The chart uses
implicit ordering of outgoing transitions (see “Implicit Ordering” on page 3-41).
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Initially, the chart is asleep. State A is active. Condition [C_one] is false. Event E_one occurs and
awakens the chart, which processes the event from the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of E_one. A valid transition
segment from state A to the connective junction exists. Because implicit ordering applies, the
transition segment labeled with a condition is evaluated for validity. Because the condition
[C_one] is not valid, the complete transition from state A to state B is not valid. The transition
segment from the connective junction back to state A is valid.

2 State A exit actions (exitA()) execute and complete.
3 State A is marked inactive.
4 The transition action A_two is executed and completed.
5 State A is marked active.
6 State A entry actions (entA()) execute and complete.
7 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with event E_one.

For-Loop Construct
This example shows the behavior of a for loop using a connective junction. The chart uses implicit
ordering of outgoing transitions (see “Implicit Ordering” on page 3-41).
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Initially, the chart is asleep. State A is active. Event E_one occurs and awakens the chart, which
processes the event from the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of E_one. There is a valid
transition segment from state A to the connective junction. The transition segment condition
action, i = 0, executes and completes. Of the two transition segments leaving the connective
junction, the transition segment that is a self-loop back to the connective junction evaluates next
for validity. That segment takes priority in evaluation because it has a condition, whereas the
other segment is unlabeled. This evaluation behavior reflects implicit ordering of outgoing
transitions in the chart.

2 The condition [i < 10] evaluates as true. The condition actions i++ and a call to func1
execute and complete until the condition becomes false. Because a connective junction is not a
final destination, the transition destination is still unknown.

3 The unconditional segment to state B is now valid. The complete transition from state A to state B
is valid.

4 State A exit actions (exitA()) execute and complete.
5 State A is marked inactive.
6 State B is marked active.
7 State B entry actions (entB()) execute and complete.
8 The chart goes back to sleep.

This sequence completes the execution of this chart associated with event E_one.

Flow Chart Notation
This example shows the behavior of a Stateflow chart that uses flow chart notation. The chart uses
implicit ordering of outgoing transitions (see “Implicit Ordering” on page 3-41).
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Initially, the chart is asleep. State A.A1 is active. The condition [C_one()] is initially true. Event
E_one occurs and awakens the chart, which processes the event from the root down through the
hierarchy:

1 The chart root checks to see if there is a valid transition as a result of E_one. There is no valid
transition.

2 State A checks itself for valid transitions and detects a valid inner transition to a connective
junction.

3 The next possible segments of the transition are evaluated. Only one outgoing transition exists,
and it has a condition action defined. The condition action executes and completes.

4 The next possible segments are evaluated. Two outgoing transitions exist: a conditional self-loop
transition and an unconditional transition segment. Because implicit ordering applies, the
conditional transition segment takes precedence. Since the condition [C_one()] is true, the
self-loop transition is taken. Since a final transition destination has not been reached, this self-
loop continues until [C_one()] is false.

Assume that after five iterations, [C_one()] is false.
5 The next possible transition segment (to the next connective junction) is evaluated. It is an

unconditional transition segment with a condition action. The transition segment is taken and the
condition action, {d=my_func()}, executes and completes. The returned value of d is 84.

6 The next possible transition segment is evaluated. Three outgoing transition segments exist: two
conditional and one unconditional. Because implicit ordering applies, the segment labeled with
the condition [d < 100] evaluates first based on the geometry of the two outgoing conditional
transition segments. Because the returned value of d is 84, the condition [d < 100] is true and
this transition to the destination state A.A1 is valid.

7 State A.A1 exit actions (exitA1()) execute and complete.
8 State A.A1 is marked inactive.
9 State A.A1 is marked active.
10 State A.A1 entry actions (entA1()) execute and complete.
11 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with event E_one.
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Transition from a Common Source to Multiple Destinations
This example shows the behavior of transitions from a common source to multiple conditional
destinations using a connective junction. The chart uses implicit ordering of outgoing transitions (see
“Implicit Ordering” on page 3-41).

Initially, the chart is asleep. State A is active. Event E_two occurs and awakens the chart, which
processes the event from the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of E_two. A valid transition
segment exists from state A to the connective junction. Because implicit ordering applies,
evaluation of segments with equivalent label priority begins from a 12 o'clock position on the
connective junction and progresses clockwise. The first transition segment, labeled with event
E_one, is not valid. The next transition segment, labeled with event E_two, is valid. The
complete transition from state A to state C is valid.

2 State A exit actions (exitA()) execute and complete.
3 State A is marked inactive.
4 State C is marked active.
5 State C entry actions (entC()) execute and complete.
6 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with event E_two.

Resolve Equally Valid Transition Paths
What Are Conflicting Transitions?

Conflicting transitions are two equally valid paths from the same source in a Stateflow chart during
simulation. In the case of a conflict, the chart evaluates equally valid transitions based on ordering
mode in the chart: explicit or implicit.

• For explicit ordering (the default mode), evaluation of conflicting transitions occurs based on the
order you specify for each transition. For details, see “Explicit Ordering” on page 3-41.

• For implicit ordering in C charts, evaluation of conflicting transitions occurs based on internal
rules described in “Implicit Ordering” on page 3-41.

Example of Conflicting Transitions

The following chart has two equally valid transition paths:
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Conflict Resolution for Implicit Ordering

For implicit ordering, the chart evaluates multiple outgoing transitions with equal label priority in a
clockwise progression starting from the twelve o'clock position on the state. In this case, the
transition from state A to state B occurs.

Conflict Resolution for Explicit Ordering

For explicit ordering, the chart resolves the conflict by evaluating outgoing transitions in the order
that you specify explicitly. For example, if you right-click the transition from state A to state C and
select Execution Order > 1 from the context menu, the chart evaluates that transition first. In this
case, the transition from state A to state C occurs.

How the Transition Conflict Occurs

The default transition to state A assigns data a equal to 1 and data b equal to 10. The during action
of state A increments a and decrements b during each time step. The transition from state A to state
B is valid if the condition [a > 4] is true. The transition from state A to state C is valid if the
condition [b < 7] is true. During simulation, there is a time step where state A is active and both
conditions are true. This issue is a transition conflict.

Transition from Multiple Sources to a Common Destination
This example shows the behavior of transitions from multiple sources to a single destination using a
connective junction.

Initially, the chart is asleep. State A is active. Event E_one occurs and awakens the chart, which
processes the event from the root down through the hierarchy:
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1 The chart root checks to see if there is a valid transition as a result of E_one. A valid transition
segment exists from state A to the connective junction and from the junction to state C.

2 State A exit actions (exitA()) execute and complete.
3 State A is marked inactive.
4 State C is marked active.
5 State C entry actions (entC()) execute and complete.
6 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with event E_one.

Transition from a Source to a Destination Based on a Common Event
This example shows the behavior of transitions from multiple sources to a single destination based on
the same event using a connective junction.

Initially, the chart is asleep. State B is active. Event E_one occurs and awakens the chart, which
processes the event from the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of E_one. A valid transition
segment exists from state B to the connective junction and from the junction to state C.

2 State B exit actions (exitB()) execute and complete.
3 State B is marked inactive.
4 State C is marked active.
5 State C entry actions (entC()) execute and complete.
6 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with event E_one.

Backtrack in Flow Charts
This example shows the behavior of transitions with junctions that force backtracking behavior in
flow charts. The chart uses implicit ordering of outgoing transitions (see “Implicit Ordering” on page
3-41).
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Initially, state A is active and conditions c1, c2, and c3 are true:

1 The chart root checks to see if there is a valid transition from state A.

There is a valid transition segment marked with the condition c1 from state A to a connective
junction.

2 Condition c1 is true and action a1 executes.
3 Condition c3 is true and action a3 executes.
4 Condition c4 is not true and control flow backtracks to state A.
5 The chart root checks to see if there is another valid transition from state A.

There is a valid transition segment marked with the condition c2 from state A to a connective
junction.

6 Condition c2 is true and action a2 executes.
7 Condition c3 is true and action a3 executes.
8 Condition c4 is not true and control flow backtracks to state A.
9 The chart goes to sleep.

The preceding example shows the expected behavior of executing both actions a1 and a2. Another
unexpected behavior is the execution of action a3 twice. To resolve this problem, consider adding
unconditional transitions to terminating junctions.

The terminating junctions allow flow to end if either c3 or c4 is not true. This design leaves state A
active without executing unnecessary actions.
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Control Chart Execution by Using Event Actions in a Superstate
The following example shows the use of event actions in a superstate.

Initially, the chart is asleep. State A.A1 is active. Event E_three occurs and awakens the chart,
which processes the event from the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of E_three. No valid
transition exists.

2 State A during actions (durA()) execute and complete.
3 State A executes and completes the on event E_three action (A_one).
4 State A checks its children for valid transitions. No valid transitions exist.
5 State A1 during actions (durA1()) execute and complete.
6 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with event E_three.
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Undirected Broadcast Events in Parallel States

Broadcast Events in State Actions
This example shows the behavior of event broadcast actions in parallel states. The chart uses implicit
ordering of parallel states (see “Implicit Ordering of Parallel States” on page 3-62).

Initially, the chart is asleep. Parallel substates A.A1.A1a and A.A2.A2a are active. Event E_one
occurs and awakens the chart, which processes the event from the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition at the root level as a result of E_one. No
valid transition exists.

2 State A during actions (durA()) execute and complete.
3 The children of state A are parallel (AND) states. Because implicit ordering applies, the states are

evaluated and executed from left to right and top to bottom. State A.A1 is evaluated first. State
A.A1 during actions (durA1()) execute and complete. State A.A1 executes and completes the
on E_one action and broadcasts event E_two. The during and on event_name actions are
processed based on their order of appearance in the state label:

a The broadcast of event E_two awakens the chart a second time. The chart root checks to see
if there is a valid transition as a result of E_two. No valid transition exists.

b State A during actions (durA()) execute and complete.
c State A checks its children for valid transitions. No valid transitions exist.
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d State A's children are evaluated starting with state A.A1. State A.A1 during actions
(durA1()) execute and complete. State A.A1 is evaluated for valid transitions. There are no
valid transitions as a result of E_two within state A1.

e State A1a's during actions (durA1a()) execute.
f State A.A2 is evaluated. State A.A2 during actions (durA2()) execute and complete. State

A.A2 checks for valid transitions. State A.A2 has a valid transition as a result of E_two from
state A.A2.A2a to state A.A2.A2b.

g State A.A2.A2a exit actions (exitA2a()) execute and complete.
h State A.A2.A2a is marked inactive.
i State A.A2.A2b is marked active.
j State A.A2.A2b entry actions (entA2b()) execute and complete.

4 The processing of E_one continues once the on event broadcast of E_two has been processed.
State A.A1 checks for any valid transitions as a result of event E_one. A valid transition exists
from state A.A1.A1a to state A.A1.A1b.

5 State A.A1.A1a executes and completes exit actions (exitA1a).
6 State A.A1.A1a is marked inactive.
7 State A.A1.A1b is marked active.
8 State A.A1.A1b entry actions (entA1b()) execute and complete.
9 Parallel state A.A2 is evaluated next. State A.A2 during actions (durA2()) execute and

complete. There are no valid transitions as a result of E_one.
10 State A.A2.A2b during actions (durA2b()) execute and complete.

State A.A2.A2b is now active as a result of the processing of the on event broadcast of E_two.
11 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with event E_one and the
on event broadcast to a parallel state of event E_two. The final chart activity is that parallel
substates A.A1.A1b and A.A2.A2b are active.

Tip Avoid using undirected local event broadcasts. Undirected local event broadcasts can cause
unwanted recursive behavior in your chart. Instead, send local events by using directed broadcasts.
For more information, see “Broadcast Local Events to Synchronize Parallel States” on page 14-23.

You can set the diagnostic level for detecting undirected local event broadcasts. In the Configuration
Parameters dialog box, open the Diagnostics > Stateflow pane and set the Undirected event
broadcasts parameter to none, warning, or error. The default setting is warning.

Broadcast Events in Transition Actions
This example shows the behavior of an event broadcast transition action that includes a nested event
broadcast in a parallel state. The chart uses implicit ordering of parallel states (see “Implicit
Ordering of Parallel States” on page 3-62).

A Undirected Broadcast Events in Parallel States

A-34



Start of Event E_one Processing

Initially, the chart is asleep. Parallel substates A.A1.A1a and A.A2.A2a are active. Event E_one
occurs and awakens the chart, which processes the event from the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of E_one. There is no valid
transition.

2 State A during actions (durA()) execute and complete.
3 State A's children are parallel (AND) states. Because implicit ordering applies, the states are

evaluated and executed from left to right and top to bottom. State A.A1 is evaluated first. State
A.A1during actions (durA1()) execute and complete.

4 State A.A1 checks for any valid transitions as a result of event E_one. There is a valid transition
from state A.A1.A1a to state A.A1.A1b.

5 State A.A1.A1a executes and completes exit actions (exitA1a).
6 State A.A1.A1a is marked inactive.

Event E_two Preempts E_one

1 The transition action that broadcasts event E_two executes and completes:

a The broadcast of event E_two now preempts the transition from state A1a to state A1b that
event E_one triggers.

b The broadcast of event E_two awakens the chart a second time. The chart root checks to see
if there is a valid transition as a result of E_two. No valid transition exists.
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c State A during actions (durA()) execute and complete.
d State A's children are evaluated starting with state A.A1. State A.A1during actions

(durA1()) execute and complete. State A.A1 is evaluated for valid transitions. There are no
valid transitions as a result of E_two within state A1.

e State A.A2 is evaluated. State A.A2 during actions (durA2()) execute and complete. State
A.A2 checks for valid transitions. State A.A2 has a valid transition as a result of E_two from
state A.A2.A2a to state A.A2.A2b.

f State A.A2.A2a exit actions (exitA2a()) execute and complete.
g State A.A2.A2a is marked inactive.
h State A.A2.A2b is marked active.
i State A.A2.A2b entry actions (entA2b()) execute and complete.

Event E_one Processing Resumes

1 State A.A1.A1b is marked active.
2 State A.A1.A1b entry actions (entA1b()) execute and complete.
3 Parallel state A.A2 is evaluated next. State A.A2 during actions (durA2()) execute and

complete. There are no valid transitions as a result of E_one.
4 State A.A2.A2b during actions (durA2b()) execute and complete.

State A.A2.A2b is now active as a result of the processing of event broadcast E_two.
5 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with event E_one and the
event broadcast on a transition action to a parallel state of event E_two. The final chart activity is
that parallel substates A.A1.A1b and A.A2.A2b are active.

Tip Avoid using undirected local event broadcasts. Undirected local event broadcasts can cause
unwanted recursive behavior in your chart. Instead, send local events by using directed broadcasts.
For more information, see “Broadcast Local Events to Synchronize Parallel States” on page 14-23.

You can set the diagnostic level for detecting undirected local event broadcasts. In the Configuration
Parameters dialog box, open the Diagnostics > Stateflow pane and set the Undirected event
broadcasts parameter to none, warning, or error. The default setting is warning.

Broadcast Events in Condition Actions
This example shows the behavior of a condition action event broadcast in a parallel (AND) state. The
chart uses implicit ordering of parallel states (see “Implicit Ordering of Parallel States” on page 3-
62).
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Initially, the chart is asleep. Parallel substates A.A1.A1a and A.A2.A2a are active. Event E_one
occurs and awakens the chart, which processes the event from the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of E_one. No valid transition
exists.

2 State A during actions (durA()) execute and complete.
3 State A's children are parallel (AND) states. Because implicit ordering applies, the states are

evaluated and executed from top to bottom, and from left to right. State A.A1 is evaluated first.
State A.A1 during actions (durA1()) execute and complete.

4 State A.A1 checks for any valid transitions as a result of event E_one. A valid transition from
state A.A1.A1a to state A.A1.A1b exists. A valid condition action also exists. The condition
action event broadcast of E_two executes and completes. State A.A1.A1a is still active:

a The broadcast of event E_two awakens the Stateflow chart a second time. The chart root
checks to see if there is a valid transition as a result of E_two. There is no valid transition.

b State A during actions (durA()) execute and complete.
c State A's children are evaluated starting with state A.A1. State A.A1 during actions

(durA1()) execute and complete. State A.A1 is evaluated for valid transitions. There are no
valid transitions as a result of E_two within state A1.

d State A1a during actions (durA1a()) execute.
e State A.A2 is evaluated. State A.A2 during actions (durA2()) execute and complete. State

A.A2 checks for valid transitions. State A.A2 has a valid transition as a result of E_two from
state A.A2.A2a to state A.A2.A2b.
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f State A.A2.A2a exit actions (exitA2a()) execute and complete.
g State A.A2.A2a is marked inactive.
h State A.A2.A2b is marked active.
i State A.A2.A2b entry actions (entA2b()) execute and complete.

5 State A.A1.A1a executes and completes exit actions (exitA1a).
6 State A.A1.A1a is marked inactive.
7 State A.A1.A1b is marked active.
8 State A.A1.A1b entry actions (entA1b()) execute and complete.
9 Parallel state A.A2 is evaluated next. State A.A2 during actions (durA2()) execute and

complete. There are no valid transitions as a result of E_one.
10 State A.A2.A2b during actions (durA2b()) execute and complete.

State A.A2.A2b is now active as a result of the processing of the condition action event
broadcast of E_two.

11 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with event E_one and the
event broadcast on a condition action to a parallel state of event E_two. The final chart activity is
that parallel substates A.A1.A1b and A.A2.A2b are active.

Tip Avoid using undirected local event broadcasts. Undirected local event broadcasts can cause
unwanted recursive behavior in your chart. Instead, send local events by using directed broadcasts.
For more information, see “Broadcast Local Events to Synchronize Parallel States” on page 14-23.

You can set the diagnostic level for detecting undirected local event broadcasts. In the Configuration
Parameters dialog box, open the Diagnostics > Stateflow pane and set the Undirected event
broadcasts parameter to none, warning, or error. The default setting is warning.
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Broadcast Local Events in Parallel States

Directed Event Broadcast Using Send
This example shows the behavior of directed event broadcast using the
send(event_name,state_name) syntax on a transition. The chart uses implicit ordering of parallel
states (see “Implicit Ordering of Parallel States” on page 3-62).

Initially, the chart is asleep. Parallel substates A.A1 and B.B1 are active, which implies that parallel
(AND) superstates A and B are also active. The condition [data1==1] is true. The event E_one
belongs to the chart and is visible to both A and B.

After waking up, the chart checks for valid transitions at every level of the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of the event. There is no valid
transition.

2 State A checks for any valid transitions as a result of the event. Because the condition
[data1==1] is true, there is a valid transition from state A.A1 to state A.A2.

3 The action send(E_one,B) executes:

a The broadcast of event E_one reaches state B. Because state B is active, that state receives
the event broadcast and checks to see if there is a valid transition. There is a valid transition
from B.B1 to B.B2.

b State B.B1 exit actions (exitB1()) execute and complete.
c State B.B1 becomes inactive.
d State B.B2 becomes active.
e State B.B2 entry actions (entB2()) execute and complete.

4 State A.A1 exit actions (exitA1()) execute and complete.
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5 State A.A1 becomes inactive.
6 State A.A2 becomes active.
7 State A.A2 entry actions (entA2()) execute and complete.

This sequence completes execution of a chart with a directed event broadcast to a parallel state.

Directed Event Broadcast Using Qualified Event Name
This example shows the behavior of directed event broadcast using a qualified event name on a
transition. The chart uses implicit ordering of parallel states (see “Implicit Ordering of Parallel
States” on page 3-62).

The only differences from the chart in “Directed Event Broadcast Using Send” on page A-39 are:

• The event E_one belongs to state B and is visible only to that state.
• The action send(E_one,B) is now send(B.E_one).

Using a qualified event name is necessary because E_one is not visible to state A.

After waking up, the chart checks for valid transitions at every level of the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of the event. There is no valid
transition.

2 State A checks for any valid transitions as a result of the event. Because the condition
[data1==1] is true, there is a valid transition from state A.A1 to state A.A2.

3 The action send(B.E_one) executes and completes:

a The broadcast of event E_one reaches state B. Because state B is active, that state receives
the event broadcast and checks to see if there is a valid transition. There is a valid transition
from B.B1 to B.B2.
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b State B.B1 exit actions (exitB1()) execute and complete.
c State B.B1 becomes inactive.
d State B.B2 becomes active.
e State B.B2 entry actions (entB2()) execute and complete.

4 State A.A1 exit actions (exitA1()) execute and complete.
5 State A.A1 becomes inactive.
6 State A.A2 becomes active.
7 State A.A2 entry actions (entA2()) execute and complete.

This sequence completes execution of a chart with a directed event broadcast using a qualified event
name to a parallel state.

See Also
send

More About
• “Broadcast Local Events to Synchronize Parallel States” on page 14-23
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Simulation Data Inspector

• “View Data in the Simulation Data Inspector” on page 36-2
• “Import Data from a CSV File into the Simulation Data Inspector” on page 36-11
• “Microsoft Excel Import, Export, and Logging Format” on page 36-16
• “Configure the Simulation Data Inspector” on page 36-24
• “How the Simulation Data Inspector Compares Data” on page 36-32
• “Save and Share Simulation Data Inspector Data and Views” on page 36-37
• “Inspect and Compare Data Programmatically” on page 36-43
• “Limit the Size of Logged Data” on page 36-48
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View Data in the Simulation Data Inspector
You can use the Simulation Data Inspector to visualize the data you generate throughout the design
process. Simulation data that you log in a Simulink model logs to the Simulation Data inspector. You
can also import test data and other recorded data into the Simulation Data Inspector to inspect and
analyze it alongside the logged simulation data. The Simulation Data Inspector offers several types of
plots, which allow you to easily create complex visualizations of your data.

View Logged Data
Logged signals as well as outputs and states logged using the Dataset format automatically log to
the Simulation Data Inspector when you simulate a model. You can also record other kinds of
simulation data so the data appears in the Simulation Data Inspector at the end of the simulation. To
see states and output data logged using a format other than Dataset in the Simulation Data
Inspector, in the Model Configuration Parameters Data Import/Export pane, select the Record
logged workspace data in Simulation Data Inspector option.

Note When you log states and outputs using the Structure or Array format, you must also log
time for the data to record to the Simulation Data Inspector.

The Simulation Data Inspector displays available data in the table in the Inspect pane. To plot a
signal, select the check box next to the signal. You can modify the layout and add different
visualizations to analyze the simulation data. For more information, see “Create Plots Using the
Simulation Data Inspector” (Simulink).
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The Simulation Data Inspector manages incoming simulation data using the archive. By default, the
previous run moves to the archive when you start a new simulation. You can plot signals from the
archive, or you can drag runs of interest back into the work area.

Import Data from the Workspace or a File
You can import data from the base workspace or from a file to view on its own or alongside simulation
data. The Simulation Data Inspector supports all built-in data types and many data formats for
importing data from the workspace. In general, whatever the format, sample values must be paired
with sample times. The Simulation Data Inspector allows up to 8000 channels per signal in a run
created from imported workspace data.

You can also import data from these types of files:

• MAT file
• CSV file — Format data as shown in “Import Data from a CSV File into the Simulation Data

Inspector” (Simulink).
• Microsoft® Excel file — Format data as described in “Microsoft Excel Import, Export, and Logging

Format” (Simulink).
• MDF file — MDF file import is supported for Linux® and Windows operating systems. The MDF file

must have a .mdf, .mf4, .mf3, .data, or .dat file extension and contain data with only integer
and floating data types.
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• ULG file — Flight log data import requires a UAV Toolbox license.

To import data from the workspace or from a file that is saved in a data or file format that the
Simulation Data Inspector does not support, you can write your own workspace data or file reader to
import the data using the io.reader class. You can also write a custom reader to use instead of the
built-in reader for supported file types. For examples, see:

• “Import Data Using a Custom File Reader” (Simulink)
• “Import Workspace Variables Using a Custom Data Reader” (Simulink)

To import data, select the Import button in the Simulation Data Inspector. 

In the Import dialog, you can choose to import data from the workspace or from a file. The table
below the options shows data available for import. If you do not see your workspace variable or file
contents in the table, that means the Simulation Data Inspector does not have a built-in or registered
reader that supports that data. You can select which data to import using the check boxes, and you
can choose whether to import that data into an existing run or a new run.
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When you import data into a new run, the run always appears in the work area. You can manually
move imported runs to the archive.

View Complex Data
To view complex data in the Simulation Data Inspector, import the data or log the signals to the
Simulation Data Inspector. You can control how to visualize the complex signal using the Properties
pane in the Simulation Data Inspector and in the Instrumentation Properties for the signal in the
model. To access the Instrumentation Properties for a signal, right-click the logging badge for the
signal and select Properties.

You can specify the Complex Format as Magnitude, Magnitude-Phase, Phase, or Real-Imaginary. If
you select Magnitude-Phase or Real-Imaginary for the Complex Format, the Simulation Data
Inspector plots both components of the signal when you select the check box for the signal. For
signals in Real-Imaginary format, the Line Color specifies the color of the real component of the
signal, and the imaginary component is a different shade of the Line Color. For example, the
Rectangular QAM Modular Baseband signal on the lower graph displays the real component of
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the signal in light blue, matching the Line Color parameter, and the imaginary component is shown
in a darker shade of blue.

For signals in Magnitude-Phase format, the Line Color specifies the color of the magnitude
component, and the phase is displayed in a different shade of the Line Color.

View String Data
You can log and view string data with your signal data in the Simulation Data Inspector. For example,
consider this simple model. The value of the sine wave block controls whether the switch sends a
string reading Positive or Negative to the output.
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The plot shows the results of simulating the model. The string signal is shown at the bottom of the
graphical viewing area. The value of the signal is displayed inside a band, and transitions in the string
signal's value are marked with criss-crossed lines.

You can use cursors to inspect how the string signal values correspond with the sine signal's values.
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When you plot multiple string signals on a plot, the signals stack in the order they were simulated or
imported, with the most recent signal positioned at the top. For example, you might consider the
effect of changing the phase of the sine wave controlling the switch.
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View Frame-Based Data
Processing data in frames rather than point by point provides a performance boost needed in some
applications. To view frame-based data in the Simulation Data Inspector, you have to specify that the
signal is frame-based in the Instrumentation Properties for the signal. To access the
Instrumentation Properties dialog for a signal, right-click the signal's logging badge and select
Properties. To specify a signal as frame-based, select Columns as channels (frame based) for
Input processing.

View Event-Based Data
You can log or import event data to the Simulation Data Inspector. To view the logged event-based
data, select the check box next to Send: 1. The Simulation Data Inspector displays the data as a
stem plot, with each stem representing the number of events that occurred for a given sample time.
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See Also

More About
• Inspect Simulation Data (Simulink)
• Compare Simulation Data (Simulink)
• Share Simulation Data Inspector Data and Views on page 36-37
• Decide How to Visualize Data (Simulink)
• Dataset Conversion for Logged Data (Simulink)
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Import Data from a CSV File into the Simulation Data Inspector
To import data into the Simulation Data Inspector from a CSV file, format the data in the CSV file.
Then, you can import the data using the Simulation Data Inspector UI or the
Simulink.sdi.createRun function.

Tip When you want to import data from a CSV file where the data is formatted differently from the
specification in this topic, you can write your own file reader for the Simulation Data Inspector using
the io.reader class.

Basic File Format
In the simplest format, the first row in the CSV file is a header that lists the names of the signals in
the file. The first column is time. The name for the time column must be time, and the time values
must increase monotonically. The rows below the signal names list the signal values that correspond
to each time step.

The import operation does not support time data that includes Inf or NaN values or signal data that
includes Inf values. Empty or NaN signal values render as missing data. All built-in data types are
supported.

Multiple Time Vectors
When your data includes signals with different time vectors, the file can include more than one time
vector. Every time column must be named time. Time columns specify the sample times for signals to
the right, up to the next time vector. For example, the first time column defines the time for signal1
and signal2, and the second time column defines the time steps for signal3.
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Signal columns must have the same number of data points as the associated time vector.

Signal Metadata
You can specify signal metadata in the CSV file to indicate the signal data type, units, interpolation
method, block path, and port index. List metadata for each signal in rows between the signal name
and the signal data. Label metadata according to this table.

Signal Property Label Value
Data type Type: Built-in data type.
Units Unit: Supported unit. For example,

Unit: m/s specifies units of
meters per second.

For a list of supported units,
enter showunitslist in the
MATLAB Command Window.

Interpolation method Interp: linear, zoh for zero order
hold, or none.

Block Path BlockPath: Path to the block that generated
the signal.

Port Index PortIndex: Integer.

You can also import a signal with a data type defined by an enumeration class. Instead of using the
Type: label, use the Enum: label and specify the value as the name of the enumeration class. The
definition for the enumeration class must be saved on the MATLAB path.

When an imported file does not specify signal metadata, the Simulation Data Inspector assumes
double data type and linear interpolation. You can specify the interpolation method as linear, zoh
(zero-order hold), or none. If you do not specify units for the signals in your file, you can assign units
to the signals in the Simulation Data Inspector after you import the file.

You can specify any combination of metadata for each signal. Leave a blank cell for signals with less
specified metadata.
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Import Data from a CSV File
You can import data from a CSV file using the Simulation Data Inspector UI or using the
Simulink.sdi.createRun function.

To import data using the UI, open the Simulation Data Inspector using the Simulink.sdi.view
function or the Data Inspector button in the Simulink™ toolstrip. Then, click the Import button.

In the Import dialog, select the option to import data from a file and navigate in the file system to
select the file. After you select the file, data available for import shows in the table. You can choose
which signals to import and whether to import them to a new or existing run. This example imports
all available signals to a new run. After selecting the options, click the Import button.
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When you import data into a new run using the UI, the new run name includes the run number
followed by Imported_Data.

When you import data programmatically, you can specify the name of the imported run.

csvRunID = Simulink.sdi.createRun('CSV File Run','file','csvExampleData.csv');

See Also
Functions
Simulink.sdi.createRun

More About
• “View Data in the Simulation Data Inspector” (Simulink)
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• “Microsoft Excel Import, Export, and Logging Format” (Simulink)
• “Import Data Using a Custom File Reader” (Simulink)
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Microsoft Excel Import, Export, and Logging Format
Using the Simulation Data Inspector or Simulink Test, you can import data from a Microsoft Excel file
or export data to a Microsoft Excel file. You can also log data to an Excel file using the Record block.
The Simulation Data Inspector, Simulink Test, and the Record block all use the same file format, so
you can use the same Microsoft Excel file with multiple applications.

Tip When the format of the data in your Excel file does not match the specification in this topic, you
can write your own file reader to import the data using the io.reader class.

Basic File Format
In the simplest format, the first row in the Excel file is a header that lists the names of the signals in
the file. The first column is time. The name for the time column must be time, and the time values
must increase monotonically. The rows below the signal names list the signal values that correspond
to each time step.

The import operation does not support time data that includes Inf or NaN values or signal data that
includes Inf values. Empty or NaN signal values imported from the Excel file render as missing data
in the Simulation Data Inspector. All built-in data types are supported.

Multiple Time Vectors
When your data includes signals with different time vectors, the file can include more than one time
vector. Every time column must be named time. Time columns specify the sample times for signals to
the right, up to the next time vector. For example, the first time column defines the time for signal1
and signal2, and the second time column defines the time steps for signal3.
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Signal columns must have the same number of data points as the associated time vector.

Signal Metadata
The file can include metadata for signals such as data type, units, and interpolation method.
Metadata for each signal is listed in rows between the signal names and the signal data. You can
specify any combination of metadata for each signal. Leave a blank cell for signals with less specified
metadata.

Label each piece of metadata according to this table. The table also indicates which tools and
operations support each piece of metadata.
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Property Descriptions

Signal
Property

Label Values Simulation
Data Inspector
Import

Record Block
Logging and
Simulation
Data Inspector
Export

Simulink Test
Import and
Export

Data type Type: Built-in data
type.

Supported Supported Supported

Units Unit: Supported unit.
For example,
Unit: m/s
specifies units
of meters per
second.

For a list of
supported units,
enter
showunitslis
t in the
MATLAB
Command
Window.

Supported Supported Supported

Interpolation
method

Interp: linear, zoh
for zero order
hold, or none.

Supported Supported Supported

Synchronization
method

Sync: union or
intersection
.

Supported Not Supported

Metadata not
included in
exported file.

Supported

Relative
tolerance

RelTol: Percentage,
represented as
a decimal. For
example,
RelTol: 0.1
specifies a 10%
relative
tolerance.

Supported Not Supported

Metadata not
included in
exported file.

Supported

Absolute
tolerance

AbsTol: Numeric value. Supported Not Supported

Metadata not
included in
exported file.

Supported

Time tolerance TimeTol: Numeric value,
in seconds.

Supported Not Supported

Metadata not
included in
exported file.

Supported

36 Simulation Data Inspector

36-18



Signal
Property

Label Values Simulation
Data Inspector
Import

Record Block
Logging and
Simulation
Data Inspector
Export

Simulink Test
Import and
Export

Leading
tolerance

LeadingTol: Numeric value,
in seconds.

Supported

Only visible in
Simulink Test.

Not Supported

Metadata not
included in
exported file.

Supported

Lagging
tolerance

LaggingTol: Numeric Value,
in seconds.

Supported

Only visible in
Simulink Test.

Not Supported

Metadata not
included in
exported file.

Supported

Block Path BlockPath: Path to the
block that
generated the
signal.

Supported Supported Supported

Port Index PortIndex: Integer. Supported Supported Supported
Name Name: Signal name Supported Not Supported

Metadata not
included in
exported file.

Supported

When an imported file does not specify signal metadata, double data type, linear interpolation, and
union synchronization are used.

User-Defined Data Types
In addition to built-in data types, you can use other labels in place of the DataType: label to specify
fixed-point, enumerated, alias, and bus data types.
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Property Descriptions

Data Type Label Values Simulation
Data Inspector
Import

Record Block
Logging and
Simulation
Data Inspector
Export

Simulink Test
Import and
Export

Enumeration Enum: Name of the
enumeration
class.

Supported

Enumeration
class definition
must be saved
on the MATLAB
path.

Supported

Enumeration
class definition
must be saved
on the MATLAB
path.

Supported

Enumeration
class definition
must be saved
on the MATLAB
path.

Alias Alias: Name of a
Simulink.Ali
asType object
in the MATLAB
workspace.

Supported

For matrix and
complex
signals, specify
the alias data
type on the first
channel.

Not Supported Supported

For matrix and
complex
signals, specify
the alias data
type on the first
channel.

Fixed-point Fixdt: • fixdt
constructor.

• Name of a
Simulink.
NumericTy
pe object in
the MATLAB
workspace.

• Name of a
fixed-point
data type as
described in
“Fixed-Point
Numbers in
Simulink”
(Fixed-Point
Designer).

Supported Not Supported Supported

Bus Bus: Name of a
Simulink.Bus
object in the
MATLAB
workspace.

Supported Not Supported Supported

When you specify the type using the name of a Simulink.Bus object and the object is not in the
MATLAB workspace, the data still imports from the file. However, individual signals in the bus use
data types described in the file rather than data types defined in the Simulink.Bus object.
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Complex, Multidimensional, and Bus Signals
You can import and export complex, multidimensional, and bus signals using an Excel file. The signal
name for a column of data indicates whether that data is part of a complex, multidimensional, or bus
signal. Excel file import and export do not support array of bus signals.

Multidimensional signal names include index information in parentheses. For example, the signal
name for a column might be signal1(2,3). When you import data from a file that includes
multidimensional signal data, elements in the data not included in the file take zero sample values
with the same data type and complexity as the other elements.

Complex signal data is always in real-imaginary format. Signal names for columns containing complex
signal data include (real) and (imag) to indicate which data each column contains. When you
import data from a file that includes imaginary signal data without specifying values for the real
component of that signal, the signal values for the real component default to zero.

Multidimensional signals can contain complex data. The signal name includes the indication for the
index within the multidimensional signal and the real or imaginary tag. For example, signal1(1,3)
(real).

Dots in signal names specify the hierarchy for bus signals. For example:

• bus.y.a
• bus.y.b
• bus.x

Tip When the name of your signal includes characters that could make it appear as though it were
part of a matrix, complex signal, or bus, use the Name metadata option to specify the name you want
the imported signal to use in the Simulation Data Inspector and Simulink Test.

Function-Call Signals
Signal data specified in columns before the first time column is imported as one or more function-call
signals. The data in the column specifies the times at which the function-call signal was enabled. The
imported signals have a value of 1 for the times specified in the column. The time values for function-
call signals must be double, scalar, and real, and must increase monotonically.
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When you export data from the Simulation Data Inspector, function-call signals are formatted the
same as other signals, with a time column and a column for signal values.

Simulation Parameters
You can import data for parameter values used in simulation. In the Simulation Data Inspector, the
parameter values are shown as signals. Simulink Test uses imported parameter values to specify
values for those parameters in the tests it runs based on imported data.

Parameter data is specified using two or three columns. The first column specifies the parameter
names, with the cell in the header row for that column labeled Parameter:. The second column
specifies the value used for each parameter, with the cell in the header row labeled Value:.
Parameter data may also include a third column that contains the block path associated with each
parameter, with the cell in the header row labeled BlockPath:. Specify names, values, and block
paths for parameters starting in the first row that contains signal data, below rows used to specify
signal metadata. For example, this file specifies values for two parameters, X and Y.

Multiple Runs
You can include data for multiple runs in a single file. Within a sheet, you can divide data into runs by
labeling data with a simulation number and a source type, such as Input or Output. Specify the
simulation number and source type as additional signal metadata, using the label Simulation: for
the simulation number and the label Source: for the source type. The Simulation Data Inspector
uses the simulation number and source type only to determine which signals belong in each run.
Simulink Test uses the information to define inputs, parameters, and acceptance criteria for tests to
run based on imported data.

You do not need to specify the simulation number and output type for every signal. Signals to the
right of a signal with a simulation number and source use the same simulation number and source
until the next signal with a different source or simulation number. For example, this file defines data
for two simulations and imports into four runs in the Simulation Data Inspector:

• Run 1 contains signal1 and signal2.
• Run 2 contains signal3, X, and Y.
• Run 3 contains signal4.
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• Run 4 contains signal5.

You can also use sheets within the Microsoft Excel file to divide the data into runs and tests. When
you do not specify simulation number and source information, the data on each sheet is imported into
a separate run in the Simulation Data Inspector. When you export multiple runs from the Simulation
Data Inspector, the data for each run is saved on a separate sheet. When you import a Microsoft Excel
file that contains data on multiple sheets into Simulink Test, you are prompted to specify how to
import the data.

See Also
Simulink.sdi.createRun | Simulink.sdi.exportRun

More About
• “View Data in the Simulation Data Inspector” (Simulink)
• “Import Data from a CSV File into the Simulation Data Inspector” (Simulink)
• “Import Data Using a Custom File Reader” (Simulink)
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Configure the Simulation Data Inspector
The Simulation Data Inspector supports a wide range of use cases for analyzing and visualizing data.
You can modify preferences in the Simulation Data Inspector to match your visualization and analysis
requirements. The preferences that you specify persist between MATLAB sessions.

By specifying preferences in the Simulation Data Inspector, you can configure options such as:

• How signals and metadata are displayed.
• Which data automatically imports from parallel simulations.
• Where prior run data is retained and how much prior data to store.
• How much memory is used during save operations.
• The system of units used to display signals.

Open the Simulation Data Inspector preferences by selecting the Preferences button. 

Note You can restore all preferences in the Simulation Data Inspector to default values by clicking
Restore Defaults in the dialog or by using the Simulink.sdi.clearPreferences function.

Logged Data Size and Location
By default, simulation data logs to disk with data loaded into memory on demand, and the maximum
size of logged data is constrained only by available disk space. You can use the Disk Management
settings in the Simulation Data Inspector to directly control the size and location of logged data.

The Record mode setting specifies whether logged data is retained after simulation. When you
change the Record mode setting to View during simulation only, no logged data is available in the
Simulation Data Inspector or the workspace after the simulation completes. Only use this mode when
you do not want to save logged data. The Record mode setting reverts to View and record data
each time you start MATLAB. Changing the Record mode setting can affect other applications, such
as visualization tools. For details, see “View Data Only During Simulation” (Simulink).

To directly limit the size of logged data, you can specify a minimum amount of free disk space or a
maximum size for the logged data. By default, logged data must leave at least 100 MB of free disk
space with no maximum size limit. Specify the required disk space and maximum size in GB, and
specify 0 to apply no disk space requirement or no maximum size limit.

When you specify a minimum disk space requirement or a maximum size for logged data, you can
also specify whether to prioritize retaining data from the current simulation or data from prior
simulations when approaching the limit. By default, the Simulation Data Inspector prioritizes
retaining data for the current run by deleting data for prior runs. To prioritize retaining prior data,
change the When low on disk space setting to Keep prior runs and stop recording. You see a
warning message when prior runs are deleted and when recording is disabled. If recording is
disabled due to the size of logged data, you need to change the Record Mode back to View and
record data to continue logging data, after you have freed up disk space. For more information, see
“Specify a Minimum Disk Space Requirement or Maximum Size for Logged Data” (Simulink).

The Storage Mode setting specifies whether to log data to disk or to memory. By default, data logs to
disk. When you configure a parallel worker to log data to memory, data transfer back to the host is
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not supported. Logging data to memory is not supported for rapid accelerator simulations or models
deployed using Simulink Compiler™.

You can also specify the location of the temporary file that stores logged data. By default, data logs to
the temporary files directory on your computer. You may change the file location when you need to
log large amounts of data and a secondary drive provides more storage capacity. Logging data to a
network location can degrade performance.

Programmatic Use

You can programmatically configure and check each preference value.

Preference Functions
Record mode Simulink.sdi.setRecordData

Simulink.sdi.getRecordData
Required Free Space Simulink.sdi.setRequiredFreeSpace

Simulink.sdi.getRequiredFreeSpace
Max Disk Usage Simulink.sdi.setMaxDiskUsage

Simulink.sdi.getMaxDiskUsage
When low on disk space Simulink.sdi.setDeleteRunsOnLowSpace

Simulink.sdi.getDeleteRunsOnLowSpace
Storage Mode Simulink.sdi.setStorageMode

Simulink.sdi.getStorageMode
Storage Location Simulink.sdi.setStorageLocation

Simulink.sdi.getStorageLocation

Archive Behavior and Run Limit
The Simulation Data Inspector archive stores runs in a collapsible pane, allowing you to manage the
contents of the work area without deleting run data. You can configure whether the Simulation Data
Inspector automatically moves prior simulation runs to the archive. You can also limit the number of
runs stored in the archive.

Manage Runs in the Archive

By default, the Simulation Data Inspector automatically archives simulation runs. When you simulate
a model, the prior simulation run moves to the archive, and the Simulation Data Inspector updates
the view to show the data for aligned signals in the current run.

The archive does not impose functional limitations on the runs and signals it contains. You can plot
signals from the archive, and you can use runs and signals in the archive in comparisons. You can
drag runs of interest from the archive to the work area and vice versa whether the Automatically
Archive setting is enabled or disabled. To prevent the Simulation Data Inspector from automatically
moving prior simulations runs to the archive, clear the Automatically archive setting.
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When you import runs into the Simulation Data Inspector, the imported runs appear in the work area,
and the Current tag remains on the most recent simulation run. You can import signals to existing
runs in the work area and in the archive.

Tip You can delete the contents of the archive manually using the trash  icon.

Limit Data Retention

To reduce the amount of data the Simulation Data Inspector retains, you can configure a limit for the
number of runs stored in the archive. When the number of runs in the archive reaches the size limit,
the Simulation Data Inspector starts to delete runs on a first-in, first-out basis.

The size limit applies only to runs in the archive. For the Simulation Data Inspector to automatically
limit the data it retains by deleting old runs, select Automatically archive and specify a size limit.

By default, the Simulation Data Inspector retains the last 20 runs moved to the archive. To remove
the limit, select No limit. To specify the maximum number of runs to store in the archive, select Last
n runs and enter the desired limit. The Simulation Data Inspector warns you when you specify a limit
that would delete runs already in the archive.

Programmatic Use

Configure the Automatically archive setting programmatically using the
Simulink.sdi.setAutoArchiveMode function.

Specify the number of runs to retain in the archive using the Simulink.sdi.setArchiveRunLimit
function.

Incoming Run Names and Location
You can configure how the Simulation Data Inspector handles incoming runs from import or
simulation. You can choose whether new runs are added at the top of the work area or the bottom and
specify a naming rule to use for runs created from simulation.

By default, the Simulation Data Inspector adds new runs below prior runs in the work area. The
Archive settings also affect the location of runs. By default, prior runs are moved to the archive when
a new simulation run is created.

The run naming rule is used to name runs created from simulation. You can create the run naming
rule using a mix of literal text that is used in the run name as-is and one or more tokens that
represent metadata about the run. By default, the Simulation Data Inspector names runs using the
run index and model name: Run <run_index>: <model_name>.

Tip To rename an existing run, double-click the name in the work area and enter the new name, or
modify the run name in the Properties pane.

Programmatic Use

You can programmatically check and modify the naming rule using the
Simulink.sdi.getRunNamingRule and Simulink.sdi.setRunNamingRule functions. Restore
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the naming rule to its default programmatically using the Simulink.sdi.resetRunNamingRule
function.

Signal Metadata to Display
You can control which signal metadata is displayed in the work area of the Inspect pane and in the
results section on the Compare pane in the Simulation Data Inspector. You specify the metadata to
display separately for each pane using the Table Columns preferences in the Inspect and Compare
sections of the Preferences dialog, respectively.

Inspect Pane

By default, the signal name and the line style and color used to plot the signal are displayed on the
Inspect pane. To display different or additional metadata in the work area on the Inspect pane,
select the check box next to each piece of metadata you want to display in the Table Columns
preference in the Inspect section. You can always view complete metadata for the selected signal in
the Inspect pane using the Properties pane.

Note Metadata displayed in the work area on Inspect pane is included when you generate a report
of plotted signals. You can also specify metadata to include in the report regardless of what is
displayed in the work area when you create the report programmatically using the
Simulink.sdi.report function.

Compare Pane

By default, the Compare pane shows the signal name, the absolute and relative tolerances used in
the signal comparison, and the maximum difference from the comparison result. To display different
or additional metadata in the results on the Compare pane, select the check box next to each piece
of metadata you want to display in the Table Columns preference in the Compare section. You can
always view complete metadata for the signals compared for a selected signal result using the
Properties pane, where metadata that differs between the compared signals is highlighted. Signal
metadata displayed on the Compare pane does not affect the contents of comparison reports.

Signal Selection on the Inspect Pane
You can configure how you select signals to plot on the selected subplot in the Simulation Data
Inspector. By default, you use check boxes next to each signal to plot. You can also choose to plot
signals based on selection in the work area. Use Check Mode when creating views and visualizations
that represent findings and analysis of a data set. Use Browse Mode to quickly view and analyze
data sets with a large number of signals.

For more information about creating visualizations using Check Mode, see “Create Plots Using the
Simulation Data Inspector” (Simulink).

For more information about using Browse Mode, see “Visualize Many Logged Signals” (Simulink).

Note To use Browse Mode, your layout must include only Time Plot visualizations.
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How Signals Are Aligned for Comparison
When you compare runs using the Simulation Data Inspector, the comparison algorithm pairs signals
for signal comparison through a process called alignment. You can align signals between the
compared runs using one or more of the signal properties shown in the table.

Property Description
Data Source Path of the variable in the MATLAB workspace for

data imported from the workspace
Path Block path for the source of the data in its model
SID Simulink identifier

For more information about SIDs, see “Simulink
Identifiers” (Simulink)

Signal Name Name of the signal

You can specify the priority for each piece of metadata used for alignment. The Align By field
specifies the highest priority property used to align signals. The priority drops with each subsequent
Then By field. You must specify a primary alignment property in the Align By field, but you can
leave any number of Then By fields blank.

By default, the Simulation Data Inspector aligns signals between runs according to this flow chart.

For more information about configuring comparisons in the Simulation Data Inspector, see “How the
Simulation Data Inspector Compares Data” (Simulink).

Colors Used to Display Comparison Results
You can configure the colors used to display comparison results using the Simulation Data Inspector
preferences. You can specify whether to use the signal color from the Inspect pane or a fixed color
for the baseline and compared signals. You can also choose colors for the tolerance and the difference
signal.

By default, the Simulation Data Inspector displays comparison results using fixed colors for the
baseline and compared signals. Using a fixed color allows you to avoid the baseline signal color and
compared signal color being either the same or too similar to distinguish.
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Signal Grouping
You can specify how to group signals within a run in the Simulation Data Inspector. The preferences
apply to both the Inspect and Compare panes. You can group signals by:

• Domain — Signal type. For example, signals created by signal logging have a domain of Signal,
while signals created from logging model outputs have a domain of Outports.

• Physical System Hierarchy — Signal Simscape™ physical system hierarchy. The option to group by
physical system hierarchy is available when you have a Simscape license.

• Data Hierarchy — Signal location within structured data. For example, data hierarchy grouping
reflects the hierarchy of a bus.

• Model Hierarchy — Signal location within model hierarchy. Grouping by model hierarchy can be
helpful when you log data from a model that includes model or subsystem references.

Grouping signals adds rows for the hierarchical nodes, which you can expand to show the signals
within that node. By default, the Simulation Data Inspector groups signals by domain, then by
physical system hierarchy (if you have a Simscape license), and then by data hierarchy.

To remove grouping and display a flat list of signals in each run, select None for all grouping options.

Programmatic Use

To specify how to group signals programmatically, use the Simulink.sdi.setTableGrouping
function.

Data to Stream from Parallel Simulations
When you run parallel simulations using the parsim function, you can stream logged simulation data
to the Simulation Data Inspector. A dot next to the run name in the Inspect pane indicates the status
of the simulation that corresponds to the run, so you can monitor simulation progress while
visualizing the streamed data. You can control whether data streams from a parallel simulation based
on the type of worker the data comes from.

By default, the Simulation Data Inspector is configured for manual import of data from parallel
workers. You can use the Simulation Data Inspector programmatic interface to inspect the data on
the worker and decide whether to send it to the client Simulation Data Inspector for further analysis.
To manually move data from a parallel worker to the Simulation Data Inspector, use the
Simulink.sdi.sendWorkerRunToClient function.

You may want to automatically stream data from parallel simulations that run on local workers or on
local and remote workers. Streaming data from both local and remote workers may affect simulation
performance, depending on how many simulations you run and how much data you log. When you
choose to stream data from local workers or all parallel workers, all logged simulation data
automatically shows in the Simulation Data Inspector.

Programmatic Use

You can configure Simulation Data Inspector support for parallel worker data programmatically using
the Simulink.sdi.enablePCTSupport function.

 Configure the Simulation Data Inspector

36-29



Options for Saving and Loading Session Files
You can specify a maximum amount of memory to use while loading or saving a session file. By
default, the Simulation Data Inspector uses a maximum of 100 MB of memory when you load or save
a session file. You can specify a memory use limit as low as 50 MB.

To reduce the size of the saved session file, you can specify a compression option.

• None — Do not compress saved data.
• Normal — Compress the saved file as much as possible.
• Fastest — Compress the saved file less than Normal compression for faster save time.

Signal Display Units
Signals in the Simulation Data Inspector have two units properties: stored units and display units.
The stored units represent the units of the data saved to disk. The display units specify how the
Simulation Data Inspector displays the data. You can configure the Simulation Data Inspector to use a
system of units to define the display units for all signals. You can choose either the SI or US
Customary system of units, or you can display data using its stored units.

When you use a system of units to define display units for signals in the Simulation Data Inspector,
the display units update for any signal with display units that are not valid for that unit system. For
example, if you select SI units, the display units for a signal may update from ft to m.

Note The system of units you choose to use in the Simulation Data Inspector does not affect the
stored units for any signal. You can convert the stored units for a signal using the convertUnits
function. Conversion may result in loss of precision.

In addition to selecting a system of units, you can specify override units so that all signals of a given
measurement type are displayed using consistent units. For example, if you want to visualize all
signals that represent weight using units of kg, specify kg as an override unit.

Tip For a list of units supported by Simulink, enter showunitslist in the MATLAB Command
Window.

You can also modify the display units for a specific signal using the Properties pane. For more
information, see “Modify Signal Properties in the Simulation Data Inspector” (Simulink).

Programmatic Use

Configure the unit system and override units using the Simulink.sdi.setUnitSystem function.
You can check the current units preferences using the Simulink.sdi.getUnitSystem function.

See Also
Functions
Simulink.sdi.clearPreferences | Simulink.sdi.setRunNamingRule |
Simulink.sdi.setTableGrouping | Simulink.sdi.enablePCTSupport |
Simulink.sdi.setArchiveRunLimit | Simulink.sdi.setAutoArchiveMode
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More About
• “Iterate Model Design Using the Simulation Data Inspector” (Simulink)
• “How the Simulation Data Inspector Compares Data” (Simulink)
• “Compare Simulation Data” (Simulink)
• “Create Plots Using the Simulation Data Inspector” (Simulink)
• “Modify Signal Properties in the Simulation Data Inspector” (Simulink)
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How the Simulation Data Inspector Compares Data
You can tailor the Simulation Data Inspector comparison process to fit your requirements in multiple
ways. When comparing runs, the Simulation Data Inspector:

1 Aligns signal pairs in the Baseline and Compare To runs based on the Alignment settings.

The Simulation Data Inspector does not compare signals that it cannot align.
2 Synchronizes aligned signal pairs according to the specified Sync Method.

Values for time points added in synchronization are interpolated according to the specified
Interpolation Method.

3 Computes the difference of the signal pairs.
4 Compares the difference result against specified tolerances.

When the comparison run completes, the results of the comparison are displayed in the navigation
pane.

Status Comparison Result
Difference falls within the specified tolerance.

Difference violates specified tolerance.

The signal does not align with a signal from the
Compare To run.

When you compare signals with differing time intervals, the Simulation Data Inspector compares the
signals on their overlapping interval.

Signal Alignment
In the alignment step, the Simulation Data Inspector decides which signal from the Compare To run
pairs with a given signal in the Baseline run. When you compare signals with the Simulation Data
Inspector, you complete the alignment step by selecting the Baseline and Compare To signals.

The Simulation Data Inspector aligns signals using a combination of their Data Source, Path, SID, and
Signal Name properties.

Property Description
Data Source Path of the variable in the MATLAB workspace for

data imported from the workspace
Path Block path for the source of the data in its model
SID Simulink identifier

For more information about SIDs, see “Simulink
Identifiers” (Simulink)

Signal Name Name of the signal in the model

With the default alignment settings, the Simulation Data Inspector aligns signals between runs
according to this flow chart.
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You can specify the priority for each of the signal properties used for alignment in the Simulation
Data Inspector Preferences. The Align By field specifies the highest priority property used to align
signals. The priority drops with each subsequent Then By field. You must specify a primary
alignment property in the Align By field, but you can leave any number of the Then By fields blank.

Synchronization
Often, signals that you want to compare don't contain the exact same set of time points. The
synchronization step in Simulation Data Inspector comparisons resolves discrepancies in signals' time
vectors. You can choose union or intersection as the synchronization method.

When you specify union synchronization, the Simulation Data Inspector builds a time vector that
includes every sample time between the two signals. For each sample time not originally present in
either signal, the Simulation Data Inspector interpolates the value. The second graph in the
illustration shows the union synchronization process, where the Simulation Data Inspector identifies
samples to add in each signal, represented by the unfilled circles. The final plot shows the signals
after the Simulation Data Inspector has interpolated values for the added time points. The Simulation
Data Inspector computes the difference using the signals in the final graph, so that the computed
difference signal contains all the data points between the signals.

When you specify intersection synchronization, the Simulation Data Inspector uses only the
sample times present in both signals in the comparison. In the second graph, the Simulation Data
Inspector identifies samples that do not have a corresponding sample for comparison, shown as
unfilled circles. The final graph shows the signals used for the comparison, without the samples
identified in the second graph.
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The choice between the synchronization options involves a trade off between speed and accuracy. The
interpolation required by union synchronization takes time, but provides a more precise result.
When you use intersection synchronization, the comparison finishes quickly because the
Simulation Data Inspector computes the difference for fewer data points and does not interpolate.
However, some data is discarded and precision lost with intersection synchronization.

Interpolation
The interpolation property of a signal determines how the Simulation Data Inspector displays the
signal and how additional data values are computed in synchronization. You can choose to interpolate
your data with a zero-order hold (zoh) or a linear approximation. You can also specify no
interpolation.

When you specify zoh or none for the Interpolation Method, the Simulation Data Inspector
replicates the data of the previous sample for interpolated sample times. When you specify linear
interpolation, the Simulation Data Inspector uses samples on either side of the interpolated point to
linearly approximate the interpolated value. Typically, discrete signals use zoh interpolation and
continuous signals use linear interpolation. You can specify the Interpolation Method for your
signals in the signal properties.

Tolerance Specification
The Simulation Data Inspector allows you to specify the scope and value of the tolerance for your
signal. You can define a tolerance band using any combination of absolute, relative, and time
tolerance values, and you can specify whether the specified tolerance applies to an individual signal
or to all the signals in a run.
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Tolerance Scope

In the Simulation Data Inspector, you can specify the tolerance for your data globally or for an
individual signal. Global tolerance values apply to all signals in a run that do not have Override
Global Tol set to yes. You can specify global tolerance values for your data at the top of the
graphical viewing area in the Compare view. To specify signal specific tolerance values, edit the
signal properties and ensure the Override Global Tol property is set to yes.

Tolerance Computation

In the Simulation Data Inspector, you can specify a tolerance band for your run or signal using a
combination of absolute, relative, and time tolerance values. When you specify the tolerance for your
run or signal using multiple types of tolerances, each tolerance can yield a different answer for the
tolerance at each point. The Simulation Data Inspector computes the overall tolerance band by
selecting the most lenient tolerance result for each data point.

When you define your tolerance using only the absolute and relative tolerance properties, the
Simulation Data Inspector computes the tolerance for each point as a simple maximum.

tolerance = max(absoluteTolerance,relativeTolerance*abs(baselineData));

The upper boundary of the tolerance band is formed by adding tolerance to the Baseline signal.
Similarly, the Simulation Data Inspector computes the lower boundary of the tolerance band by
subtracting tolerance from the Baseline signal.

When you specify a time tolerance, the Simulation Data Inspector evaluates the time tolerance first,
over a time interval defined as [(tsamp-tol), (tsamp+tol)] for each sample. The Simulation Data
Inspector builds the lower tolerance band by selecting the minimum point on the interval for each
sample. Similarly, the maximum point on the interval defines the upper tolerance for each sample.

If you specify a tolerance band using an absolute or relative tolerance in addition to a time tolerance,
the Simulation Data Inspector applies the time tolerance first, and then applies the absolute and
relative tolerances to the maximum and minimum points selected with the time tolerance.
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upperTolerance = max + max(absoluteTolerance,relativeTolerance*max)

lowerTolerance = min - max(absoluteTolerance,relativeTolerance*min)

Limitations
The Simulation Data Inspector does not support comparing:

• Signals of data types int64 or uint64.
• Variable-size signals.

See Also

Related Examples
• “Compare Simulation Data” (Simulink)
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Save and Share Simulation Data Inspector Data and Views
After you inspect, analyze, or compare your data in the Simulation Data Inspector, you can share your
results with others. The Simulation Data Inspector provides several options for sharing and saving
your data and results, depending on your needs. With the Simulation Data Inspector, you can:

• Save your data and layout modifications in a Simulation Data Inspector session.
• Share your layout modifications in a Simulation Data Inspector view.
• Share images and figures of plots you create in the Simulation Data Inspector.
• Create a Simulation Data Inspector report.
• Export data to the workspace.
• Export data to a file.

Save and Load Simulation Data Inspector Sessions
If you want to save or share data along with a configured view in the Simulation Data Inspector, save
your data and settings in a Simulation Data Inspector session. You can save sessions as MAT- or
MLDATX-files. The default format is MLDATX. When you save a Simulation Data Inspector session,
the session file contains:

• All runs, data, and properties from the Inspect pane, including which run is the current run and
which runs are in the archive.

• Plot display selection for signals in the Inspect pane.
• Subplot layout and line style and color selections.

Note Comparison results and global tolerances are not saved in Simulation Data Inspector sessions.

To save a Simulation Data Inspector session:

1 Hover over the save icon on the left side bar. Then, click Save As.

2 Name the file.
3 Browse to the location where you want to save the session, and click Save.

For large datasets, a status overlay in the bottom right of the graphical viewing area displays
information about the progress of the save operation and allows you to cancel the save operation.

The Save tab of the Simulation Data Inspector preferences menu on the left side bar allows you to
configure options related to save operations for MLDATX-files. You can set a limit as low as 50MB on
the amount of memory used for the save operation. You can also select one of three Compression
options:

• None, the default, applies no compression during the save operation.
• Normal creates the smallest file size.
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• Fastest creates a smaller file size than you would get by selecting None, but provides a faster
save time than Normal.

To load a Simulation Data Inspector session, click the open icon  on the left side bar. Then,
browse to select the MLDATX-file you want to open, and click Open.

Alternatively, you can double-click the MLDATX-file. MATLAB and the Simulation Data Inspector open
if they are not already open.

When the Simulation Data Inspector already contains runs and you open a session, all of the runs in
the session move to the archive. The view updates to reflect show plotted signals from the session
file. You can drag runs between the work area and archive as desired.

When the Simulation Data Inspector does not contain runs and you open a session, the Simulation
Data Inspector puts runs in the work area and archive as specified in the file.

Share Simulation Data Inspector Views
When you have different sets of data that you want to visualize the same way, you can save a view. A
view saves the layout and appearance characteristics of the Simulation Data Inspector without saving
the data. Specifically, a view saves:

• Plot layout, axis ranges, linking characteristics, and normalized axes.
• Location of signals in the plots, including plotted signals in the archive.
• Signal grouping and columns on display in the Inspect pane.
• Signal color and line styling.

To save a view:

1
Click the layout button .

2 Click Save current view.
3 In the dialog box, specify a name for the view and browse to the location where you want to save

the MLDATX-file.
4 Click Save.

To load a view:

1
Click the layout button .

2 Click Open saved view.
3 Browse to the view you would like to load, and click Open.

Share Simulation Data Inspector Plots
Use the snapshot feature to share the plots you generate in the Simulation Data Inspector. You can
export your plots to the clipboard to paste into a document, as an image file, or to a MATLAB figure.
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You can choose to capture the entire plot area, including all subplots in the plot area, or to capture
only the selected subplot.

Click the camera icon  on the toolbar to access the snapshot menu. Use the radio buttons to
select the area you want to share and how you want to share the plot. After you make your selections,
click Snapshot to export the plot.

If you create an image, select where you would like to save the image in the file browser.

You can create snapshots of your plots in the Simulation Data Inspector programmatically using
Simulink.sdi.snapshot.

Create a Simulation Data Inspector Report
To generate documentation of your results quickly, create a Simulation Data Inspector report. You can
create a report of your data in either the Inspect or the Compare pane. The report is an HTML file
that includes information about all the signals and plots in the active pane. The report includes all
signal information displayed in the signal table in the navigation pane. For more information about
configuring the table, see “Inspect Metadata” (Simulink).

To generate a Simulation Data Inspector Report:

1

Click the create report icon  on the left side bar.
2 Under Include in report, specify the type of report you want to create.
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• Select Inspect Signals to include the plots and signals from the Inspect pane.
• Select Compare Runs to include the data and plots from the Compare pane. When you

generate a Compare Runs report, you can choose to Report only mismatched signals or
to Report all signals. If you select Report only mismatched signals, the report shows only
signal comparisons that are not within the specified tolerances.

3 Specify a File name for the report, and navigate to the Folder where you want to save the
report.

4 Click Create Report.

The generated report automatically opens in your default browser.

Export Data to the Workspace or a File
You can use the Simulation Data Inspector to export data to the base workspace, a MAT file, or a
Microsoft Excel file. You can export a selection of runs and signals, runs in the work area, or all runs
in the Inspect pane, including the Archive.

When you export a selection of runs and signals, make the selection of data to export before clicking

the export button. 
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Only the selected runs and signals are exported. In this example, only the x1 signals from Run 1 and
Run 2 are exported. The check box selections for plotting data do not affect whether a signal is
exported.

When you export a single signal to the workspace or a MAT file, the signal is exported to a
timeseries object. Data exported to the workspace or a MAT file for a run or multiple signals is
stored as a Simulink.SimulationData.Dataset object.

To export data to a file, select the File option in the Export dialog. You can specify a file name and
browse to the location where you want to save the exported file. When you export data to a MAT file,
a single exported signal is stored as a timeseries object, and runs or multiple signals are stored as
a Simulink.SimulationData.Dataset object. When you export data to a Microsoft Excel file, the
data is stored using the format described in “Microsoft Excel Import, Export, and Logging Format”
(Simulink).

To export to a Microsoft Excel file, select the XLSX extension from the drop-down. When you export
data to a Microsoft Excel file, you can specify additional options for the format of the data in the
exported file. If the file name you provided already exists, you can choose to overwrite the entire file
or to only overwrite sheets containing data that corresponds to the exported data. You can also
choose which metadata to include and whether signals with identical time data share a time column
in the exported file.

Export Video Signal to an MP4 File
You can export a 2D or 3D signal that contains RGB or monochrome video data to an MP4 file using
the Simulation Data Inspector. For example, when you log a video signal in a simulation, you can
export the data to an MP4 file and view the video using a video player. To export a video signal to an
MP4 file:

1 Select the signal you want to export.
2 Click Export in the toolbar on the left or right-click the signal and select Export.
3 In the Export dialog box, choose to export Selected runs and signals to a file.
4 Specify a file name and the path to the location where you want to save the file.
5 Select MP4 video file from the list and click Export.
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For the option to export to an MP4 file to be available:

• You must export only one signal at a time.
• The selected signal must be 2D or 3D and contain RGB or monochrome video data.
• The selected signal must be represented in the Simulation Data Inspector as a single signal with

multidimensional sample values.

You may need to convert the signal representation before exporting the signal data. For more
information, see “Analyze Multidimensional Signal Data” (Simulink).

• The data type for the signal values must be double, single, or uint8.

Exporting a video signal to an MP4 file is not supported for Linux operating systems.

See Also

Related Examples
• “View Data in the Simulation Data Inspector” (Simulink)
• “Inspect Simulation Data” (Simulink)
• “Compare Simulation Data” (Simulink)
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Inspect and Compare Data Programmatically
You can harness the capabilities of the Simulation Data Inspector from the MATLAB command line
using the Simulation Data Inspector API.

The Simulation Data Inspector organizes data in runs and signals, assigning a unique numeric
identification to each run and signal. Some Simulation Data Inspector API functions use the run and
signal IDs to reference data, rather than accepting the run or signal itself as an input. To access the
run IDs in the workspace, you can use Simulink.sdi.getAllRunIDs or
Simulink.sdi.getRunIDByIndex. You can access signal IDs through a Simulink.sdi.Run
object using the getSignalIDByIndex method.

The Simulink.sdi.Run and Simulink.sdi.Signal classes provide access to your data and allow
you to view and modify run and signal metadata. You can modify the Simulation Data Inspector
preferences using functions like Simulink.sdi.setSubPlotLayout,
Simulink.sdi.setRunNamingRule, and Simulink.sdi.setMarkersOn. To restore the
Simulation Data Inspector's default settings, use Simulink.sdi.clearPreferences.

Create a Run and View the Data
This example shows how to create a run, add data to it, and then view the data in the Simulation Data
Inspector.

Create Data for the Run

Create timeseries objects to contain data for a sine signal and a cosine signal. Give each
timeseries object a descriptive name.

time = linspace(0,20,100);

sine_vals = sin(2*pi/5*time);
sine_ts = timeseries(sine_vals,time);
sine_ts.Name = 'Sine, T=5';

cos_vals = cos(2*pi/8*time);
cos_ts = timeseries(cos_vals,time);
cos_ts.Name = 'Cosine, T=8';

Create a Run and Add Data

Use the Simulink.sdi.view function to open the Simulation Data Inspector.

Simulink.sdi.view

To import data into the Simulation Data Inspector from the workspace, create a Simulink.sdi.Run
object using the Simulink.sdi.Run.create function. Add information about the run to its
metadata using the Name and Description properties of the Run object.

sinusoidsRun = Simulink.sdi.Run.create;
sinusoidsRun.Name = 'Sinusoids';
sinusoidsRun.Description = 'Sine and cosine signals with different frequencies';

Use the add function to add the data you created in the workspace to the empty run.

add(sinusoidsRun,'vars',sine_ts,cos_ts);
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Plot the Data in the Simulation Data Inspector

Use the getSignalByIndex function to access Simulink.sdi.Signal objects that contain the
signal data. You can use the Simulink.sdi.Signal object properties to specify the line style and
color for the signal and plot it in the Simulation Data Inspector. Specify the LineColor and
LineDashed properties for each signal.

sine_sig = getSignalByIndex(sinusoidsRun,1);
sine_sig.LineColor = [0 0 1];
sine_sig.LineDashed = '-.';

cos_sig = sinusoidsRun.getSignalByIndex(2);
cos_sig.LineColor = [0 1 0];
cos_sig.LineDashed = '--';

Use the Simulink.sdi.setSubPlotLayout function to configure a 2-by-1 subplot layout in the
Simulation Data Inspector plotting area. Then use the plotOnSubplot function to plot the sine
signal on the top subplot and the cosine signal on the lower subplot.

Simulink.sdi.setSubPlotLayout(2,1);

plotOnSubPlot(sine_sig,1,1,true);
plotOnSubPlot(cos_sig,2,1,true);

Close the Simulation Data Inspector and Save Your Data

When you have finished inspecting the plotted signal data, you can close the Simulation Data
Inspector and save the session to an MLDATX file.

Simulink.sdi.close('sinusoids.mldatx')

Compare Two Signals in the Same Run
You can use the Simulation Data Inspector programmatic interface to compare signals within a single
run. This example compares the input and output signals of an aircraft longitudinal controller.

First, load the session that contains the data.

Simulink.sdi.load('AircraftExample.mldatx');

Use the Simulink.sdi.Run.getLatest function to access the latest run in the data.

aircraftRun = Simulink.sdi.Run.getLatest;

Then, you can use the Simulink.sdi.getSignalsByName function to access the Stick signal,
which represents the input to the controller, and the alpha, rad signal that represents the output.

stick = getSignalsByName(aircraftRun,'Stick');
alpha = getSignalsByName(aircraftRun,'alpha, rad');

Before you compare the signals, you can specify a tolerance value to use for the comparison.
Comparisons use tolerance values specified for the baseline signal in the comparison, so set an
absolute tolerance value of 0.1 on the Stick signal.

stick.AbsTol = 0.1;
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Now, compare the signals using the Simulink.sdi.compareSignals function. The Stick signal is
the baseline, and the alpha, rad signal is the signal to compare against the baseline.

comparisonResults = Simulink.sdi.compareSignals(stick.ID,alpha.ID);
match = comparisonResults.Status

match = 
  ComparisonSignalStatus enumeration

    OutOfTolerance

The comparison result is out of tolerance. You can use the Simulink.sdi.view function to open the
Simulation Data Inspector to view and analyze the comparison results.

Compare Runs with Global Tolerance
You can specify global tolerance values to use when comparing two simulation runs. Global tolerance
values are applied to all signals within the run. This example shows how to specify global tolerance
values for a run comparison and how to analyze and save the comparison results.

First, load the session file that contains the data to compare. The session file contains data for four
simulations of an aircraft longitudinal controller. This example compares data from two runs that use
different input filter time constants.

Simulink.sdi.load('AircraftExample.mldatx');

To access the run data to compare, use the Simulink.sdi.getAllRunIDs (Simulink) function to
get the run IDs that correspond to the last two simulation runs.

runIDs = Simulink.sdi.getAllRunIDs;
runID1 = runIDs(end - 1);
runID2 = runIDs(end);

Use the Simulink.sdi.compareRuns (Simulink) function to compare the runs. Specify a global
relative tolerance value of 0.2 and a global time tolerance value of 0.5.

runResult = Simulink.sdi.compareRuns(runID1,runID2,'reltol',0.2,'timetol',0.5);

Check the Summary property of the returned Simulink.sdi.DiffRunResult object to see whether
signals were within the tolerance values or out of tolerance.

runResult.Summary

ans = struct with fields:
       OutOfTolerance: 0
      WithinTolerance: 3
            Unaligned: 0
        UnitsMismatch: 0
                Empty: 0
             Canceled: 0
          EmptySynced: 0
     DataTypeMismatch: 0
         TimeMismatch: 0
    StartStopMismatch: 0
          Unsupported: 0
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All three signal comparison results fell within the specified global tolerance.

You can save the comparison results to an MLDATX file using the saveResult (Simulink) function.

saveResult(runResult,'InputFilterComparison');

Analyze Simulation Data Using Signal Tolerances
You can programmatically specify signal tolerance values to use in comparisons performed using the
Simulation Data Inspector. In this example, you compare data collected by simulating a model of an
aircraft longitudinal flight control system. Each simulation uses a different value for the input filter
time constant and logs the input and output signals. You analyze the effect of the time constant
change by comparing results using the Simulation Data Inspector and signal tolerances.

First, load the session file that contains the simulation data.

Simulink.sdi.load('AircraftExample.mldatx');

The session file contains four runs. In this example, you compare data from the first two runs in the
file. Access the Simulink.sdi.Run objects for the first two runs loaded from the file.

runIDs = Simulink.sdi.getAllRunIDs;
runIDTs1 = runIDs(end-3);
runIDTs2 = runIDs(end-2);

Now, compare the two runs without specifying any tolerances.

noTolDiffResult = Simulink.sdi.compareRuns(runIDTs1,runIDTs2);

Use the getResultByIndex function to access the comparison results for the q and alpha signals.

qResult = getResultByIndex(noTolDiffResult,1);
alphaResult = getResultByIndex(noTolDiffResult,2);

Check the Status of each signal result to see whether the comparison result fell within our out of
tolerance.

qResult.Status

ans = 
  ComparisonSignalStatus enumeration

    OutOfTolerance

alphaResult.Status

ans = 
  ComparisonSignalStatus enumeration

    OutOfTolerance

The comparison used a value of 0 for all tolerances, so the OutOfTolerance result means the
signals are not identical.

You can further analyze the effect of the time constant by specifying tolerance values for the signals.
Specify the tolerances by setting the properties for the Simulink.sdi.Signal objects that

36 Simulation Data Inspector

36-46



correspond to the signals being compared. Comparisons use tolerances specified for the baseline
signals. This example specifies a time tolerance and an absolute tolerance.

To specify a tolerance, first access the Signal objects from the baseline run.

runTs1 = Simulink.sdi.getRun(runIDTs1);
qSig = getSignalsByName(runTs1,'q, rad/sec');
alphaSig = getSignalsByName(runTs1,'alpha, rad');

Specify an absolute tolerance of 0.1 and a time tolerance of 0.6 for the q signal using the AbsTol
and TimeTol properties.

qSig.AbsTol = 0.1;
qSig.TimeTol = 0.6;

Specify an absolute tolerance of 0.2 and a time tolerance of 0.8 for the alpha signal.

alphaSig.AbsTol = 0.2;
alphaSig.TimeTol = 0.8;

Compare the results again. Access the results from the comparison and check the Status property
for each signal.

tolDiffResult = Simulink.sdi.compareRuns(runIDTs1,runIDTs2);
qResult2 = getResultByIndex(tolDiffResult,1);
alphaResult2 = getResultByIndex(tolDiffResult,2);

qResult2.Status

ans = 
  ComparisonSignalStatus enumeration

    WithinTolerance

alphaResult2.Status

ans = 
  ComparisonSignalStatus enumeration

    WithinTolerance

See Also
Simulation Data Inspector

Related Examples
• “Compare Simulation Data” (Simulink)
• “How the Simulation Data Inspector Compares Data” (Simulink)
• “Create Plots Using the Simulation Data Inspector” (Simulink)
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Limit the Size of Logged Data
In this section...
“Limit the Number of Runs Retained in the Simulation Data Inspector Archive” on page 36-48
“Specify a Minimum Disk Space Requirement or Maximum Size for Logged Data” on page 36-48
“View Data Only During Simulation” on page 36-49
“Reduce the Number of Data Points Logged from Simulation” on page 36-49

Logging simulation data can produce large amounts of data that fill up disk space. Such situations
include logging many signals, logging data for long simulations, and running many simulations
without deleting run data from the Simulation Data Inspector. You can choose among several options
to limit the size of logged simulation data. You can:

• Limit the number of runs retained in the Simulation Data Inspector archive.
• Reduce the number of data points logged in each simulation.
• Specify a minimum disk space requirement or maximum size for logged data.
• Configure logging for only viewing data during simulation.

Depending on your requirements, you can use more than one strategy to limit the size of logged data.

Limit the Number of Runs Retained in the Simulation Data Inspector
Archive
When you run multiple simulations in a single MATLAB session, logged simulation data accumulates
in the Simulation Data Inspector even if you overwrite the logging data in the MATLAB workspace. To
reduce the amount of data the Simulation Data Inspector retains, you can configure a limit for the
number of runs stored in the archive. When the number of runs in the archive reaches the size limit,
the Simulation Data Inspector starts to delete runs from the archive on a first-in, first-out basis.

Configure the archive Size setting in the Simulation Data Inspector preferences. The size limit only
applies to runs in the archive. For the Simulation Data Inspector to automatically limit data retention,
select Automatically archive and specify the maximum number of runs to retain in the archive. By
default, Automatically archive is enabled with an archive size limit of twenty runs. If you
experience issues with logged data consuming too much disk space, consider adjusting the size limit
for the archive in the Simulation Data Inspector preferences.

Specify a Minimum Disk Space Requirement or Maximum Size for
Logged Data
You can use preferences in the Simulation Data Inspector to directly limit the size of logged data by
specifying a minimum amount of disk space to leave free or by specifying a maximum size for logged
data on disk. Each setting accounts for all kinds of logged data. By default, logged data must leave at
least 100 MB of free disk space with no maximum size limit. Specify the required disk space and
maximum size in GB, and specify 0 to apply no disk space requirement or no maximum size limit.

When you specify a minimum disk space requirement or a maximum size for logged data, you can
also specify whether to prioritize retaining data from the current simulation or data from prior
simulations when approaching the limit. By default, the Simulation Data Inspector prioritizes

36 Simulation Data Inspector

36-48



retaining data for the current run. As the free disk space or logged data size approaches the limit,
prior runs are deleted first to free up space for data being logged in the current run. If deleting runs
does not free up enough space, recording is disabled. To prioritize retaining prior data, change the
When low on disk space setting to Keep prior runs and stop recording. You see a warning
message when prior runs are deleted and when recording is disabled. If recording is disabled due to
the size of logged data, you need to change the Record Mode back to View and record data to
continue logging data, after you have freed up disk space.

View Data Only During Simulation
In some situations, you may want to only view the data for logged signals and not save the values. For
example, when using the Simulation Data Inspector to visualize data streaming from hardware, you
may only want to view the data live and not record it. You can change the Record mode in the
Simulation Data Inspector preferences to View during simulation only so that logged data is not
saved and you can still view the data during simulation. The Record mode is reset to View and
record data at the start of each MATLAB session.

When you change the Record mode to View during simulation only:

• Logged data is not available in the Simulation Data Inspector or workspace after simulation.
• You can view data using dashboard blocks, scopes, and the Simulation Data Inspector, but plots

clear when you pan or zoom.
• You cannot access logged data during simulation using the Simulation Data Inspector

programmatic interface.

Reduce the Number of Data Points Logged from Simulation
Model configuration parameters and signal properties allow you to limit the number of data points
logged in a simulation. Be sure to carefully consider data requirements when limiting logged data
points. Limiting data can skip critical time points, and can lead to aliasing, if your effective sample
rate is too low.

You can reduce the number of data points using:

• Decimation — Log every nth signal value.
• Limit data points to last — Only log the last n signal values.
• Logging intervals — Specify specific time intervals in which to log data.

For details, see “Specify Signal Values to Log” (Simulink).

See Also
Tools
Simulation Data Inspector

Related Examples
• “Specify Signal Values to Log” (Simulink)
• “Configure the Simulation Data Inspector” (Simulink)

 Limit the Size of Logged Data

36-49




	Stateflow Chart Concepts
	Finite State Machine Concepts
	Finite State Machine Representations
	Stateflow Chart Representations
	Notation
	Semantics
	Bibliography

	The Stateflow Chart

	Stateflow Chart Notation
	Overview of Stateflow Objects
	Hierarchy of Stateflow Objects
	Graphical Objects
	Nongraphical Objects

	Guidelines for Naming Stateflow Objects
	Reserved Keywords

	States
	State Hierarchy
	State Decomposition
	State Labels
	State Name
	State Actions

	State Hierarchy
	State Hierarchy Example
	Objects That a State Can Contain

	State Decomposition
	Exclusive (OR) State Decomposition
	Parallel (AND) State Decomposition

	Transitions
	Transition Hierarchy
	Transition Labels
	Valid Transitions
	Transition Connections

	Self-Loop Transitions
	Inner Transitions
	Before Using an Inner Transition
	After Using an Inner Transition to a Connective Junction
	Using an Inner Transition to a History Junction

	Default Transitions
	Drawing Default Transitions
	Label Default Transitions
	Default Transition Examples

	Move Between Levels of Hierarchy by Using Supertransitions
	Create a Supertransition That Enters a Subchart
	Create a Supertransition That Exits a Subchart
	Decide Between Supertransitions and Entry and Exit Ports

	Combine Transitions and Junctions to Create Branching Paths
	Add a Connective Junction
	Modify Connective Junction Properties
	Examples of Transition Paths with Connective Junctions

	History Junctions
	Example of History Junctions
	History Junctions and Inner Transitions

	Record State Activity by Using History Junctions
	Create a History Junction
	Change History Junction Size
	Change History Junction Properties

	Create Entry and Exit Connections Across State Boundaries
	Add Entry and Exit Ports
	Guidelines for Using Entry and Exit Ports
	Decide Between Supertransitions and Entry and Exit Ports


	Stateflow Semantics
	Stateflow Semantics
	Stateflow Objects
	Graphical Objects
	Nongraphical Objects
	Enter a Chart
	Execute an Active Chart
	Enter a State
	Execute an Active State
	Exit an Active State
	Execute a Set of Flow Charts
	Execute an Event Broadcast

	How Stateflow Objects Interact During Execution
	Overview of the Example Model
	Model of the Check-In Process for a Hotel
	How the Chart Interacts with Simulink Blocks
	Phases of Chart Execution

	Modeling Guidelines for Stateflow Charts
	Use signals of the same data type for input events
	Use a default transition to mark the first state to become active among exclusive (OR) states
	Use condition actions instead of transition actions whenever possible
	Use explicit ordering to control the testing order of a group of outgoing transitions
	Verify intended backtracking behavior in flow charts
	Use a superstate to enclose substates that share the same state actions
	Use MATLAB functions for performing numerical computations in a chart
	Use descriptive names in function signatures
	Use history junctions to record state history
	Do not use history junctions in states with parallel (AND) decomposition
	Use explicit ordering to control the execution order of parallel (AND) states

	Types of Chart Execution
	Life Cycle of a Stateflow Chart
	Execution of an Inactive Chart
	Execution of an Active Chart
	Execution of a Chart at Initialization

	Execution of a Stateflow Chart
	Workflow for Stateflow Chart Execution
	During Actions
	Outgoing Transition
	Inner Transitions
	Chart Execution with a Valid Transition
	Chart Execution Without a Valid Transition

	Enter a Chart or State
	Workflow for Entering a Chart or State
	Chart Entry
	State Entry
	Entry Actions
	Enter a Stateflow Chart
	Entering a State by Using History Junctions
	Entering a State by Using Supertransitions

	Exit a State
	Workflow for Exiting a State
	Exit Actions
	Exit a State Example
	Exit a State by Using Supertransitions

	Evaluate Transitions
	Workflow for Evaluating Transitions
	Transition Evaluation Order
	Transition to the Inner Edge of a Parent State
	Outgoing Transition Example
	Outgoing Transition Example with Backtracking
	Condition and Transition Actions

	Super Step Semantics
	Maximum Number of Iterations
	Enable Super Step Semantics
	Example of Chart with Super Step Semantics
	How Super Step Semantics Works with Multiple Input Events
	Detection of Infinite Loops in Transition Cycles

	Use Events to Execute Charts
	How Stateflow Charts Respond to Events
	Events in Simulink Models
	Events in Standalone Charts

	Group and Execute Transitions
	Transition Flow Chart Types
	Order of Execution for a Set of Flow Charts

	Execution Order for Parallel States
	Ordering for Parallel States
	Explicit Ordering of Parallel States
	Implicit Ordering of Parallel States
	Order Maintenance for Parallel States
	Execution Priorities in Restored States
	Switching Between Explicit and Implicit Ordering
	Execution Order of Parallel States in Boxes and Subcharts


	Create Stateflow Charts
	Model Reactive Systems in Stateflow
	Identify System Attributes
	Select a State Machine Type
	Specify State Actions and Transition Conditions
	Define Persistent Data to Store State Variables
	Simplify State Actions and Transition Conditions with Function Calls
	Check That Your System Representation Is Complete

	Represent Operating Modes by Using States
	Create a State
	Move and Resize States
	Create Substates and Superstates
	Group States
	Specify Substate Decomposition
	Specify Activation Order for Parallel States
	Change State Properties
	Label States

	Transition Between Operating Modes
	Create a Transition
	Label Transitions
	Move Transitions
	Change Transition Arrowhead Size
	Create Self-Loop Transitions
	Create Default Transitions
	Change Transition Properties

	Stateflow Editor Operations
	Stateflow Editor
	Undo and Redo Editor Operations
	Specify Colors and Fonts in a Chart
	Content Preview for Stateflow Objects
	Intelligent Tab Completion for Stateflow Charts
	Differentiate Elements of Action Language Syntax
	Zoom and Navigate with the Miniature Map
	Format Chart Objects


	Model Logic Patterns and Iterative Loops Using Flow Charts
	Flow Charts in Stateflow
	Draw a Flow Chart
	Best Practices for Creating Flow Charts

	Create Flow Charts by Using Pattern Wizard
	Create Reusable Flow Charts
	Insert Logic Patterns in Existing Flow Charts
	Save Custom Flow Chart Patterns
	Reuse Custom Flow Chart Patterns
	MAB-Compliant Patterns from the Pattern Wizard

	Convert MATLAB Code into Stateflow Flow Charts
	Create Flow Charts from MATLAB Scripts


	Simulink Subsystems as Stateflow States
	Simulink Subsystems as States
	When to Use Simulink Based States
	Model a Pole Vaulter by Using Simulink Based States
	Limitations

	Create and Edit Simulink Based States
	Create a Simulink Based State
	Create Inports and Outports

	Access Block State Data
	Textual Access
	Graphical Access

	Map Variables for Simulink Based States
	Map Variables in a Simulink Based State

	Set Simulink Based State Properties
	Simulink Based State Properties

	Model a Clutch

	Build Mealy and Moore Charts
	Overview of Mealy and Moore Machines
	Semantics of Mealy and Moore Machines
	Create Mealy and Moore Charts
	Advantages of Mealy and Moore Charts

	Design Considerations for Mealy Charts
	Mealy Semantics
	Design Rules for Mealy Charts

	Model a Vending Machine by Using Mealy Semantics
	Design Considerations for Moore Charts
	Moore Semantics
	Design Rules for Moore Charts

	Model a Traffic Light by Using Moore Semantics
	Convert Charts Between Mealy and Moore Semantics
	Transform Chart from Mealy to Moore Semantics
	Transform Chart from Moore to Mealy Semantics

	Sequence Recognition by Using Mealy and Moore Charts
	Karplus-Strong Algorithm by Using Moore Charts
	Initialize Persistent Variables in MATLAB Functions
	MATLAB Function Block with No Direct Feedthrough
	State Control Block in Synchronous Mode
	Stateflow Chart Implementing Moore Semantics


	Techniques for Streamlining Chart Design
	Group Chart Objects by Using Boxes
	Semantics of Stateflow Boxes
	Draw and Edit a Box
	Examples of Using Boxes

	Encapsulate Modal Logic by Using Subcharts
	Create a Subchart
	Rules of Subchart Conversion
	Convert a State to a Subchart
	Manipulate Subcharts as Objects
	Open a Subchart
	Edit a Subchart
	Navigate Subcharts

	Reuse Logic Patterns by Defining Graphical Functions
	Define a Graphical Function
	Call Graphical Functions in States and Transitions
	Manage Large Graphical Functions
	Specify Properties of Graphical Functions

	Export Stateflow Functions for Reuse
	Share Functions Across Stateflow Charts
	Guidelines for Exporting Chart-Level Functions

	Reuse Functions by Using Atomic Boxes
	Example of an Atomic Box
	Benefits of Using Atomic Boxes
	Create an Atomic Box
	When to Use Atomic Boxes

	Add Descriptive Comments in a Chart
	Change Annotation Properties
	Include TeX Formatting Instructions


	MATLAB Functions in Stateflow Charts
	Reuse MATLAB Code by Defining MATLAB Functions
	Define a MATLAB Function in a Chart
	Call MATLAB Functions in States and Transitions
	Specify Properties of MATLAB Functions

	Program a MATLAB Function in a Chart
	Build Model
	Program MATLAB Functions

	Access Simulink Bus Signals in MATLAB Functions
	Debug a MATLAB Function in a Chart
	Check MATLAB Functions for Syntax Errors
	Run-Time Debugging for MATLAB Functions in Charts
	Check for Data Range Violations


	Truth Table Functions for Decision-Making Logic
	Use Truth Tables to Model Combinatorial Logic
	Layout of a Truth Table
	Define a Truth Table Function
	Call Truth Table Functions in States and Transitions
	Specify Properties of Truth Table Functions
	Specify Properties for Truth Table Blocks

	Program a Truth Table
	Open a Truth Table for Editing
	Select an Action Language
	Enter Truth Table Conditions
	Enter Truth Table Decisions
	Enter Truth Table Actions
	Assign Truth Table Actions to Decisions
	Add Initial and Final Actions

	Debug Errors in a Truth Table
	Find Syntax Errors by Running Diagnostics
	Debug Logic by Using Breakpoints
	Edit Breakpoints

	Correct Overspecified and Underspecified Truth Tables
	Example of an Overspecified Truth Table
	Example of an Underspecified Truth Table

	Home Climate Control Using the Truth Table Block

	Simulink Functions in Stateflow Charts
	Reuse Simulink Functions in Stateflow Charts
	Define a Simulink Function
	Call Simulink Functions in States and Transitions
	Specify Properties of Simulink Functions
	Use a Simulink Function to Access Simulink Blocks
	Use a Simulink Function to Schedule Execution of Multiple Controllers

	Guidelines for Using Simulink Functions
	Use Alphanumeric Characters and Underscores in Argument Names
	Explicitly Set the Properties of Inport Blocks
	Convert Discontiguous Signals to Contiguous Signals
	Do Not Export Simulink Functions
	Do Not Use Simulink Functions in Moore Charts
	Do Not Call Simulink Functions in Default Transitions That Execute During Chart Initialization
	Do Not Call Simulink Functions in State During Actions Or Transition Conditions of Continuous-time Charts
	Do Not Generate HDL Code for Simulink Functions
	Pass Arguments by Value

	Bind a Simulink Function to a State
	Control Subsystem Variables When the Simulink Function Is Disabled
	Binding a Simulink Function to a State

	Design Charts with Simulink Functions
	Edit a Model to Use a Simulink Function
	Run the New Model

	Schedule Execution of Multiple Controllers
	Goal of the Tutorial
	Edit a Model to Use Simulink Functions
	Run the New Model

	Schedule Simulink Algorithms by Using Stateflow
	Design Switching Controllers by Using Simulink Functions
	Share Functions Across Simulink and Stateflow

	Define Data
	Add Stateflow Data
	Add Data Through the Symbols Pane
	Add Data by Using the Stateflow Editor Menu
	Add Data Through the Model Explorer
	Best Practices for Using Data in Charts

	Set Data Properties
	Stateflow Data Properties
	Fixed-Point Data Properties
	Logging Properties
	Additional Properties
	Default Data Property Values
	Specify Data Properties by Using MATLAB Expressions

	Share Data with Simulink and the MATLAB Workspace
	Share Input and Output Data with Simulink
	Initialize Data from the MATLAB Base Workspace
	Save Data to the MATLAB Base Workspace

	Share Parameters with Simulink and the MATLAB Workspace
	Initialize Parameters from the MATLAB Base Workspace
	Share Simulink Parameters with Charts

	Access Data Store Memory from a Chart
	Local and Global Data Store Memory
	Bind Stateflow Data to Data Stores
	Store and Retrieve Global Data
	Best Practices for Using Data Stores

	Specify Type of Stateflow Data
	Specify Data Type by Using the Data Type Assistant
	Inherit Data Types from Simulink Objects
	Derive Data Types from Other Data Objects
	Specify Data Types by Using a Simulink Alias
	Strong Data Typing with Simulink Inputs and Outputs

	Specify Size of Stateflow Data
	Inherit Data Size
	Specify Data Size by Using Numeric Values
	Specify Data Size by Using Expressions

	Handle Integer Overflow for Chart Data
	When Integer Overflow Can Occur
	Support for Handling Integer Overflow in Charts
	Effect of Integer Promotion Rules on Saturation
	Impact of Saturation on Error Checks

	Identify Data by Using Dot Notation
	Resolution of Qualified Data Names
	Best Practices for Using Dot Notation
	Examples of Qualified Data Name Resolution

	Resolve Data Properties from Simulink Signal Objects

	Active State Data
	Monitor State Activity Through Active State Data
	Types of Active State Data
	Enable Active State Data
	Active State Data Properties
	Set Scope for Active State Data
	Define State Activity Enumeration Type
	State Activity and Parallel States
	Limitations for Active State Data

	Simplify Stateflow Charts by Incorporating Active State Output
	View State Activity by Using the Simulation Data Inspector
	Log to the Simulation Data Inspector from Stateflow

	View Stateflow States in the Logic Analyzer
	Add Signals and States for Logging
	View Logged Output in Logic Analyzer

	Check State Activity by Using the in Operator
	The in Operator
	Resolution of State Activity
	Best Practices for Checking State Activity
	Examples of State Activity Resolution

	Model An Intersection Of One-Way Streets

	Define Events
	Synchronize Model Components by Broadcasting Events
	Types of Events
	Define Events in a Chart
	Access Event Information from a Stateflow Chart
	Best Practices for Using Events in Stateflow Charts

	Set Properties for an Event
	Stateflow Event Properties

	Activate a Stateflow Chart by Sending Input Events
	Activate a Stateflow Chart by Using Edge Triggers
	Activate a Stateflow Chart by Using Function Calls
	Association of Input Events with Control Signals
	Data Types Allowed for Input Events

	Control States in Charts Enabled by Function-Call Input Events
	Activate a Simulink Block by Sending Output Events
	Broadcast Output Events
	Activate a Simulink Block by Using Edge Triggers
	Activate a Simulink Block by Using Function Calls
	Approximate a Function Call by Using Edge-Triggered Events
	Association of Output Events with Output Ports

	Broadcast Local Events to Synchronize Parallel States
	Broadcast Local Events
	Use Qualified Event Names in Event Broadcasts
	Undirected Event Broadcasts

	Control Chart Behavior by Using Implicit Events
	Implicit Events Based on Chart Execution
	Implicit Events Based on Data and States

	Yo-Yo Control of Satellites
	Model a Security System
	Server Queueing System
	Tic-Tac-Flow: Model of a Hand-held Game

	Messages
	Communicate with Stateflow Charts by Sending Messages
	Define Messages in a Chart
	Lifetime of a Stateflow Message
	Limitations for Messages

	Set Properties for a Message
	Stateflow Message Properties
	Message Queue Properties

	Control Message Activity in Stateflow Charts
	Access Message Data
	Send a Message
	Guard Transitions and Actions
	Receive a Message
	Discard a Message
	Forward a Message
	Determine if a Message Is Valid
	Determine the Length of the Queue

	View Differences Between Stateflow Messages, Events, and Data
	Model a Distributed Traffic Control System by Using Messages
	Use the Sequence Viewer to Visualize Messages, Events, and Entities
	Components of the Sequence Viewer Window
	Navigate the Lifeline Hierarchy
	View State Activity and Transitions
	View Function Calls
	Simulation Time in the Sequence Viewer Window
	Redisplay of Information in the Sequence Viewer Window

	Build a Shared Communication Channel with Multiple Senders and Receivers
	Model Wireless Message Communication with Packet Loss and Channel Failure
	Model an Ethernet Communication Network with CSMA/CD Protocol

	Use Actions in Charts
	Eliminate Redundant Code by Combining State Actions
	How to Combine State Actions
	Order of Execution of Combined Actions
	Rules for Combining State Actions

	Supported Operations for Chart Data
	Binary Operations
	Unary Operations and Actions
	Assignment Operations
	Type Cast Operations
	Bitwise Operations
	Pointer and Address Operations
	Replace Operations with Application Implementations

	Supported Symbols in Actions
	Boolean Symbols, true and false
	Comment Symbols, %, //, /*
	Hexadecimal Notation Symbols, 0xFF
	Infinity Symbol, inf
	Line Continuation Symbol, ...
	Literal Code Symbol, $
	MATLAB Display Symbol, ;
	Single-Precision Floating-Point Number Symbol, F
	Time Symbol, t

	Call C Library Functions in C Charts
	Call C Library Functions
	Call the abs Function
	Call min and max Functions
	Replacement of Math Library Functions with Application Implementations
	Call Custom C Code Functions

	Access MATLAB Functions and Workspace Data in C Charts
	ml Namespace Operator
	ml Function
	ml Expressions
	Which ml Should I Use?
	ml Data Type
	How Charts Infer the Return Size for ml Expressions

	Control Function-Call Subsystems by Using bind Actions
	Bind a Function-Call Subsystem to a State
	Bind a Function-Call Subsystem to a State
	Avoid Muxed Trigger Events with Binding

	Control Chart Execution by Using Temporal Logic
	Temporal Logic Operators
	Examples of Temporal Logic
	Notation for Event-Based Temporal Logic in Transitions
	Best Practices for Temporal Logic

	Model Bang-Bang Temperature Control System
	Control Oscillations by Using the duration Operator
	Control Oscillation with Parallel State Logic
	Control Oscillation with the duration Operator

	Implement an Automatic Transmission Gear System by Using the duration Operator
	Count Events by Using the temporalCount Operator
	Detect Changes in Data and Expression Values
	Change Detection Operators
	Edge Detection Operators
	Implementation of Change and Edge Detection

	Design a Game by Using Stateflow
	Modeling an Automatic Transmission Controller

	MATLAB Syntax Support for States and Transitions
	Modify the Action Language for a Chart
	Change the Default Action Language
	Auto Correction When Using MATLAB as the Action Language
	C to MATLAB Syntax Conversion
	Rules for Using MATLAB as the Action Language

	Differences Between MATLAB and C as Action Language Syntax
	Compare Functionality of Action Languages

	Model an Assembly Line Feeder
	Typical Approaches to Chart Programming
	Design Requirements
	Identify System Attributes
	Build the Model Yourself or Use the Supplied Model
	Add a Stateflow Chart to the Feeder Model
	Add States to Represent Operating Modes
	Implement State Actions
	Specify Transition Conditions
	Define Data for Your System
	Verify the System Representation
	Alternative Approach: Event-Based Chart
	Feeder Chart Activated by Input Events


	Tabular Expression of Modal Logic
	State Transition Tables in Stateflow
	Create a State Transition Table
	Anatomy of a State Transition Table
	Use a State Transition Chart to Model a Boiler
	Differences Between State Transition Tables and Charts
	Guidelines for Using State Transition Tables
	Specify Properties for State Transition Tables
	Generate Diagrams from State Transition Tables

	State Transition Table Operations
	Insert Rows and Columns
	Move Rows and Cells
	Copy Rows and Transition Cells
	Set Default State
	Add History Junction
	Print State Transition Tables
	Select and Clear Table Elements
	Undo and Redo Edit Operations

	Highlight Flow of Logic in a State Transition Table
	State Transition Table Diagnostics
	Debug Run-Time Errors in a State Transition Table
	Create the Model and the State Transition Table
	Debug the State Transition Table
	Correct the Run-Time Error

	Model Bang-Bang Controller by Using a State Transition Table
	Design Requirements
	Identify System Attributes
	Build the Controller or Use the Supplied Model
	Create a New State Transition Table
	Add States and Hierarchy
	Specify State Actions
	Specify Transition Conditions and Actions
	Define Data
	Connect the Transition Table and Run the Model
	View the Graphical Representation

	Modeling a CD Player/Radio Using State Transition Tables
	View Sequential Logic Through State Transition Matrix

	Make States Reusable with Atomic Subcharts
	Create Reusable Subcomponents by Using Atomic Subcharts
	Example of an Atomic Subchart
	Benefits of Using Atomic Subcharts
	Create an Atomic Subchart
	When to Use Atomic Subcharts

	Guidelines for Using Atomic Subcharts
	Chart Properties and Atomic Subcharts
	Data in Atomic Subcharts
	Events in Atomic Subcharts
	Functions and Atomic Subcharts
	Restrictions for Converting to Atomic Subcharts

	Map Variables for Atomic Subcharts and Boxes
	Map Input and Output Data for an Atomic Subchart
	Map Atomic Subchart Variables to Bus Elements
	Map Atomic Subchart Variables to the Elements of a Matrix
	Map Atomic Subchart Parameters to Expressions
	Map Input Events for an Atomic Subchart

	Isolate the Transition Logic for Entering and Exiting an Atomic Subchart
	Reuse a State Multiple Times in a Chart
	Reduce the Compilation Time of a Chart
	Divide a Chart into Separate Units
	Generate Separate Code for an Atomic Subchart
	Model a Redundant Sensor Pair by Using Atomic Subcharts
	Model an Elevator System by Using Atomic Subcharts

	Save and Restore Simulations with Operating Point
	Using Operating Points in Stateflow
	Division of a Long Simulation into Segments
	Test of a Chart Response to Different Settings

	Divide a Long Simulation into Segments
	Test a Unique Chart Configuration
	Goal of the Tutorial
	Define the Operating Point
	Load the Operating Point and Modify Values
	Test the Modified Operating Point

	Test a Chart with Fault Detection and Redundant Logic
	Goal of the Tutorial
	Define the Operating Point
	Modify Operating Point Values for One Actuator Failure
	Test the Operating Point for One Failure
	Modify Operating Point Values for Two Actuator Failures
	Test the Operating Point for Two Failures

	Methods for Interacting with the Operating Point of a Chart
	Guidelines for Using the Operating Point of a Chart
	Limitations on Values You Can Modify
	Rules for Modifying Data Values
	Rules for Modifying State Activity
	Restriction on Continuous-Time Charts
	Restriction on Charts That Use Edge Detection
	No Partial Loading of an Operating Point
	Restriction on Copying Operating Point Values

	Best Practices for Saving the Operating Point of a Chart
	Use MAT-Files to Save a Operating Point for Future Use
	Use Scripts to Save Operating Point Commands for Future Use


	Vectors and Matrices in Stateflow Charts
	Vectors and Matrices in Stateflow Charts
	Define Vector and Matrix Data
	Where You Can Use Vectors and Matrices
	Rules for Vectors and Matrices in Stateflow Charts

	Supported Operations for Vectors and Matrices
	Indexing Notation
	Binary Operations
	Unary Operations and Actions
	Assignment Operations
	Perform Matrix Arithmetic by Using MATLAB Functions


	Variable-Size Data in Stateflow Charts
	Declare Variable-Size Data in Stateflow Charts
	Enable Support for Variable-Size Data
	Declare Variable-Size Data
	Guidelines for Using Variable-Size Data

	Compute Output Based on Size of Input Signal

	Enumerated Data in Charts
	Reference Values by Name by Using Enumerated Data
	Example of Enumerated Data
	Computation with Enumerated Data
	Notation for Enumerated Values
	Where to Use Enumerated Data

	Define Enumerated Data Types
	Elements of an Enumerated Data Type Definition
	Define an Enumerated Data Type
	Specify Data Type in the Property Inspector

	Best Practices for Using Enumerated Data
	Guidelines for Defining Enumerated Data Types
	Guidelines for Referencing Enumerated Data
	Guidelines and Limitations for Enumerated Data

	Assign Enumerated Values in a Chart
	Chart Behavior
	Build the Chart
	View Simulation Results

	Model Media Player by Using Enumerated Data

	String Data in Charts
	Manage Textual Information by Using Strings
	Creating Strings in Statelfow
	Computation with Strings
	String Truncation
	Differences Between Charts That Use MATLAB and C as the Action Language
	Limitations

	Log String Data to the Simulation Data Inspector
	Chart Behavior
	Create the Model
	View Simulation Results

	Send Messages with String Data
	Emitter Chart
	Receiver Chart
	View Simulation Results

	Share String Data with Custom C Code
	Simulate a Media Player

	Continuous-Time Systems in Stateflow Charts
	Continuous-Time Modeling in Stateflow
	Configure a Stateflow Chart for Continuous-Time Simulation
	Interaction with Simulink Solver
	Disable Zero-Crossing Detection
	Guidelines for Continuous-Time Simulation

	Store Continuous State Information in Local Variables
	Define Continuous-Time Variables
	Compute Implicit Time Derivatives
	Expose Continuous State to a Simulink Model
	Guidelines for Continuous-Time Variables

	Model a Bouncing Ball in Continuous Time
	Model a DC Motor in Stateflow
	Model the Dynamics of Moving Billiard Balls
	Model Newton's Cradle
	Modeling Newton's Cradle with Virtual Reality

	Fixed-Point Data in Stateflow Charts
	Fixed-Point Data in Stateflow Charts
	Fixed-Point Numbers
	Specify Fixed-Point Data
	Conversion Operations
	Fixed-Point Context-Sensitive Constants
	Tips for Using Fixed-Point Data
	Automatic Scaling of Fixed-Point Data
	Share Fixed-Point Data with Simulink Models
	Implementation of Fixed-Point Data in Stateflow

	Build a Low-Pass Filter by Using Fixed-Point Data
	Supported Operations for Fixed-Point Data
	Binary Operations
	Unary Operations and Actions
	Assignment Operations
	Compare Results of Fixed-Point Arithmetic

	Fixed-Point Operations in Stateflow Charts
	Arithmetic Operations for Fixed-Point Data
	Relational Operations for Fixed-Point Data
	Logical Operations for Fixed-Point Data
	Promotion Rules for Fixed-Point Operations

	Fixed-Point Mandelbrot Set
	Using Multiword Fixed-Point Data

	Complex Data
	Complex Data in Stateflow Charts
	Define Complex Data
	When to Use Complex Data
	Where You Can Use Complex Data
	How You Can Use Complex Data

	Supported Operations for Complex Data
	Notation for Complex Data
	Binary Operations
	Unary Operations and Actions
	Assignment Operations
	Access Real and Imaginary Parts of a Complex Number

	Rules for Using Complex Data in C Charts
	Best Practices for Using Complex Data in C Charts
	Perform Math Function Operations with a MATLAB Function
	Perform Complex Division with a MATLAB Function

	Measure Frequency Response by Using Spectrum Analyzer
	Detect Valid Transmission Data by Using Frame Synchronization

	Define Interfaces to Simulink Models and the MATLAB Workspace
	Specify Properties for Stateflow Charts
	Stateflow Chart Properties
	Fixed-Point Properties
	Additional Properties
	Machine Properties

	Reuse Charts in Models with Chart Libraries
	Create Specialized Chart Libraries for Large-Scale Modeling
	Customize Properties of Library Blocks
	Limitations of Library Charts

	Create a Mask to Share Parameters with Simulink
	Create a Mask for a Stateflow Chart
	Add an Icon to the Mask
	Add Parameters to the Mask
	View the New Mask
	Look Under the Mask
	Edit the Mask

	Specify Units for Stateflow Data
	Units for Input and Output Data
	Consistency Checking
	Units for Stateflow Limitations


	Structures and Bus Signals in Stateflow Charts
	Access Bus Signals Through Stateflow Structures
	Example of Stateflow Structures
	Define Stateflow Structures
	Specify Structure Types by Calling the type Operator
	Virtual and Nonvirtual Buses
	Debug Structures
	Guidelines for Structure Data Types

	Index and Assign Values to Stateflow Structures
	Integrate Custom Structures in Stateflow Charts

	Stateflow Design Patterns
	Schedule Multiple Subsystems in a Single Step
	Schedule a Subsystem Multiple Times in a Single Step
	Schedule Subsystems to Execute at Specific Times
	Reduce Transient Signals by Using Debouncing Logic
	How to Debounce a Signal
	Debounce Signals with the duration Operator
	Debounce Signals with Fault Detection
	Use Event-Based Temporal Logic

	Detect Faults in Aircraft Elevator Control System
	Map Fault Conditions to Actions by Using Truth Tables
	Design for Isolation and Recovery in a Chart
	Mode Logic for the Elevator Actuators
	States for Failure and Isolation
	Transitions for Recovery

	Model a Launch Abort System
	Modeling a Fault-Tolerant Fuel Control System
	Model a Power Window Controller
	Model a Fitness Tracker

	Build Targets
	Reuse Custom Code in Stateflow Charts
	Integrate Custom C Code in Stateflow Charts
	Specify Custom Code for Your Model
	Call Custom Code Functions in States and Transitions
	Specify Relative Paths to Your Custom Code

	Access Custom C++ Code in Stateflow Charts
	Task 1: Prepare Code Files
	Task 2: Include Custom C++ Source and Header Files for Simulation
	Task 3: Choose a C++ Compiler
	Task 4: Simulate the Model

	Configure Custom Code in Library Models
	Configure Custom Code Settings for Simulation
	Configure Custom Code Settings for Code Generation

	Access Custom Code Variables and Functions in Stateflow Charts
	Custom Code Variables in Charts That Use MATLAB as the Action Language
	Custom Code Functions in Charts That Use MATLAB as the Action Language
	Accessing Enumerations in Custom Code

	Include Custom C Code Functions and Structures
	C++ Code Generation and Integration in Stateflow
	Model Battery Management with Custom Code
	Battery Management
	Simulate Communication with Hardware
	Estimate Battery State of Charge by Reusing Custom Code
	Logic to Control Device State of Charge
	Simulate Using the Dashboard Panel
	Code Generation

	Speed Up Simulation
	Improve Model Update Performance
	Disable Simulation Target Options That Impact Execution Speed
	Speed Up Simulation

	Call Extrinsic MATLAB Functions in Stateflow Charts
	Use the coder.extrinsic Function


	Code Generation
	Generate C or C++ Code from Stateflow Blocks
	Generate Code by Using Simulink Coder
	Generate Code by Using Embedded Coder
	Design Tips for Optimizing Generated Code for Stateflow Objects
	Generate Code for Rapid Prototyping and Production Deployment
	Traceability of Stateflow Objects in Generated Code

	Select Array Layout for Matrices in Generated Code
	Code Generation Using Variant Transitions
	Create a Variant Configuration
	Generate Code for Variant Configurations
	Using the Variant Manager

	Variant Lamp Design
	Generate Code from Atomic Subcharts
	Generate Reusable Code for Unlinked Atomic Subcharts
	Generate Reusable Code for Linked Atomic Subcharts

	Set Simulation Parameters Programmatically
	Set Parameters at the Command Line
	Simulation Parameters for Nonlibrary Models
	Simulation Parameters for Library Models

	Using Absolute Time Temporal Logic in Stateflow Charts

	Debug and Test Stateflow Charts
	Debugging Stateflow Charts
	Set Breakpoints to Debug Charts
	Set a Breakpoint for a Stateflow Object
	Change Breakpoint Types
	Add Breakpoint Conditions
	Manage Breakpoints Through the Breakpoints and Watch Window

	Inspect and Modify Data and Messages While Debugging
	View Data in the Stateflow Editor
	View and Modify Data in the Symbols Pane
	View Data in the Breakpoints and Watch Window
	View and Modify Data in the MATLAB Command Window

	Control Chart Execution After a Breakpoint
	Examine the State of the Chart
	Step Through the Simulation

	Debug Run-Time Errors in a Chart
	Create the Model and the Stateflow Chart
	Debug the Stateflow Chart
	Correct the Run-Time Error

	Animate Stateflow Charts
	Set Animation Speeds
	Maintain Highlighting
	Disable Animation
	Animate Charts as Generated Code Executes on a Target System

	Detect Modeling Errors During Edit Time
	Manage Edit-Time Checks
	Edit-Time Checks on States and Subcharts
	Edit-Time Checks on Transitions
	Edit-Time Checks on Junctions
	Edit-Time Checks on Functions
	Edit-Time Checks on Entry and Exit Ports

	Detect Common Modeling Errors During Chart Simulation
	State Inconsistencies
	Data Range Violations
	Cyclic Behavior

	Avoid Unwanted Recursion in a Chart
	Recursive Function Calls
	Undirected Local Event Broadcasts

	Monitor Test Points in Stateflow Charts
	Log Simulation Output for States and Data
	Enable Signal Logging
	Configure States and Data for Logging
	Access Signal Logging Data
	Log Multidimensional Data
	Limitations on Logging Data

	Log Data in Library Charts
	How Library Log Settings Influence Linked Instances
	Override Logging Properties in Chart Instances
	Override Logging Properties in Atomic Subcharts

	Commenting Stateflow Objects in a Chart
	Comment Out a Stateflow Object
	How Commenting Affects the Chart and Model
	Add Text to a Commented Object
	Limitations on Commenting Objects


	Explore and Modify Charts
	Manage Symbols in the Stateflow Editor
	Add and Modify Data, Events, and Messages
	Detect Unused Data in the Symbols Pane
	Resolve Symbols Through the Symbols Pane
	Resolve Symbols Through the Symbol Wizard
	Detect Symbol Definitions in Custom Code
	Trace Data, Events, and Messages
	Symbols Pane Limitations

	Use the Model Explorer with Stateflow Objects
	View Stateflow Objects in the Model Explorer
	Edit Chart Objects in the Model Explorer
	Add Data and Events in the Model Explorer
	Rename Objects in the Model Explorer
	Set Properties for Chart Objects in the Model Explorer
	Move and Copy Data and Events in the Model Explorer
	Change the Port Order of Input and Output Data and Events
	Delete Data and Events in the Model Explorer

	Use the Search and Replace Tool
	Search for
	Match case
	Replace with
	Preserve case
	Search in
	Match options
	Object types
	Field types
	Viewing Search Results

	Visualize Chart Execution with the Activity Profiler
	Debug with the Activity Profiler
	Enable the Activity Profiler
	Activity Profiler Preferences
	Explore

	Connect Dashboard Blocks to Stateflow
	Monitor a Boiler with Dashboard Blocks


	Standalone Stateflow Charts for Execution in MATLAB
	Create Stateflow Charts for Execution as MATLAB Objects
	Construct a Standalone Chart
	Create a Stateflow Chart Object
	Execute a Standalone Chart
	Stop Chart Execution
	Share Standalone Charts
	Properties and Functions of Stateflow Chart Objects
	Capabilities and Limitations

	Execute and Unit Test Stateflow Chart Objects
	Example of a Standalone Stateflow Chart
	Execute a Standalone Chart from the Stateflow Editor
	Execute a Standalone Chart in MATLAB
	Execute Multiple Chart Objects

	Debug a Standalone Stateflow Chart
	Set and Clear Breakpoints
	Manage Breakpoint Types and Conditions
	Control Chart Execution After a Breakpoint
	Examine and Change Values of Chart Data

	Execute Stateflow Chart Objects Through Scripts and Models
	Count Ways to Make Change for Currency
	Execute Standalone Chart in a MATLAB Script
	Execute Standalone Chart in a Simulink Model

	Design Human-Machine Interface Logic by Using Stateflow Charts
	Model a Communications Protocol by Using Chart Objects
	Implement a Financial Strategy by Using Stateflow
	Model a Fitness App by Using Standalone Charts
	Automate Control of Intelligent Vehicles by Using Stateflow Charts
	Model Bluetooth Low Energy Link Layer Using Stateflow
	Create an App for Analog Triggered Data Acquisition by Using Stateflow Charts

	Semantic Examples
	Categories of Semantic Examples
	Transition Between Exclusive States
	Label Format for a State-to-State Transition
	Transition from State to State with Events
	Transition from a Substate to a Substate with Events

	Control Chart Execution by Using Condition Actions
	Condition Action Behavior
	Condition and Transition Action Behavior
	Create Condition Actions Using a For-Loop
	Broadcast Events to Parallel (AND) States Using Condition Actions
	Avoid Cyclic Behavior

	Control Chart Execution by Using Default Transitions
	Default Transition in Exclusive (OR) Decomposition
	Default Transition to a Junction
	Default Transition and a History Junction
	Labeled Default Transitions

	Process Events in States Containing Inner Transitions
	Process Events with an Inner Transition in an Exclusive (OR) State
	Process Events with an Inner Transition to a Connective Junction
	Inner Transition to a History Junction

	Represent Multiple Paths by Using Connective Junctions
	Label Format for Transition Segments
	If-Then-Else Decision Construct
	Self-Loop Transition
	For-Loop Construct
	Flow Chart Notation
	Transition from a Common Source to Multiple Destinations
	Resolve Equally Valid Transition Paths
	Transition from Multiple Sources to a Common Destination
	Transition from a Source to a Destination Based on a Common Event
	Backtrack in Flow Charts

	Control Chart Execution by Using Event Actions in a Superstate
	Undirected Broadcast Events in Parallel States
	Broadcast Events in State Actions
	Broadcast Events in Transition Actions
	Broadcast Events in Condition Actions

	Broadcast Local Events in Parallel States
	Directed Event Broadcast Using Send
	Directed Event Broadcast Using Qualified Event Name


	Simulation Data Inspector
	View Data in the Simulation Data Inspector
	View Logged Data
	Import Data from the Workspace or a File
	View Complex Data
	View String Data
	View Frame-Based Data
	View Event-Based Data

	Import Data from a CSV File into the Simulation Data Inspector
	Basic File Format
	Multiple Time Vectors
	Signal Metadata
	Import Data from a CSV File

	Microsoft Excel Import, Export, and Logging Format
	Basic File Format
	Multiple Time Vectors
	Signal Metadata
	User-Defined Data Types
	Complex, Multidimensional, and Bus Signals
	Function-Call Signals
	Simulation Parameters
	Multiple Runs

	Configure the Simulation Data Inspector
	Logged Data Size and Location
	Archive Behavior and Run Limit
	Incoming Run Names and Location
	Signal Metadata to Display
	Signal Selection on the Inspect Pane
	How Signals Are Aligned for Comparison
	Colors Used to Display Comparison Results
	Signal Grouping
	Data to Stream from Parallel Simulations
	Options for Saving and Loading Session Files
	Signal Display Units

	How the Simulation Data Inspector Compares Data
	Signal Alignment
	Synchronization
	Interpolation
	Tolerance Specification
	Limitations

	Save and Share Simulation Data Inspector Data and Views
	Save and Load Simulation Data Inspector Sessions
	Share Simulation Data Inspector Views
	Share Simulation Data Inspector Plots
	Create a Simulation Data Inspector Report
	Export Data to the Workspace or a File
	Export Video Signal to an MP4 File

	Inspect and Compare Data Programmatically
	Create a Run and View the Data
	Compare Two Signals in the Same Run
	Compare Runs with Global Tolerance
	Analyze Simulation Data Using Signal Tolerances

	Limit the Size of Logged Data
	Limit the Number of Runs Retained in the Simulation Data Inspector Archive
	Specify a Minimum Disk Space Requirement or Maximum Size for Logged Data
	View Data Only During Simulation
	Reduce the Number of Data Points Logged from Simulation



